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On the Permanence of the Null Character of
Maxwell Fields

Bartolomé Coll' and Joan. Josep Ferrando'*?
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A critical review of known results about the permanence conditions for the nuil
character of the solutions to the (vacuum) Maxwell equations, is presented.
Concomitants of the electromagnetic field and the metric tensor are constructed,
which give the principal directions of the field in covariant form. The known
permanence conditions are generalized in order to include a/f the (local) null
fields: the above concomitants allow these conditions to be explicitly formulated
in terms of the electromagnetic field.

1. INTRODUCTION

One of the general problems, still open, concerning the Maxwell equations
is that of the conditions under which the permanence of the null elec-
tromagnetic field may be insured: the (vacuum) Maxwell equations do
not guarantee that an electromagnetic field which is null at an instant
will remain null near it. The only known result about such permanence
conditions is the Mariot-Lichnerowicz theorem,* which states that among
the Maxwell fields admitting an integrable principal direction, the ml fields
are permanent. '

In this paper we solve mainly two problems: (i) to obtain covariantly
the principal directions of an electromagnetic field; this will allow us, in
particular, to write the differential equations that a Maxwell field satisfies
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when it admits an integrable principal direction: the above theorem will
then become a permanence statement for the null initial data of this dil-
ferential system. (ii) To obtain a generalization of the Mariot-Lichnerowicz
result in order to include the nuil fields having no integrable principal
directions.

The literature on this subject being rather confusing, we devoted Sec-
tion 2 to explaining the nature of the permanence problem for the null
Maxwell fields, the role played by the Mariot-Lichnerowicz theorem and
the possible generalizations of it that one expects to obtain.

In Section 3 we solve in a covariant way the algebraic problem of
finding the principal directions of an arbitrary electromagnetic field. To do
this, we introduce a pair of algebraic concomitants of the electromagnetic
field and the metric which project arbitrary time-like directions onto the
principal directions. This section is self-consistent, and its interest exceeds

the use of it that-we make here.
Finally, in Section 4 we generalize the Mariot-Lichnerowicz theorem

in order to include all the null Maxwell fields, and use the results of
the above section to formulate explicitly the differential system in the
electromagnetic field variables with respect to which the null fields are
permanent. Under our permanence conditions, the property of admitting
an integrable principal direction becormes also permanent.

The results without proof of this paper were communicated to the

Spanish relativistic meeting E.R.E. 86 [1].

2. SURVEY OF THE PROBLEM

(a) A field F is said to be a Maxwell field if it is a solution of the
vacuum Maxwell equations® ’

SF=0, 6+F=0 (M}

From the evolution point of view, these equations split, with respect to a
timelike direction u, into an evolution system®

L{u)6F=0, L(u)éxF=0 {E}
and a constraint system

i(u)6F=0,  i(u)5+F=0 {C}

* 8 and = are. respectively. the divergence and dual operators.
& L{u)is the spatial projector with respect to u, and i{u) is the « projection {interior product).
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The Maxwell system {M}={E}u{C} is in involution: if F is a
solution of {£} in a domain and verifies {C} on an instant,” then Fis a
solution of {C} in the domain. One says then that the constraints {C} are

permanent for {E}.
All the considerations in this paper are of local character. This is so

because spacetimes do not admit, in general, global instants, because the
Maxwell equations are hyperbolic {and hyperbolicity is intrinsically local)
and because their solutions are not, generically, globally continuous
(and consequently global evolution problems are not well-posed). Thus,
we resirict ourselves to domains where the electromagnetic fields are
sufficiently differentiable and, there, to neighborhoods included in the
influence domain of a given instant.

(b) An electromagnetic field F is said to be singular or null if its
invariant scalars® ¢ = (F, F) and = (F, «F) are zero

F+y=0 {N}

otherwise it is said to be regular. It is well-known that the physical
significance of the null electromagnetic fields represents pure radiation; here
we are interested in the rather paradoxal fact that the system {N} is not
permanent for the system {£} or, in other words, that:

Proposition 1. A Maxwell field that is null on an instant is not
necessarily null in its neighbor.

This statement contradicts an old result by Mariot [2]. For this
reason, and because it is the starting point of the present work, we have
presented it as a proposition. The proof by a qualitative analysis of the
system {M} U {N} is rather difficult; we prove it here by explicit construc-
tion of such a null-regular Maxwell field. Let ¢ and / be, respectively, the
electric and magnetic fields characterizing F for an inertial observer in
Minkowski spacetime; the system {£}, {C}, and {N} become, respectively

Je/dt= —rot A, ohfét=rote
div e =0, divh=0

and
e’ —h?=0, e-h=0

"1n a domain 2 of the spacetime {7, g). an instent is a specelike hypersurface of 2.
| . ) denotes the scalar product with the spacetime metric g.
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Taking the time derxvatwe of the last equation and using the first, we
obtain

h-tote+e-roth=0
- (1)

eg-rote—h.rote=0(

But {M} is in involution, and {E} is well-posed (in the Cauchy sense), so
that to every pair (e, 4o) verifying {C} on an instant corresponds, in the
neighborhood of it, to a unique Maxwell field. Let the instant be given by
t=t, and consider the following fields at z,

?o(xi) = (x,,y’ 0)’ hﬂ(xi) = (Os 0! r)_

where x'= {x, », z} (Cartesian coordinates) and r*=x*+ y% It is easy to
see that these fields verify the systems {N} and {C}, and so they generate
in the neighborhood of 1, a Maxwell field. Nevertheless, as may be seen by
substitution, our data are not solutions of (1) at 4 and, consequently, the
correspondmg Maxwell field, null at 1, is regular in its ne:ghborhood as

stated in Proposition 1.
It may be noted that the venﬁcat;on of the first- order system (1) by

the initial data (ey, #4) does not imply the null character of the field out of
t,: taking the time derivative of (1) and using {£}, one obtains a second-
order system at 7, which, in general, will not be verified by the solutions to
the system {C}u {N}u {(1)}. The prolongation of this procedure to any
finite order of derivation will always give the same negative result. .

(c) Proposition 1 leads naturally to the following:

Problem. To find the conditions under which the null Maxwell fields
are permanent.

The only known answer to this problem is the Mariot-Lichnerowicz
theorem. Remember that the principal directions of an electromagnetic field
are given by the null eigen-directions and that an electromagnetic field is
" said to be of integrable type if it has an integrable principal direction, say
¢/ A df =0. One has then:

Theorem (Mariot-Lichnerowicz). If a Maxwell field of integrable
type is null on an instant, it is null in the neighborhood.

This statement, and an easy proof of it based on the eigen-direction
equations, is due to Lichnerowicz [3]. Before him, Mariot [4] obtained it
in an adapted Cartan’s moving frame, but his proof, based partially in a
previous erroneous result [2], is incomplete, and his statement, for the
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same reason, contains some inaccuracies. In spite of these errors, Mariot
seems to have been the first to ask for the permanence of the null fields; he
discovered also another fundamental property of them [5].

(d} According to its definition, an electromagnetic field F is of
integrable type if there exists a function 6 such that

{dOYF A dB=0,  i(dB)+F A do=0 )

Thus, it is for the Maxwell fields verifying (2) that the Mariot-
Lichnerowicz theorem insures the permanence of the null character of the
fields. But, while the Maxwell system {Af} is a differential system in F,
system (2) is a mixed system, explicitly algebraic in F and implicitly dif-
féerential, depending on a function whose null gradient itself depends on F.
The analysis of such a system is not easy to make. It would be desirable to
~ substitute system (2) by an equivalent one, in which the dependence on F
of d8 is explicit. In the following section we introduce the essential
algebraic elements for this task.

The Mariot-Lichnerowicz theorem does not address the permanence
of Maxwell fields of a nonintegrable type. Because of the great variety
and physical interest of such fields, it would be convenient to have a
permanence theorem for them. We obtain it in the last section.

(e) Here we indicate three aspects of the permanence problem we
think important. The first concerns the noninvolutive character of the
system {E}u {N}: it is not possible to find initial conditions which ensure,
in general, the permanence of the null character of Maxwell fields. In other
words: there do not exist common relations to all null Maxwell fields (and,
eventually, to some other regular ones) such that their verification on one
instant ensure, for a null field at that instant, the permanence of its null
character in the neighbor of the instant. Nevertheless, let us note that this
does not deny the possibility of finding initial conditions ensuring the
permanence of some, particular, null fields. Thus, for example, the initial
conditions given, in Minkowski’s inertial frames, by {Ve,=0, Vi,=0},
although without physical interest, show that “t;.e Maxwell fields which are
null and constant at one instant remain null and constant everywhere.”

The conditions which select al/ the permanent null Maxwell fields are
to be imposed in all domains in question (as is already the case for the
Mariot-Lichnerowicz conditions). In other words, the system of the
Maxwell equations has to be necessarily completed, in all given domains,
with a convenient diflerential system in such a way that the common
solutions to both systems be either everywhere null or everywhere regular
in the domain. A permanence theorem for all the null Maxwell fields is thus
also a permanence theorem (everywhere regularity) for some class of
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regular fields. Then, it is clear that the interest of a permanence theorem for
the null fields is intimately related to the interest presented by the regular
fields for which the theorem also insures permanence. For example, from
the physical point of view, the one attached to the Maxwell fields verifying

the conditions :
d(F,F)=0, d(+F, F)=0 (3)

will not be considered a “good” permanence theorem (that is to say, the
one which selects the null fields among the fields having constant their two
invariant scalars). The physical interest of such fields is too small. This is
the second aspect of the permanence problem we desire to explain.
Finally, the third aspect we consider important is the independence of
the permanence theorems for null fields from the Robinson theorem on null
fields [6]. Generalizing a result by Mariot [5], this last theorem states
that: a null direction is geodesic and shear-free if, and only if, it is a principal
direction of a null Maxwell field. We know that when the spacetime has
nonvanishing Weyl tensor, it admits at most two geodesic and shear-free
null directions, whereas when its Weyl tensor vanishes, the distortion @ of
a null geodesic congruence ¢ satisfies the transport law #¢) VP =
—tr & . @ where & = %(/) g is the Lie derivative of the metric g. Thus, in -
both cases (though by very different methods), the geodesic and shear-free
character of a null congruence may be discerned from initial -data.
Nevertheless, the null Maxwell fields associated to such a congruence by
the Robinson theorem cannot be selected by initial conditions from among
the electromagnetic fields which, at the given instant, are null fields and
admit that congruence as principal direction. These last fields may become
regular in the neighborhood of the initial instant: we see in the last section
that in such a case their principal directions diverge necessarily from the
geodesic and shear-free congruence initially considered. '

3. 'PRINCIPAL DIRECTIONS OF THE ELECTROMAGNETIC
FIELD '

(a) To every 2-form F is associated the -energy tensor T =
1/2{ F>+ (+«F)*}.? Conversely [7], a symmetric tensor T, is the energy
tensor of some 2-form iff it verifies the algebraic Rainich conditions
tr T=0, T?=yg; the corresponding 2-forms are then related by a duality

v F*= Fx F. where x denotes the cross product {contraction of the tensorial product over the
adjacent indices).
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rotation, and are null fields il y=0. Let us remember also that the
- characteristic polynomials of F and #F are of the form

PU)= (22 —a®) A2+ %), PHA)=(F+a® )22 -5 (4)
thus, denoting by /, their principal directions, we have
(£ )F=+al,, {{,)*F= Fpt, (5)
Let us introduce g '
P(A)=(i+a)™! P(;.)=(Ai_a)(/:2+ﬁ2) 6
PR(A)=(A+B)7 PHA)=(A £ BYA2 +a?)

from the Cayley-Hamilton theorem it follows that P, (F) (resp., P%(*F))

is an eigentensor of F (resp., of F) with eigenvalue +a (resp, =) and

commutes with F (resp., with +F). : L
Starting from the known identities

FP—(xFP=(’—$*)g

FxsxF=xFx F= —ufig ,_.(7)
it can be shown that the above eigentensors are of the form
P (F)=uZF, P_(F)=—a'F o ..(.3.)
PY(+F)=—pF, - PL(+F)=p'F |
where & is the tensor defined by .
| ‘ .ﬁE_aF.—B*F-FT—i-xg. S 9.

and ‘# denotes its transpose.

Definition. We call principal concomitants of a 2-form F their eigen-
tensors & and '#. . o :

(b) Let us analyze some properties of these concomitants. The
“expression (9) shows that & never reduces to a 2-form and that it becomes
symmetric iff & =T, that is to say, iff F is null. In such a case, we know
that Tx F= Fx T=0; we obtain now the analog of this relation .for the -
regular case. When F is nonnull, there is, at last, one nonzero eigenvalue, .
say «; then, as P*(F) are eigentensors of £ commuting with it, from the
first two relations (8) it follows that '

FXF=FXxF =aF _ (10)
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and, taking into account the second identity in (7)
FxsF=+FxF=-8F {11

From (10), (11) and their transposed relations, it follows that Im & and
Im ‘% are the principal directions of F. Therefore, we may write

F =l xl_ | o (12)
It is then easy to see that:

Proposition 2. The principal concomitants of a 2-form F are, up to a
scalar factor, the only eigentensors of F and *=F that commute with them.

An endomorphism ¥ is said to be a generator of a pair of directions,
say {¢,}, ifIm%={¢, } and Im '& = {£_}. The above result may be stated

as follows:

Proposition 2. An endomorphism ¥ is the generator of the principal
directions of a 2-form F iff it coincides, up to a scalar factor, with a prin-
- cipal concomitant of F. _ '

Now, from (12), it is clear that Ker & and Ker '# have no timelike
directions; we have thus the following rule to obtain the principal direc-
tions: ' : '

* Theorem 1. The principal directions 7, of a 2-form F are given by
f=F(x), L='F(x) (13)

where x is an arbitrary timelike direction and & 1is the principal con-
comitant of F given by (9).'° '

This theorem is the “covariant solution™ to the problem of finding the
principal directions of an electromagnetic field. SR

(c) The Rainich algebraic relations are the necessary and sufficient -
conditions for a symmetric tensor 7 to be the energy tensor of an elec-

tromagnetic field; we give here the corresponding relations for &. From
(12) it follows that & x '&F = 'F x & =0; conversely, if a tensor & verifies.

these relations, Im % and Im '# are null directions and so & may be writ-
ten as (12). Consequently, every 2-form F having these null directions as
principal directions admits A% as principal concomitants. But, the trace-

W & (x)= ilx) 'F; in local coordinates /. *=F*,xF,
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free symmetric part of & is an energy tensor verifying the algebraic
Raynich conditions and, from (9), tr & =4y = 0. We thus have:

Propesition 3. The necessary and sufficient conditions for a 2-tensor
Z to be the principal concomitant of a 2-form are

Fx'F='"FxF=0, uFz0 (14)
Then & determines F up to a duality rotation. It is then easy to show that:

Proposition 4. Suppose & verifies the relations (14). If tr & =0, put
Fo=lz] " {A(x)F } 2 i(x)F Az

where x and y are time-like vectors submitted to the condition that z=
F(x, y)x—~F{x, x) y be nonzero; if tr F >0, put : '

Fo=QQuF) 2 (F -'F)
Then, the 2-forms F for which & is a principal concomitant are given by
F: cos pFy+ sin pxFy, Yue R

(d) For the sake of completeness we indicate here the covariant
characterization of the two-invariant 2-planes, say n and =+, of a 2-form F.

When F is regular, P=y~'T defines a (2 + 2)-almost-product struc-
ture. Let = be the time-like 2-plane and G the volume element 2-form on 7;
then *G is the volume element 2-form on the (space-like} orthogonal
2-plane =+, and F may be written F=aG + f+G. Conversely, the volume
element G is given by G=(2y)"' (aF — B*F), where 2y =a’+ % On the
other hand, let v and 4 be, respectively, the induced metrics on = and 7*;
one has v + /=g and v—h=y~'T; so that :

p=(2) " (T+1g)  h=(20)" " (T—2z8) - (15)

Now, let x be a timelike arbitrary vector, not contained in 7 (xG(x)#0);
one has : : : '

vix)em, = G(x)en L e).

hix)ent, *G(x)en* o | (Ij)

v being timelike and G230, G(x) is neither zero nor null, and v(x)=

G[G(x)] is not colinear to G(x); for similar reasons, *G(x) being nODZEro,
the vectors A{x) and *G(x) are independent. Thus, the vectors given by
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(16) (resp. by (17)) generate the 2- -plane = (resp., n*). Taking into account
(15) we have

Propos:t:on 5. The invariant 2-planes, n and n*, of a regular' 2-form
F are given, respectively, by

n={ix) F,),  nt={ix) F,t)

~ where x is any timelike vector such that T{x)# yx, and the biparametric
concomitants of F, &, ,, and & s J, U € R, are given by

F =T+ yg)+ plaF—pxF),  F ,*=MT—yg)+ u(BF+axF)

Note that n (resp., n l) 1s an eigenspace of F, with eigenvalue zero,
when F is spacelike (resp., timelike); that is to say, when a=0 (resp,

- f=0).

: When F is singular, both invariant 2-planes are null and contain the
principal direction of F; they are defined by n={p/p A F=0} and =~
{gfq A *F=0}. Let x be an arbitrary time-like vector; one has x¢7ru1r

“and then i(x)F#0, i{x)*F#0. Also, from FA F=Fa *xF=0, one has
i{x)Fe and i(x) »Fen™*. The principal concomitant & reduces now to T,

so that we have

Proposmon 6. The invariant 2-planes, © and n*, of a null 2-form F
are glven by

= z(x)(/"T-{-’,uF), LUeR}, ~wt= {i(x)(/’.T—lj‘u*F), /'.,pER} '

wherc X is an arbitrary timelike vector.

‘(e) -For the null 2-forms, & and ‘% reduce to thelr energy tersor in
‘the opposite end, for the completely regular 2-forms (20, f#0), # and

' ' coincide with the Frobenius covariants of the associated matrix. But, as = -~

algebraic regular functions on the space of all the 2-forms, our principal
conCOmxtants and ‘# seem not to have been considered up to now.

Let us note that thls method of “covariant resolution” of the problem
of eigen-directions of a 2-form, may be extended to arbitrary tensors. Its
extension, in particular, to symmetric tensors has been recently made [8].

4. PERMANENCE OF NULL FIELDS

(a) The principal concomitants of a 2-form F allow one to fonnuiatc,-
in terms of F, the differential equations imposed on their principal direc-
tions by any particular problem.
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Theorem 1 states that, if x is an arbitrary timelike l-form, £ = #{(x) is
a principal direction of F. Thus, the integrability of £, £ A d/ =0, may be
written & (x} A d% (x)=0. Considered as an endomorphism on the space
of the 1-forms, & is a A'-valued vector field; when exterior algebra
operators act on &, it must be understood they act on the “I-form part” of
it.!! Thus, the above expression for the integrability of / being valid for all

X, it is easy to show that:
'Proposition 7. An electromagnetic field F is of integrable type if, and
only if, its principal concomitant 4 verifies
F ndF =0 (18)

‘Taking into account this result, the Mariot-Lichnerowicz theorem
may be stated as a property of a differential system for F: -

Theorem (Mariot-Lichnerowicz). For the electromagnetic fields F
verifying the differential system :

dF=dsF=F N dF =0 (19)

the null fields are permanent. .

(b) A real null tetrad {¢, », #, ¢}, With £-n= —f*= —g*=1 as
nonzero scalar products, defines an almost-product structure given by the
two 2-planes w(/, ») and {4, ¢); let P, P2=g be its structure tensor. A

snmple algebraic calculation shows that:

Lemma 1. Let 7 be a principal direction for a symmetric tensor T
ver1fymg the algebraic Rainich conditions. With respect to the real null -

tetrad {/, », #, ¢}, T may be written
T=k¥Q@L+yP+rf® 4+ B ¢ (20)

where P is the structure tensor of the tetrad r+s*=k%¢ and ~ denotes
symmetrization,

From (20), with P=2x ® £ —g and remembering that i(/) ‘VI=0, we
have

tr(Tx V) = x8¢ + {2i(n) + ri( #) + 5i(g) } i(£) VL
and thus:

" That is 10 say, on the first index of their local coordinate components.
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Lemma 2. If the null direction /7 of Lemmal is geodesic,
i(£}V{ =y£, one has _

t(Tx L) =25(2y + 6¢) (21)

where & = £ (/) g is the Lie derivative of g along ¢.

Now, taking divergences 'in the eigenvectors equation for T,
i(£)T = y£, we have, from (21).

- Lemma 3. The variation of ¥ along the geodesie principal direction £
of T is given by
.’2’({)7=21(5(+}1)—-i((‘) oT - (22)

“When 67=0, (22) becomes a first-order homogeneous propagation system
for y; we have thus

Proposition 8. Let T be a conservative tensor verifying the algebraic
Rainich conditions and having a geodesic principal direction. If 72 vanishes
on an instant, then it vanishes in the neighborhood.

Due to the one-to-one correspondence, up to duality rotation, between
Tand F [7] it follows:

Theorem 2. Let F be a Maxwell field admitting a geodesic principal
. direction. If Fis null on an instant, then it is null in the neighborhood.

~ The principal direction of a null Maxwell field being geodesic [5], this
theorem allows, in fact, the selection of a// the permanent null Maxwell -
fields in the neighborhood of the given instant. Note that the proof involves
only one-half of the Maxwell equations, those imposing the conservation of
T; thus, the theorem remains true for the so-called pre-Maxwellian fields
[9]. Furthermore, let us note that (22) is a transport law; consequently, the
electromagnetic fields of Theorem 2 are such that, when they are null at a
point, they remain null on the integral curve of / containing the point.
The geodesic condition for /, expressed in parameter-independent
form, / A {/)V{ =0, may be written, according to our Theorem !, as
F(x) A i[F(x}]VF (x)=0; this relation being vahd for all timelike x, we

obtain

Proposition 9. An electromagnetic field F has a geode51c prmc:pal
‘direction iff its principal concomitant F satisfies

X=F AnilF)VF =0 {23)
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When F is a null field, (23) is satisfied if 7 is conserved. When F is
regular it may be shown that (23) is equivalent to tr £ =0, tr being the
contraction of the first covariant index with the first contravariant one.'?

We have thus

Proposition 10. The necessary and sufficient condition for a Maxwell
field F to have a geodesic principal direction is

tr ¥ =0

where 3 is the differential concomitant of F given by (23).

Theorem 2 then may be stated in the following form:

Theorem 2’. ' For the electromagnetic fields satisfying the differential

system _
dF=dvF=ti[F A i(F)VF]=0 (24)

the null character is permanent..

Let us note that, as has already been indicated in Section 2(¢), this
result is also a permanence statement for regularity: if F verifies (24} in a
domain and is regular on an instant, then F is regular in the domain.
Theorem 2° is the wanted generalization of the Mariot-Lichnerowicz

theorem. _ o o
(c) Let w=x(v A dp) be the rotation of v and denote by D = i(v)V the
directional derivative: we have the identities _ _

[*, D] =0, [d,D]v="Vuoxdv+dvx Vv (25)

and, for every 2-form A and every 2-tensor X

S AXK+'KXA)=tr K-sAd— (+Ax K+ Kx*4)  (26)

Applying (25) and (26) to w, we have
Dw=D{v A dv)=+{Dv A dv+v A Ddv}
=*d(v A Dv)+i(v} ={'Vi x dv + dv x Vp}
= +d(v A Do)+ i(v){ —*dvx Vo —~Vux *dv-f—,ter-:dv} |
=*d{v A Dv)+ +(v A do)x Vo —i{Dv) %dv+ dv - +(v A dv)

2 % has local components of the form #,,”. The antisymmetry in aff follows from the
exterior product form: meanwhile. the symmetry in Aus is 2 consequence of the identity
# A # =0. obtained from (12).
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that 1s
Dw=i(w) Vo +6v-w+ A (v, Vv) ' (27

where
H (v, Vo)=x{d{v A Dv)+Dv A dv}

When (v, Vv) depends on w and vanishes with it, {27) becomes a
‘propagation system for w; thus, for geodesic fields (v A Dv=0) where
- A =Aw, we have:

Propesition 11. Let v be a geodesic field in a domain. If v is not
tangent to an instant and is integrable on it, it is integrable in the domain.

From this proposition and Theorem 2, we have:

Theorem 3. If an electromagnetic field F is a solution of (24) in a
domain and is of integrable type on an instant, then it is of integrable type
in the domain. :

This theorem reduces to initial conditions a part of the conditions
required ir a// the domain by the Mariot-Lichnerowicz theorem (that part
that must be imposed to a geodesic principal direction in order to be
integrable). It is thus a nonempty refinement of their statement. In fact,
the Mariot-Lichnerowicz theorem ensures the permanence of the null
fields among the ones of integrable type, whereas Theorem 3 ensures the
permanence of the null fields of integrable type among the null fields.

i
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