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The relations on the electromagnetic field obtained by Teukolsky and Press for type D vacuum
space-times are considered; these are four second-order equations in two complex components
of the field with respect to a principal null tetrad. A rigorous geometric interpretation of these

relations is given, showing the essential role played by the Maxwellian character of the basic
null tetrad. It appears that, generically, the Teukolsky—Press relations are incomplete. Once
completed, their generalizations to the general Maxwell equations (with source term) with
respect to non-necessarily Maxwellian tetrads on arbitrary space-times are given.

I. INTRODUCTION

(a) Let ¢y, ¢, ¢, be the components of the electromag-
netic field F with respect to a principal null tetrad in a type D
vacuum space-time. Here we call Teukolsky—Press relations'
the following set of four second-order partial differential
equations in the two components ¢, ¢,:

Ty 7o =0, Ty T, =0,

Ty Too + 720 =0, Ty Tod, + Topy =0,
where the 7's are given, in the Newman-Penrose notation,
by

To=(D—€+€—20—p)(A+pu—2y)

—(6—B—a—2r+7)(6+7—2a),
o= +3r~B—a)(5+7—2a),
=D +3p+€e—€)(D—p+2e),

and ~ is the operator which permutes separately the real
and complex vectors of the null tetrad. The two uncoupled
equations in (1), T, and T, were first given by Teukolsky?;
the remaining two, 7, and 7, by Teukolsky and Press.’

The Teukolsky—Press relations were the starting point
to show® that the Maxwell equations can be integrated by
separation of variables in perturbed Kerr geometries. For
this reason, they play an important role in many problems
related to the Kerr space-times. Itis the case, in particular, in
the problem of the perturbations of a Kerr black hole by
incident electromagnetic waves, first considered by Staro-
binsky and Churilov,* which could be studied in detail (see
Chandrasekhar’).

But, in spite of their simple derivation, the Teukolsky-
Press relations are not easy to interpret: derived from the
Maxwell equations, one does not know, conversely, to what
extent the Maxwell equations are implied by them.

On the other hand, some authors®’ have given Teu-
kolsky-Press-like relations in the Kerr-Newman space-
times, but the precise conditions under which the Teu-
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kolsky-Press relations may be generalized to other
space-times have not yet been found.

This paper answers both problems: we find a rigorous
geometric interpretation of the Teukolsky—Press relations
and their connection with the Maxwell equations, and we
give their generalizations to arbitrary null tetrads and arbi-
trary space-times.

(b) For this task, we need two important notions: those
of Maxwellian structure and of conditional system associated
to a given differential system.

It is weli known that a electromagnetic field (arbitrary
two-form) selects algebraically, at every point of the space-
time, a pair of orthogonal two-planes which, in the regular
case, define a 2 + 2 almost-product structure.®'° The Max-
wellian structures are the 2 + 2 almost-product structures
defined by the regular solutions to the vacuum Maxwell
equations.

On the other hand, let D,(dy.¢,,¢,) and D,(d,,d,) be
two differential systems in the ¢’s. We shall say that D, is a
conditional system for D if all their solutions (¢,,¢,) may be
completed to solutions (@, ,,¢,) of D, and if, conversely,
all the solutions (@,,¢,,6,) of D, are such that (¢,,¢p,) are
solutions of D,.

We shall see here that the Maxwell equations always
admit a conditional system in ($,¢,) that is, generically, of
third order. Moreover, this system degenerates to a second-
order system if, and only if, the basic null tetrad is associated
naturally to a Maxwellian structure.

The principal null tetrads of the type D vacuum space-
time are associated to a Maxwellian structure. Consequent-
ly, the conditional system admitted there by the Maxwell
equations is a second-order one. Then, its comparison with
Egs. (1) and (2) shows that, up to a missing equation, the
Teukolsky—Press relations on the type D vacuum space-times
are nothing but the conditional system in ($,¢,) admitted by
the Maxwell equations.

The missing equation in the Teukolsky—Press relations
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is identically verified on the solutions of the Maxwell equa-
tions which are invariant under the isometry group of the
Kerr metric. This is, perhaps, the reason why this equation
has been omitted up to now: the Maxwell solutions usually
considered in this context belong essentially to this class.

On the basis of our preceding results, the generalization
of the Teukolsky-Press relations to any null tetrad in any
space-time must be considered as given by the conditional
system in (@,,4,) associated there to the Maxwell equations.

It will be then easy to characterize the type D nonva-
cuum space-times in which the first two Teukolsky—Press
equations remain uncoupled.

(c) The paper is organized as follows: in Sec. II we in-
troduce ““a /a Rainich” the notion of Maxwellian structure
and then, give its version in the complex formalism. Section
ITI is devoted to finding the conditional systems in (¢q,8,)
admitted by the Maxwell equations, and Sec. IV gives its
explicit expression in terms of the spin coefficients. Finally,
in Sec. V, we compare them with the Teukolsky—Press rela-
tions and discuss the remainder of the results stated in the
precedent paragraph (b).

This paper contains some results published elsewhere, '
but here we consider the general Maxwell equations (with
source term ), obtain the explicit form of the third-order con-
ditional system, and give detailed proofs of our statements.

1l. MAXWELLIAN STRUCTURES

(a) Let Q2 be a domain of the space-time (V,,g), g being
a Lorentzian metric of signature — 2. To every two-form F
is associated the Minkowski stress-energy tensor T, given by
2T=F?+ (xF)? with F*=F X F, X being the cross prod-
uct,'? and * denoting the Hodge dual operator.’® The tensor
T verifies T? = y°g, where y is nonzero if, and only if, F is
regular." In this section we shall consider only regular two-
forms, so that the tensor P=y ~'T defines a 2 -+ 2 almost-
product structure. Let G be the simple unit two-form charac-
terizing the field of timelike two-planes of the structure

twrG?=1 tr*GxG=0, P=G’+ (xG) (3)

tr being the trace operator; the field of spacelike two-planes
is then characterized by *G, and one has'®

F=¢?*+*'G = ¢*(cos YG + sin *G), (4)

where 2¢ = In 2y. Every regular two-form F'is thus biunivo-
cally characterized by its components {G,4,1}. Note that,
given the geometric component G, the energetic component ¢
determines the norm of the eigenvalues of 7, and both, G and
@, characterize T itself. Finally, among all the two-forms
associated with a given 7, the Rairich component i selects,
by a duality rotation, the particular two-form F.

(b) In terms of these components, the vacuum Maxwell
equations for F,

SF=0, 8xF=0, (5)
may be written®
dp=d, dp=1, (6)

where the one-forms ® and V¥ are functionals of the sole
geometric component G:
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O=%(6GN*G + 5xG N\ G),
VY=%(85GAG — 5+G N\ *G),

& being the codifferentiation operator and ““ A’ denoting the
exterior product.'®

From (6), the Rainich Theorem?® follows: A simple and
unitary two-form G is the geometric component of a (local)
solution to the vacuum Maxwell equations if, and only if, it
verifies the equations

dd =0, d¥=0. (8)

The almost-product structures defined by such simple
and unitary solutions to Eq. (8) will be called Maxwellian
Structures.

To every Maxwellian structure, say G, the first of rela-
tions (6), d¢ = &, associates a (one-parameter, additive)
family of energetic components ¢, characterizing a (ho-
mothetic) family of energy tensors 7. In fact, it may be
shown that this relation is strictly equivalent to the conserva-
tion equation 6T = 0 (Ref. 17). In a similar way, the second
of the relations (6), dy = W, associates with G a (one-pa-
rameter, additive) family of Rainich components ¥, charac-
terizing (up to a homothecy) a family of two-forms Frelated
by a constant duality rotation. In fact, it may be shown that
this relation is strictly equivalent to the Rainich’s complex-
ion equation. The set {G,@#,1} then defines the two-param-
eter family of solutions to the Maxwell equations having the
same almost-product structure.

(¢) The form (6) of the Maxwell equations may be easi-
ly obtained in the complex vectorial formalism.'® Let us con-
sider the complex two-forms Z 7 (I = 0,1,2) given by

Z=mAn, Z'=nANl—mAm, Z*=IAm,

where {/,n,m,7} is a complex null tetrad; since the Z ’s are
self-duals, *Z ' =iZ’, the basis {Z’,Z"} of the complex
two-forms separates invariantly the self-dual and anti-self-
dual parts of every two-form W: W= W,Z'+ W,Z"'. In
particular, for every real two-form F, the complex two-form
F=F — i»Fis self-dual and its components in the basis {Z 7}
will be designed by ¢,: F=¢,Z* (I=1,2,3).

The general Maxwell equations §F = J, 5*F = 0, now
may be written in the form

J=6F=58{¢,Z} =¢,6Z" — i(d,)Z" + SH.

Contractingby Z 'and takingintoaccountthat Z ' x Z ' =g,
one finds that the general Maxwell equations are equivalent
to the system

(7

dé, = ¢h + o, €)
where
h=i(8Z")Z', o=i(6H—-NZ', H=¢,Z°+ ¢,Z"
(10)

In order to formulate the Rainich Theorem in this for-
malism, let us consider the almost-product structure asso-
ciated to a null tetrad, defined by the element Z ! of the corre-
sponding self-dual basis, Z ' = G — i*G. The two-form G is
the geometric component of every two-form F, having the
expression (4), and one has F, = ¢°Z " with ¢° = ¢**+ 7,
that is H = 0: The vacuum Maxwell equations for F, are
then

Coll, Fayos, and Ferrando 1076

Downloaded 23 May 2005 to 147.156.125.102. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ding? =h, (11)
and their (local) integrability condition is

dh=0. (12)
Expressing Z ! in terms of G in the definition (10) of A, and
taking into account that *(vAA4) = — ( — 1)%i(v)*4 for
every one-form v and every p-form A4, one finds

h =@ + i+V¥, where ® and ¥ are the functionals of G given
by (7). We then have the following.

Proposition 1 (Rainich Theorem): An almost-product
structure Z' is (locally) Maxwellian iff the one-form
h=i(8Z")Z ' is closed: dh = 0.

Let us consider the component (dh), of dk in the basis
{Z',Z}. From the identity (4,dv) = 8i(v)A4 + i(v)64 and
the orthogonal properties of the Z *’s, one has

—2(dh), = (Z'dh) =6i(WZ"' 4+ i(h)bZ'
=8Z'+iA(8ZN)Z"' =0,
and thus we have the following.

Proposition 2: The differential system dh = O character-
izing the Maxwellian structures consists of five second-order
complex equations in Z .

Considered as equations on the spin coefficients of a null
complex tetrad compatible with the Maxwellian structure,

they are first-order equations; their explicit expression may
be found elsewhere.'?

I1i. CONDITIONAL SYSTEMS FOR THE MAXWELL
EQUATIONS

(a) The differential system (8) defining the Maxwellian
structures is satisfied by the component G of all the solutions
(0,4,G) to the vacuum Maxwell equations (6) and, con-
versely, all his solutions G may be completed to solutions
(¢,4,G) to the Maxwell system. In other words, in order that
the Maxwell equations, considered as an (overdetermined)
system in the two unknowns ¢ and 1, be compatible, it is
necessary and sufficient that the system (8) in G holds. We
give the following definition.

Definition: Let D;(x,y) and D,(y) be two differential
systems in p unknowns x and ¢ unknowns y; let S, CF*?*1
and S, C F'? be their corresponding spaces of solutions, and
let 7: FP* 9 F9 (x,y)—(y) be the natural projection. We
shall say that D, is a conditional system in the y’s for D, if
7(S;)) =95,

Thus, the Rainich Theorem may be equivalently en-
ounced by saying that the Maxwell equations admit a second-
order conditional system in G.

(b) Let us now consider the general Maxwell equations
(9) in the unknowns ¢,. By differentiation, one has

O0=dp, ANh+ ¢,dh +dw,
and, taking into account (9), it follows that

Q+¢,dh=0, (13)
where
O=dow + o Ah. (14)

Thus when dh does not vanish, a necessary condition for the
existence of ¢, is that the two-forms (2 and dh be proportion-
al:
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Qedh=dhe . (15)

In such a case, the sufficient conditions are obtained by im-
posing that the proportionality factor between both two-
forms be effectively a solution of Eq. (9). These conditions
are first-order equations in Q or, from (14), third-order
equations in (¢q,¢,). When dh vanishes, we have (locally)
h = d In ¢} and Egs. (9) may be written d(¢,/¢9) = w/¢%,
whose integrability conditions are ) = 0. We have shown
the following.

Theorem 1: The Maxwell equation always admit a con-
ditional system in (¢g,&,). It is, generically, a third-order
system, and it reduces to a second-order one if, and only if,
the almost-product structure associated to the self-dual basis
is Maxwellian: dh = 0. In such a case, the system is given by

Q(¢o¢,) =0. (16)

For every solution (¢,¢,) to (16), there exists a family
of functions which complete it to solutions to the Maxwell
equations. If ¢, is such a function, all the others are of the
form ¢, + ¢ where ¢ is the general solution for the electro-
magnetic fields admitting Z ! as the complex geometric com-
ponent.

(c) Now consider a non-Maxwellian geometry and let X
be any two-form such that (X,dA) 0. If Egs. (15) are veri-
fied, then, according to (13), we have

6, = — (Q,X)/(dhX),
and Egs. (9) impose
(Q,X)d(dh,X) — (dh,X)d(Q,X)
= — (Q.X) (dhX)h + (dh.X)’w.
After rearranging terms, these equations may be written in
the form
(X (X){QeVdh—dheVQ
+Qeh®dh—dheweodh}
+ (i) (dh)y — i @i ()X e VX) =0, (18)

where /() and ' ) denote, respectively, contraction over
the first and last two-form elements of the tensorial basis.
From Egs. (15) and their covariant derivatives, it follows,
respectively, that the term in X ® VX vanishes and that the
tensor between brackets, which is in A?® T* ® A?, is sym-
metric in their antisymmetric components. Thus, as (18)
must be verified for any two-form X, we have the following.

Theorem 2: The third-order conditional system in
(dos@,) for the Maxwell equations is given by

QeVdh—-dhe{VQ —heQ +wedh}=0. (19)
To every solution (¢$,é,) to this system, corresponds a

unique solution (@,¢,,¢,) to the Maxwell equations, the ¢,
being given by (17).

an

IV. THE SECOND-ORDER CONDITIONAL SYSTEM IN
THE SPIN COEFFICIENTS’ FORMALISM

(a) Let {2,,Q,} be the components of the two-form )
with respect to the chosen self-dual basis {Z*Z"}. From the
orthogonalityproperties (Z%,Z?%) = 1,(Z',Z"') = — 2,and
the definition (14) of £), we have, for the component (1,
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—20Q,=(Z",Q) = (Z \wAh) + (Z',dw)
= —i()i(W)Z'+8i(0)Z' +i(w)8Z ",

where the adjoint character of i( ) (resp. §) with respect to
A (resp. d) has been taken into account. But, from
Z'%xZ"' =g and the definition (10) of # and o, it follows
(W)Z'=6Z"'and i(w)Z ' = 8H — J so that we have
—20, = —i(w)8Z'+8(6H —J) + i(w)8Z"' =0.
Consider now the component £}, and (),: the second-order
terms in ¢, and ¢, come from dw or, according to the defini-
tions (10) of w and H and the orthogonality properties of the
basis Z‘, from the antisymmetrization of Vdd,xZ°
+Vdg,XZ*% but Z°XZ°=Z*XZ?=0, Q,= (Q,Z?),
and £, = (Q,Z°) so that Q, (resp. §,) does not depend on
the second-order derivatives of ¢, (resp. ¢,). On the other
hand, it is clear that Q) depends at most on the first deriva-
tives of J, and, finally, denoting by ~ the operator which
permutes separately the real and complex vectors of the null
tetrad, ~2=1d, Z'= —Z', Z°= — Z? one has J = J,
do = — b, so that, from the definitions (10) of 4 and w, it
follows that A=h and &= —w and, consequently,
Q = — Q. Taking into account all these results, we have the
following.
Proposition 3: The second-order conditional system in

(¢o:9,) for the general Maxwell equations is of the form

— Qo=Dypy + Dy, + F =0,

— Qo=Dop + Dy, + #, =0,

O, =Dyp; + Dy — /o =0,

9251_)0¢2 + 1_)2¢o - /z =0,

1Q, + 91)5D1¢2 _D1¢0 - /1 =0,
where D, is a first-order derivation operator and the #,’s
are functions of J and its first derivatives.

(b) In order to obtain the explicit expression for the
components (20) of the two-form £, in terms of the spin
coefficients and the directional derivatives associated to the
null tetrad, we need of some intermediate expressions. The
evaluation of the codifferentials of the Z 7’s, which may be
easily performed using Ref. 18, gives

6Z°=2i(0)Z°+i(0,)Z",

8Z'= —2i(0)Z° 4+ 2i(0,)Z?,

8Z2= —i(0)Z"' —2i(0,)Z?,

where the ;s denote the following one-forms'®:

(20)

oo =71l+ KN —pm — om,

o, =yl +en —am — fBm,

o, =vl+7mn —Am — um.
The codifferentials of the tetrad one-form are
Sl=—(e+€)+(p+p), dn=+7 — L+,
bm=—7+7+a—-p, m=—nwr+7+a—-p,
and the action of the operator ~ on the o,’s is

Oy= —0y, Og= — 0,

Following Crossman and Fackerell,® we write

Dy =D+ (p—1e—(g+Dp+ (r—1DE—sp,

1078 J. Math. Phys., Vol. 28, No. 5, May 1987

6 =6+ (p—-DB—(g+ 1)r— (r— a+s7,

and denote by A and 5",;, respectively, the transforms of

D and &, by the operator ~.
Taking into account the above expressions, the compu-

tation of relations (20) is not a difficult task; denoting by
7o=0851830 —D31AL, = —D33D;,
70=2833830, T =D3%650 — (r+ 7D,

the second-order operators on the ¢,’s, the result is the fol-

lowing.
Theorem 3: In any space-time, the second-order condi-

tional system in (¢q,¢,) of the general Maxwell equations,
Q) =0, is of the form (20), where

Dy=171y— v+ 04,

D, = — 2683315 + 20D 3315 — 6k + Do,
90=7.'0_/1Dg(2) — A5 —&v— DA,
1_)2=12—K5(2”2’ — k619 — 05 — bk, 1)

D, =7, +xA2) +0(m+7) + Ax,

Fo=wl'+81J7+ 0’ + DFIJ*,

F o=k + 03372 — D3I —aJ4,

A =D+ AT+ (F+ 1) — (m+ T
V. THE TEUKOLSKY-PRESS RELATIONS AND THEIR
GENERALIZATIONS

(a) Let us consider, on any type D vacuum space-time,
the null tetrads associated to the Bel directions®® (principal
null tretrads). In the Newman-Penrose formalism,?! we

have
Y,=V¥, =V¥,=¥,=0,

(22)
k=v=0=A=0,
and the Bianchi identities become
d¥, =3V, h. (23)

Then one has dh = 0 and thus, according to Proposition 1,
the almost-product structure associated to the null tetrads is
Maxwellian.

For such space-times, the four Teukolsky—Press rela-
tions may be written in the form (1) with the values (2) of
the 7’s. On the other hand, the evaluation of Eqs. (20) under
the hypothesis (22), leads, in the source free case J =0, to
the equations

Q0 =T, Q =T, (24)
for 4 = 0,2 and
%(Ql‘f'(_ll) =7'1¢2—7~'1¢0=0, (25)

for 4 = 1. Thus we have the following.

Theorem 4: On type D vacuum space-times, the condi-
tional system in (é,,¢,) for the source-free Maxwell equa-
tions, associated with the principal null tetrads, consists of
the Teukolsky-Press relations (1) completed with the rela-
tion (25).

From (20) and (21) it is easy to see that (24) holds iff
relations (22) hold. For any type D space-time, we have the
following.

Proposition 4: The first two Teukolsky—Press relations
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T, and T, decouple if, and only if, the Bel directions of the
space-time are geodesic, are shear-free, and define a Max-
wellian structure.

(b) In the particular case of the Kerr metric, the first
two equations (1), in addition to being uncoupled in ¢, and
¢,, may be separated into radial and angular parts relative to
the Boyer-Linquist coordinates for the electromagnetic
fields which are invariant?? under the action of the two-di-
mensional isometry group. For these fields, the fifth equa-
tion (25) is identically satisfied when the first four equations
(24) hold. This is perhaps the reason why Eq. (25) has not
been (apparently) considered up to now. But if, in the same
geometric context, one wishes to consider, for example, non-
periodic time-dependent electromagnetic fields, then Eq.
(25) must be necessarily added to the usual Teukolsky—
Press relations (24) in order to insure the existence of ¢,.

(¢) Theorem 4 shows that, once completed, the natural
geometric generalization of the Teukolsky—Press relations is
our conditional system in (¢,,¢,). This is a manifold general-
ization: the second-order conditional system (20) extends
the validity of the Teukolsky—Press relations, step by step, to
noninvariant fields, to nonprincipal tetrads, to non-source-
free Maxwell equations, and to arbitrary space-times. Final-
ly, when the chosen null tetrads do not define a Maxwellian
structure, the third-order conditional system (19) must be
used instead of the second-order one.

'In preceding papers (see Ref. 11) we called them Teukolsky relations. The
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present appellation seems more correct.
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