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tThe notion of holonomic fluid in relfativily is reconsidered. An intrinsic charac-
terization of holonomic fluids, involving only the unit velocity, is given;.showing.
that in spite of its dynumical appearance. the: notion. of holonomic:flyid- is. a

kinematical notion.. The i relations. between: holonomic: and- thermodynamic
_perfect fluids are siudied, o emEl

1. INTRODUCTION

() In classical mechanics, there is a large class of fluids whose equations
ol motion admit a relative (Poincaré) integral -invariant—namely, the
velocity. For them, the vorticity becomes an absolute integral invariant,
and it is well-known the important réle played by these two invariants in
the development of hydrodynamics: integration of the equations of motion,
study ol particular fluid flows, (Heimholtz) properties of the- vorticity, etc.

In relativity, the analogue of the above class of fluids was cofisidered
many years ago by Lichnerowicz [1], who called them holonomic’ fluids.
Holonomic fluids also admit a relative integral invariant, but it is not, as
it could seem, the unit velocity of the fluid: from the point of view of the
theory of integral invariants, the relativistic analogue of the- classical
velocily is the current which differs from the unit-velocity by a scalar factor
called the index function. The corresponding absolute integral invariant is
then given by the exterior derivative of the current which is called the
dynamical vorticity tensor. For the particular case of barotropic perfect
fluids, these appelations are due to Synge [2]. who was the first 1o develop
systematically the relativistic theory of such Muids.
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(b) Extending a: result by Eisenhart [3], Lichnerowicz [1] showed
an important property of holonomic fluids: their stream: lines are the
extremes. of 2. distance conformal to the space-time distance. In other
words: the (unit) velocity of a holonomic fluid is & geodesic vector ficld for
a metric conformally related to the space-time metric. The vector fields
verifying this property (or their congruence of integral curves) are called.
conformally geodesic.” Killing, conform-killing, or-irrotationat vector fields,.
beside barotropic perfect fluid velocities, arc usual examples of conformally
geodesic fields. However, how does. one- recognize: a given. vector: field: as-
belonging. to this class? We shall give here necessary and: sufficient: condi-
tions for a vector field to be conformally geodesic: S

Also, as a converse of the above Lichnerowicz result; we shall show.
‘that. any, conformally geodesic velocity makes any conscrvative fluid
_holonomic.. . : s o

Ins many knawn: examples: of fluid: flows, the:index function has been
expressed as a function of the (thermo-)dynamical.variables, showing that
the relativistic relative- integral- invariant: is- 2= dynamical- quantity, in
contrast with the classical one, which is clearly kinematical. In spite of the
fact that the existence of such a dynamical invariant is the main feature of
holonomic fluids, our above results show that holonomic fluids admit a
purely kinematical characterization. "

Barotropic perfect {luids are holonomic fluids, but holonomic perfect
fluids ire not, in general; barotropic. We shall study the relations of both
concepts. -

(c) Holonomic (luids are interesting in relativity because of (i} the
conformally geodesic character of their stream lines, (it) the known. [5]
relations between their invariant integrals and. their first integrals, and (iii)
the conservation laws for the vorticity that take place for them [1]. For
these reasons, we think that the holonomic churacter of a fluid.-may be use-
fully taken into account in the obtainment of explicit solutions to the
Cinstein equations as well as in the study of particular classes of motions
and the analysis of certain conjectures on barotropic perfeet [uid space-
times (such as the Lichnerowics’s conjecture® 'on spherical symmetry under
appropiate asymptotic conditions, or the Treciokas-Ellis conjecture® on
vorticity-free or expansion-free consequences under distorsion-free condi-
tions).

3 Conformal geodesics. have been considered recently in a different relativistic context {sce
(41

*See, c.g.. [6] and references therein.

3 See [7] or the more recent analysis hy Collins [8].
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(d) “The definition: of holonomic Ruids and'some. of their properties
ase recalled in Section 2, Section 3 js devoted to the characterization of the
conformally geodesic congruences, and Scction 4 relates them to holonomic
fluids. Finally, Section 5 analyzes the relation between barotropic and
holonomic perfect Ruids.. - : o
. The resukts (without proof) of this paper were communicated at the
Spanish relativistic meeting E.R.E. 88 [9].

2. HOLONOMIC FLUIDS

(a) Let (¥,, g)° be the space-time, sig(g)= —2. Vector and-tensor
fields, and the expressions relating them, unless otherwise stated: Wil be
given in their covariant form. Coea e

Fluids may be considered here as general continuous media because,
for our purposes, we need to know only their energy tensor, no matter
what their constitutive equations might be. Furthermore, no other material
restrictions will be imposed on it (such as symmetry, energy conditions,
cte.), and the fluid will be supposed to evolve only under external gravita-
tional forces. Thus: a fluid is here given by a conservative second rank-tensor
T: its energy tensor.

To u physical Muid one may associate Lagrangian (or intrinsic) and
Eulerian (or relative) velocitics. Lagrangian velocities are those which may
be univocally obtained from. the constitutive cquations. and the intrinsic

state variables; for example, the proper velocity (unit time-like cige'_"mctor
of T, il it exists and is unique), the mass velocity (unit colineal vector to
conservattve Eckart’s mass momentum, which becomes proper when the
heat flow vanishes), cte. Eulerian velocities are those which, generically,
need additional, external criteria 1o be univocally obtained; for example,
permancnce velocities (unit vector fields for which the state variables are
nvariant; i they exist and are not unique), Jreely fulling velocities, etc, It
is the nature of every particular problem which dictates the choice of the
velocities 1o be considered. However, we are not concerned here with this
choice, so that both, Lagrangian and Eulerian velocities will be indistinctly
called associated velocities.: . -
(b) Let T and u be, respectively, the encrgy tensor of a fluid and an
associate (unit) velocity. Consider a decomposition of 7° of the form:

T=mu@u+ 1 | W

® All the results of this paper may be generulized to higher dimensions.
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where m#0 and /T are, respectively, a scalar and. a. second-order- tensor,
and denote by J the specific divergence of IT7

SH=ml (2
The conservation of T, 6T =0, is equivalent to the system: -
Sty = mi(u) J, 0= _L'(-u) J : ()

where « is the acceleration of u, u=i(u) Vu.

Definition 2.1, (Lichnerowicz).” A fluid is said to be holonomic (with
respect to the associate velocity u) if the corresponding specific divergence
J is exact: J=dF. Then F is called. the holonomy: potentiul and m - the
holonomy- density; i f=e" is called:the-index jum'tm.vr

For a holonomic fluid, the conservation eq_uanons {2} become:
a=dF=~Fu : (4}
0=F—M 3

where 8 is the expansion of u, 0= —du, and M the logarithmic holonomy
density, M = In n1.% Their solutions will be noted (u, F, m).

(c) Lichnerowicz [17] showed that the current C=fir is-a relative
integral invariant for the equations of motion of the holonomic fluids and
that, comsequently, its exterior differential dC is. an- absolute- integral
invariant. That.is, if D and D’ are two 2-chains on the same worid- lmcs
tube of u, one has:

c=[ ¢ [ dc=] dac (6)
Y3 a0 (2] i :
It is not difficult to prove the dillerential version of these properties. In

fact, it is sufficient to show that £(uu) dC'® vanishes for any function
this follows from the development :

£ (uu) dC = d{ pi(u) d( fu) } = d{ pfilu)[dF A u+a] V= d{pf[F—dF +a]}

and refations (4).

78, ifu), Liu) V, and d denote, resﬁeclively. the divergence, contraction (interior product),
orthogonal projection, covariant derivative, and exterior differentiation operators,

* His definition in Ref. [1] differs stightly from ours: see our comment betow (Section 4b).

¥ Newtonian notation has been used for time-like derivatives: % =i(u)Vx, x being any
tensorial quantity. '

0 {X) denotes the Lie derivative with respect to the veclor field X.
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3. CONFORMAL GEODESICS:

{ a) When dealing with conformal structures, conformal geodesics are
considered as the solutions to system of ordinary differential equations
that generalizes the geodesic one in such a way [4] thay its space of

“soldtions is invariant under conformal transformations of the metric.

Here, being directly concerned with fluid flows in given space-times, we
shall adopt another point of view: we will look for a metric-dependent
churacterization. of the congruences of conformal geodesics by the differen-

_ tial system satisfi cd by their tangent unit vector field.

(b) In the spdcc-ume (Vy, 2), let u be a unit (time-like) vector field.
The vector fi c_:ld“ u'=e%u:1s a unit vector field for the conformai metric
g'=¢%g, and its acceleration 4’ is related to the acceleration. a2 of u by:

d =u—da+au (7)

When there exists a function a such that ¢’ =0, we say the vector field. u
(or the congruencc of its integral curves) is conformally geodesic. The
Eisenhart theorem [3] follows: a unit vector field u is conformally geodesic
iff. there exist a function a, called the acceleration potential, such that

dot = a + du (8)

{¢) Unless its acceleration is already given in the form (8), it is not
simple to know whether a field » admits an acceleration potential, To.
answer this problem one must find the conditional spstem'® in u attached to
the differential system (8); that is to say, the necessary and sufficient
conditions that u must sallsfy to insure that.the system (8) in « admits a
solution. :

By exterior dlﬁercnuauon of (8) we have

_ da+dt Anu+adu=0
s0 that, taking the exterior product by u, we obtain

uAdataundu=0 (9)

Let w=ux{u A du) be the vorticity of u, « being the {(Hodge) dual
operator. When w doca not vanish, upplying the operator i{w)+ to (9) we
find

i(w)s (uAda)+aw?=0

"' Remember that according (o our covariant convention, » and ¥’ denote the corresponding
g-associated 1-forms.

'* Some conditional systems for Maxwell cquations and barotropic fluids may be found,
respeclively, in [10] and [11}.
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which gives us the value of ¢ in terms of u and its derivatives; let us denote-
by f[u] this function of u:

Blul= —(1/w?) i(w) = (u A da) (10),'..
According to (8), if u is conformally geodesic, it verifies |
dla+ fu)=0 S

Conversely, suppose that u is such that (11) takes place for the scalar f
defined by (10); then a function « exists such that da = a + ffu and, applying -
i{u), it follows d = fi: u is conformally geodesic. When w vanishes, wé have ™
u=r1dt, and putting y= —In 1, it follows:

dy=a+7ju - (12)

which, by the Eiserthart result, insures that u is conformally geodesic. On
the other hand, if « is a function verifying (8), it results from (2): '

d(a._.y) A u=0Hm,—y=H('!)H-t'€¢=h(l) _

that is, ¢~ is an integrating factor. Consequently, we have shown:

Proposition 3.1. A unit vector field u of acceleration ¢ and vorticity
w is conformally geodesic if, and only if, w=0 or

dla + Pu)=0 13

with ' _ S
B=—(1/w)i{w)=(un df‘) - (14)

Concerning the corresponding acceleration potentials {which fix the
conformal transformations making geodesic the conformally geodesic field ),
we have: '

Proposition 3.2, Lect u be conformally geodesic. (i) H w=0, to every
integrating factor t of « corresponds an acceleration potential «= ~In 1.
(i) If w0, the acceleration potential « is determined, up to an additive
constant by de = a + fu. |

(d) Eguations (13) and (14), or w=0, constitute the conditional
system in u for the differential system (8) in . Conversely, we may consider
equations (8) as a differential system in «, and ask for the corresponding
conditional system in «. The answer is easy to obtain in this case; in fact,
for a given [unction «, g being the space-time metric, every time-like
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- geodesic congruence of the metric g’ =e* g is such that its g-unit tangent
vector verifies Eq. {8). Thus, any function a is an acceleration potential of
a family of conformal geodesics.

4. HOLONOMIC FLUIDS AND: C()NI'ORMALUY GEODESIC
VELOCITIES
E

(a) As we already said, the solutions to thé conservation” equa-
tions (4~5) for a holonomic fluid will be noted by (1, F. m). According to
the+Eisenhurt theorem, 4He first” of these Lqu.mons expresses the confor-
mally geodesic character of the associated velocity, and shows that the
acceleration and holonomy potentials differ atl most by an additive con-
stant. Suppose now, given a conformally geodesic unit vector field u as
solution of the system (13-14), we let F be an acceleration potential for it;
the equation (5) in the unknown m always admits a solution, determined
up-to a w-invariant factor, so that we have a solution {u, F, m) to the con-
servation cquations (4-5). With this solution (u, F, m), let us consider a
© conservative encrgy tensor T and define /7= T — mu® u: one then has:

Ml = 3T+ v + mil —'}im'f-- m{(M+0)u— a]l=mdF

that is to say, T is a holonomic encrgy tensor with associated velocity u,
holonomy potential F, and holonomy density m. Therefore, taking mto
account Proposition 3.2, we have: :

Proposition 4.1. To cvery conformally geodesic velocity v can be
associated a family of solutions {{n, F.m)} to the conservation eguations
for holoftomic Muids, such that: (i) the £ are determined up to an additive
constant if w30 und up to a function of the potential of « if w=0. (ii) For

every pair u, F, the ms are determined up to a u-invariant factor. (iii) For

every solution (w, F, m), any conservative energy tensor T is a holonomic
fluid with associated velocity u, holonomy potential F, and- holonomy
density 1. :
{b) In his definition of holonomic Muids '(scc footnote 8)
Lichnerowicz considered the associated velocity i as being an eigenvector
of the encrgy tensor 7, but he never used this fact in his development of
the theory. For this reason, we have excluded it in our definition 2.1; which
we give respect to any associated velocity, In doing so, we are able Lo
separate the {eatures which are neeessary and suflicient for the existence of

(e integral invariants, lrom the features related to the particular character

of the associated velocitics. Here we are only considering the first ones, and
it is (o be understood that our results must be constrained by the definition

'54,7)’

S
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equations of the specific Ldgmngmn-» or Eulerian-associated vclocmes
when they are previously given.

From this point of view, assertion (iii) of Proposition 4.1 says !hat a
fluid is holonomic if, and only if, its associated velocity is conformally
geodesic. For this reason, and whenever hydrodynamics is concerned, the
confermally: geodesic velocities will be_ equivalently.-called - holonomic .
velocities. _ :

The different characterizations of the holonomic. velocities that we -
have seen, are collected in the following proposition.

Proposition 4.2. -The {ollowing statements are equivalent:

t.  The unit vector field « is conformally geodesic.
ii.  There exists a function F such that a = dF - Fu,

iti. There exists a function f such that C=fu-is a relative :nlcbml
invariani.

iv. There exists a function f such. that ( fu) :s an dbsolute mtcgral. ‘
" invariant.

v. The vector ficld u is either vort;cnly -free or a solution to our
system (13-14),

vi. The vector field « is the associated velocity of a holonomic fluid.

(c) Ttis well-known, and casy to see, that a hurotropic perfect fluid,
I'=s{p+plu®@u—pg, p=p(p), is a holonomic Auid with respect to w,”
with holonomy potential 7t such that dp = (p + p) dn. Thus, the variables u, -
T p+ p are a solution (u, m, p + p) to the conservalion equations (4-53),
and this solution is particular in the sense that dnd p+ pare l‘uncuonally
dependent, :

This property can’ be generalized: a solution (, F, m) 10 thé conserva-"-
tion cquations (4-5) will be called barotropic if F A dm=0, corre--
spondingly, the velocities « giving rise to barotropic solutions (u, £, m) will
be called barotrupic velocities. :

Any trivial barotropicity (ie., F=F;, consl.) corresponds o a
geodesic velocity and, conversely, every geodesic velocity u may be
associated to a family of solutions {(u, Fy,m)} with F, const, the
holonomy density m being determined, up to a w-invariant factor, by
M+0=0. When dF#0, by virtue of dF A dm=0, we may write
F-M= F[1 = M'(F)1, so that we have

0= g(F)F (15)

Conversely, if Fis a holonomic-potential verifying (15) for some g{F). let
M be a solution to the cquation M'(F)=1— g(F); then (u, F,m) is a
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solution to the conservation: system (4—5) suchethat dF A dm =0. 'l"hus,, we
hdvc , RS

Proposmon 4.3. Thz. necessary and. suflicient condition for i non-
geodesic unit vector ficld . to-be-a barotropic velocity is- the existence: of
ik funcuon Fsuch that »

‘a=dF-Fu, O=gtBF (16)

For cvery solution u#, F to this 5ystcm the set (u, F,m), with
m—‘cxp,j'[l g(n)Tdr} is: a' barotropic! SOIullon tot'the conservation
system [or holonomic fluids.

Proposition 3.1 characterizes intrinsically the conformally geodesic
ficlds (i.c.. the holonomic velocitics). In an-anilogous way, the conditions
on « for the existence ol a function F verifying (16) will characlerize intrin-
sically the barotropic velocities. However, the equations (16) are identical
to those for the velocitics of barotropic perfect fluids, so that barotropic
velocities are” the velocities of barotropic perfect {luids, and: have been
alrcady characterized elsewhere [117.

'5. PERFECT FLUIDS AND HOLONOMY

(a) Suppose T=(p+ p)u®@u— pg is a holonomic fluid with respect
to u, with holonomy density p + p: we have [/ = —pg, hence 811 = dp and,
consequently, (p+ p)dF=dp, where F is the holonomy potential. It
follows dp A dp=0 and, thus, T is barotropic. As the converse has been
seen in the above :,ccuon we have:

Proposition 5.1. A pcrfu.l flud T=(p+ p)u®u— pg is holonomic
with respect to the proper velocity u, with holonomy densny p+pif, and
only if, it is barotropic,

In what follows, we shall suppose the perfect lluid to be holonomic
with respect to u but with holonomy density different from Q~'=p+ p.

The components orthogonal to u of the conservation equations 67=0
may be written

Qdp=u+Qpu (17)
which, by dilferentiation and taking exterior product by u, gives rise 10

dQ A dp Au=u A da+ Qpu A du (18)
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(b) In this paragraph-we will consider vorticity-free: flows. of. ther-
modynamic fluids. When a fluid admits a thermodynamic scheme,'? P18
dccomposcd in the form p=r(1 +¢), and the thermodynamic closure of the
luid 1s obtained by reyguiring that: (i) the I-form o=di+ pd(1fry be
integrable: oA do=0; and (ii} the current ru be conserved: O(ru)=0. In
terms of the variables w, p, p, a perfect fluid admits a. thermodynamic
scheme iff? the differential equation in 1% (u)yh +0=0 admits u solution of
the form A=hip, p) [14) and, in the case p#0, it oceurs iff, plp s a
function of state, that is p/p =yi(p. p) [15].

We alrcady know that, in the vorticity-free case, u =t I, u. i$ confor-
mally geodesic (Proposition 3.1) with holonomy potential y = —In

a=dy—yu ‘ (19)

Then, from ([7—19) it follows that. either the ﬂuld is barotroplc or the
functions 1 and y lie-in the thermodynamical 2-plane n(dp, dp).

When a 7&0 it follows that r and r are functionally independent; then
we have n(dp, dp) = nldr, dr)=n{u, a) and. Lonacquently, J(p, pit, T)#0,
where J denotes the Jacobian. Under this condition, it is casy to sce that
the fluid admits a thermodynamic scheme ifl. (/i) A dt A dt =0; but as u
is i unit veetor field, we have =1t ', so that, this condition may be
writlen df A di A dt=0, that is, fAdiandt=dj Auna=0 On the
other hand, because of (19), it results da+d§ A u+7-du=0, so that as u
is vorticity-free, we have a A da= ¥ A u A a. Thus, we have shown:

Proposition 5.2. A (nonbarotropic) perfect fluid with vorticity-free
and nongeodesic proper velocity u admits a thermodynamic scheme iff. its
acceleration « is an integrable 1-form: « A du=0. Then, the velocity,
acccleration, and holonomy potentials are functions of state.

When « =0, we have u=dt and, from (17), it follows dp = pdt, that
is, p=p’(t). Consequently, p/p is a function of p and p if, and only il, p
does. Thercfore, by virtue of cq. (4), and to the last characterization of
thermodynamic scheme, we have:

Proposition 5.3. A (nonbarotropic) perfect fluid with vorticity-free
and geodesic velocity u admits a thermodynamic scheme 11' and only il
di A dp A dp=0.

(c} Now, let us consider a perfect fluid with a nonvanishing vorticity
and holonomic (i.c.. conformally geodesic) proper velocity, and let F be the
holonomy potential. From {4} and (17), we can find « and v as combina-

Y1t is Eckart's scheme [12] (see also [13) and references therein).
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tions of dF and dp, and evaluate the elements. of integrability of the-2-plane:
n(w, a); that:is; A arn des andrusn-a & die When: ntus, ) is not: mteg:able
one has Qp— F=0and then Qup—dF=0; Thus, we have:

Proposition 5.4. A pt.rfu.{ Nuid with holonomic proper vclocny l'or
which the 2-plane nlu. a): 1~. not integrable; is: bdrotropsc,

On. the other hand fmm the: results. of- Sen.uarr} we knom thaL lhu-
holonomy potential F iz such-thut F=fi[n], where f[1] is: the: functtomof
the velocity given by, (14): taking into account (18);it follows

F= —-(-l/l_x") :(w) w{u, A du_) -—( I/w )r[w w(dQ N dp K t:}+Q}R

From this expression, and the one obtained by solving n w. ‘the syslcm
(4--17), we obtam. . .

dF=Qdp— u, with p-=(i/w3)xk(u.--A--.;t‘ewadpf/\:dg)ﬁ : -(-20)-
the converse being also easy to show, we have:

Proposition 55. Let T=Q 'w®u— pg be a perfect Muid with non-
vanishing vorticity w. Then, # is a holonomic velocity ifl. the l-form
Q dp -- pu is exact, where qe= {1/u7) s (1 A w A dp A dQ).

Applying the operator i(w) = d to the I-form @ dp - pu one obtains,
hy Proposition 5.4, w=(uQ%): "= {(u A dp A dp): a perfect fluid- with
holonomic proper velocity has o nonvanishing vorticity in so far as u
separates from the 2-plane =(dp, dp).

Finally, let us study the thermodynamical dependence: of - the
holonomy potential. In the vorticity-free case, we have shown {Proposi-
tion 5.2 that the holonomy potential F is a lunction of state, F= F{p, p)
say. Such a generic dependence is incompatible for nonvanishing, vorticity:
from (20} it follows that w lics in the 2-planc n{dp, dp), Thus p=0 and,
conscyuently, F= HFp): =

Proposition 5.6. 1f a perfect Nuid has holonomic proper velocity with
nonvanishing vortcity, and if its holonomy polential is a [unction of state,
then it-is barotropic.
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