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The paper contains the necessary and sufficient conditions for a given
energy tensor to be interpreted as a sum of two perfect Auids. Given
a tensor of this class, the decomposition in two perfect fluids (which is
determined up to a couple of real functions) is obtained.

1. INTRODUCTION

There are many topics in General Relativity where matter is represented
by a mixture of two fluids. In fact, some astrophysical and cosmological
situations need to be described by an energy tensor made up of the sum
of two or more perfect fluids rather than that with only one. Dunn [1] has
recently outlined some remarkable features of two-perfect fluid models in
Godel type space-time, in which one fluid represents the matter and the
other one the isotropic radiation in the universe. Letelier [2] studied two-
perfect fluid solutions of the Einstein equations when the velocities of both
components are irrotational. Bayin [3] derived some analytic solutions for
an anisotropic fluid and he argues the. possibility that certain solutions
could be interpreted as due to a pair of perfect fluids. Inhomogeneous
cosmologies with two interacting and comoving fluids have been examined
by Lima and Tiomno [4]; in these models the fluids are material: one is
taken as a FRW polytropic fluid and the other as an inhomogeneous dust.
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However, at the present time we know few solutions of the Einstein
equations which describe the gravitational field associated with two nonco-
moving perfect fluids. We have obtained [5] a class of such solutions where
the velocity of one of the fluids is geodesic, shear free and irrotational.

The goal of this paper is to analyze the algebraic properties of the
energy tensors which are the sum of two perfect fluids. Such a study
seems interesting because it is useful to know whether a given metric is
a solution of the field equations with a mixture of two perfect fluids as
source, or even to construct new solutions. Letelier [2] is the first, to our
knowledge, to have studied some algebraic aspects of this subject. The
uniqueness problem has been considered by Hall and Negm [6].

In Section 2, we consider the class of symmetric tensors which have a
spacelike 2-eigenplane. This class contains the tensors associated with the
sumn of two perfect fluids as a particular case.

In Section 3, we put the following question: if a tensor T can be
interpreted as the sum of two perfect fluids, how many decompositions of
T (in two fluids) are available? We show that, generically, there exists a
two-parameter family of pairs {71,732} of perfect fluids such that 71 +7% =
T. Also, we compute the several algebraic type (Segré types) which are
compatible with this 7.

Next, in Section 4, we obtain the expressions of the velocities, pres-
sures and densities of T3 and T3 in terms of the eigenvalues and eigenvectors
of T. . '
Finally, in Section b, it is required that the energy tensor of each -
perfect fluid satisfy the Plebanski energy conditions [7]. Then we give the
invariant characterization, i.e. the necessary and sufficient requirements for
a given tensor T split in the sum of two such fluids. The results, without
the proof, of this section were communicated to the Spanish relativity
meeting E.R.E.-89 [8].

2. SYMMETRIC TENSORS WITH A SPACELIKE 2-EIGENPLANE

Let 7' be a real symmetric two-tensor on the space-time (V4, ¢) with a
spacelike 2-eigenplane II, associated to the eigenvalue A. The signature of
the lorentzian metric ¢ is taken to be {— +++4}. In an orthonormal basis
{eo,e1,€e2,e3} adapted to I, II' = {ey,e3}, T can be written as

T= A?o ®eg + Bey ® e1 + Ceo®er + Alea @ ez + €3 ® e3) (1)

where @ denotes the symmetrized tensorial product, and {eg, e; } generates
the timelike 2-plane II* orthogonal to II. Now, let 7', be the restriction
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of T on IT*; then, assuming that I+ is known, the tensor T\ provides
supplementary algebraxc properties of T'. The elgenvalues of T_|_ are given
by :

de=3B-AZVE) @)
with o | | |
§=(A+B)*-4C = (0L — )% (3)
And introducing the invariant

A=(A=2)A=A)=CP—(A+N(B-1). (9

there results: .
Lemma 2.1. Let T be a symmetric tensor with a spa.cehke 2-elgenplane
then T is of Segré type? -

a) {1,1(11)} iff 6 > 0 and A # 0.

b) {1(111)} if § > 0 and A = 0.

¢) either {(1,1){(11)} or {2(11)}if 6 =0 and A > 0

d) either {1(111)} or {(211)}if 6 = A = 0.

e) {z2(11)}iff 6 < 0.

Clearly, the Segré types {(21)1} {31} and {(31)} are forbidden. So
the case with a strict triple eigenvalue only corresponds to {1(111) }. In
the cases c) and d}, the Segré types can be distinguished by the minimal
equation of T . So T_._ = 0 characterizes {(1,1)11} and {(1,111) } types,

and T? = 0 (with T} # 0) the {2(11) } and {(211) } types, bemg TJ_ ‘the
trace free part of T with respect to the induced metric on I+

From (3) and (4) we have -

S+4A=(Ap+Ao—222>0. . (5)

From this equation and according to c) and d), we have A > 0 if § = 0,
and A > 0if § < 0. On the other hand, if A < 0 the Segré type of T is
{1,1(11} }. We will use thls result below in dealmg with two-fluids energy
tensors.

From (2) and (3), C? = (A + ,\.;.) (A+A.). Let us suppose C# 0
then the eigenvectors of T' associated with Ai are glven by C

vi = Ceo + (A + z\i)el - “(6)

whence

g(vi,vi)zlzi.-.%\/g(A-FB:}:\-/g).. | (7)

2 Fora comprehensive explanation of Segré notation see, for example, {9].
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The vectors v4. are complex conjugate when § < 0 and they have a timelike
real part and a spacelike imaginary part. When é = 0, then vy are collinear
null vectors. Furthermore, from (3) and (7) there results:

Lemma 2.2. For a tensor T as given by (1) and with é > 0, the sign of
A+ B is the same for any orthonormal basis. This sign determines the
causal character of the eigenvectors vy of T' according to '

sgn.Lq(vi,vi)]::isgn.(A-!—B). . - (8)

Lemma 2.2. is useful in studying the Segré types {1,1(11)} and
{1(111) }. In particular, it allows us to discriminate between the Segré
subtypes {1,(111}) } and {(1,11)1}. :

3. TWO-PERFECT FLUID ENERGY TENSOR

Henceforth, we consider the tensors which are obtained as the sum of
two perfect fluids, T; = (pi + pi)u; @ u; + pig (i = 1,2), that is

T=TN+T=(p1+p1)muQ@ui+{pa+p)usQua+(p1+p2)g (8

where p;, p; and u; stand for the proper energy density, pressure and unit
velocity of each fluid, respectively. No assumption about energy condi-
tions is made in this Section, which will be devoted to studying general
properties of T'. '

Clearly, T admits a spacelike 2-eigenplane II of eigenvalue A = p;+py.-
We can then write, without loss of generality, u; = ch¢;ep +she;e;, where
{eq, €1} is an orthonormal basis on the 2-plane I*. By comparing (1) with
(9), it follows :

A+A= Qich?¢; + Qach®4, (10a)
B — X = Qish’$; + Qosh’¢s (100)

2C = Q15h24; + Q2sh2¢» (10¢)

where Q; = p; + pi. _ .

If A, B, C and X are given, egs. (10) consitute a linear system in the
unknown (; and @, with coefficients depending on ¢; and ¢,. Thus there
exists a solution if, and only if, the determinant of the extended matrix
vanishes, that is to say, ¢, and ¢, satisfy the relation

(th¢y — thés) [(A + A)thé; the, |
— C(thgy + —thés) + B — A} = 0. (11)
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When both perfect fluids are “tilted” with respect to each other, that is
noncomoving (¢; # ¢3), every solution to eq. (11) leads to a solution
(Q1,Q2) to egs. (10). Thus we have the following:

Theorem 3.1. An energy tensor T' can be interpreted as the sum of two
noncomoving perfect fluids if, and only 1f it is of the form (1) and the
equation

(4+ A)theythds — C(ths +théz) + B — A =0 O 12)

admits a solution (¢, ¢2) such that ¢; # ¢o. . :
Theorem 3.2. Let 7" be an energy tensor sum of two noncomovmg perfect

fluids. Then every solution (¢1,¢2) to eq. (12), with ¢; # ¢2, furnishes a
one-parameter® family of pairs {T}, T3} of perfect fluids such that T1+T2
T'. The velocities of the fluids are given by* :

1; o eg + the;eq - (13)
and their pressures and ehergy densities are restricted by .
ptpr=A pitpi=0Q; (14)

where (); are given by )

1— th%¢;

@ = g, —ther

[(A+A)the; = C], j#i - (19)

The one-parameter family referred to in the last theorem is generated
by the transformations leaving eqs. (14) invariant. On the other hand,
in Section 4 we will show that there also exists a one-parameter family
of solutions (¢1,¢2) to eq. (12), resulting finally (Theorem 5.2) in a two-
parameter family of two-perfect fluid interpretations. This multiplicity of
physical interpretations has been treated previously in [6]. _

Let us study now which Segré types admit a two-fluid mterpretatlon
From (10), the 1nvar1ants ¢ and A which were deﬁned in (3), (4) may be
written as

6= Q% + Q3 +2Q1Q2ch2(¢) — ¢2) (16)
A = ~Q1Q2sh®(¢1 — ¢2) | J a7y

3 of course, when T is a tensor field, this parameter is a real function.
% Latin indices take values 1,2,
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and taking into account Lemma 2.1, we obtain some remarkable conse-
quences. Clearly, T is proportional to ¢ when ¢; = ¢5 and ; = (@5 or
when ¢; # ¢2 and (J; = (2 = 0; these cases are those for whiché = A = 0.
In consequence,

Lemma 3.1. The sum of two perfect fluids with @; # 0 is of type
{(1,111) } if, and only if, the fluids are comoving and @, = —Q».
Lemma 3.2. No tensor of type {(211) } can be obtained as the sum of
two perfect Auids.

Suppose T to be of type {(1,1)(11)}. Now, ¢; # ¢, because A > 0.
In a basis of eigenvectors of T, it is verified that ¢ = 0 and A = —~B,
hence no solution exists to eq. (12). Therefore we get
Lemma 3.3. No tensor of type {(1,1){11) } can be obtained as the sum
of two perfect fluids.

Since the regular electromagnetic field and pure radiation field are,
respectively, of type {(1,1)(11)} and {(211)}, because of Lemmas 3.2
and 3.3, it follows:

Theorem 3.3. The energy tensor of the electromagnetic field (regular
Maxwell field or pure radiation field) cannot be decomposed in the sum of
two perfect fluids.

Besides, a triple eigenvalue for T is impossible when @; # 0 and
@1 # ¢2 because A # 0. Therefore it results:

Theorem 3.4. The energy tensor sum of two perfect fluids (with @Q; # 0)
isof type {1,1(11) }, { 1,(111) }, {2(11) } or {zZ(11) }. The type {1,(111)}
occurs if, and only if, the fluids are comoving.

The last assertion of Theorem 3.4 explains why in two-fluid FRW
models [10], either the fluids are comoving or one of them is an imperfect
fluid.

We exclude the case @; = 0 because it corresponds to a “degenerate
fluid” T; o< ¢, and then T; + g = T (i # j) is a perfect fluid too.

4. INVARTANT CHARACTERIZATION

We will now discuss separately each one of the three Segré types which
are compatible with the sum of two noncomoving fluids.

a) Segré type {1,1(11) }.
Let T be of type {1,1(11) } with single eigenvalues )\0 and A; assoclated
respectively to normalized eigenvectors ep and ey,

T=—-Aeg®@ep+ Are; ®ey + Aea ®@es + €3 ® e3) (18)
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Then eq. (12) may be written

- A=A
thos the, = T—

=-A (19}

which admits a solution iff [A| < 1. Now, ¢; and ¢, give the relative
velocity of each fluid with respect to eg, and we have
Theorem 4.1. A symmetric tensor T of type {1,1(11)}, given by (18),
admits a two-perfect fluid interpretation if, and only if, it satisfies

l/\ — Ao! > '/\ - Aﬂ

The velocities, pressures and energy densities of the fluids are then
given by Theorem 3.2, with ¢, and ¢, given by

A
th¢=r, thé=——  |AJ<Ir|<1

where

b) Segré type {2(11}) }. _
The canonical form of a tensor T of type {2(11) } in an orthonormal basis
is [7]: '

T=(k—a)o®eo+ (k+a)e; ®er+reo®er + Aea @ ez +e3 @ e3) (20)
where eg--¢; is the null eigenvector of T" with eigenvalue o, and « is exactly
the sign of T'(eg —e1,e0—e1), £ = £1. Let us examine eq. (12). Comparing
(20) with (1), A=k — @, B=k+ « and C = k. Thus, when a — A = &,
eq. (12) becomes th¢; + theés = 2, which has no solution. However, when
o — A # K, eq. (12) is of the form

zy—alz+y)+b=0 (21)

with z = th¢;, y = th¢s and

K k—Ata - -
= ———— b= o — o
@ K+A—co E+Ai—o (22)

Clearly, a® > b which says that the invariant A defined by (4) is positive.
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Considering the intersection of the hyperbola (21) with the domain
R = {(z,y) € R?, |z] <1 and |y| < 1}

we have the following:
Lemma 4.1. Equation (21) with a?>b admits a solution in R iff |24} <

1, being _ . o
zr=at \/ -~ (23)
and its solutions are given by ‘

z €[zg,£l)and y=H(z) if[H(£1)[<L1
z€(Fl,zs]and y= H(z) if|H(ZX1)|>1 |

where
b—azx

H(z)= —

In particular, when a and b have the form (22) it follows that

k(A —a)

Tx = K+A-a

Now, |z4| =1, and we have |z..| < 1 iff the sign of/\ — a is equal to that
of k. In consequence, we have

Theorem 4.2. A symmetric tensor T' of type {2(11)}, given by (20)
admits a two-perfect fluid interpretation if, and only if, it satisfies

k(A—a)>0.

Then the velocities, pressures and energy densities of the fluids are
given by Theorem 3.2, with ¢, and ¢, given by

_ . _&(l=z)+a-2A
thqbl::'BE(—l,i’_), thes = K.(l—.’L')—-C!*-i--/\
where ,
okt a-—A
T = e
K—a+A

c) Segré type {zz(11) }.
The canonical form of a tensor T of type {zZ(11) } in an orthonormal basis
is [7]:

T = p(—eg @ eq+e1 ® €1)+ veo®e; + Aes ® €2 + €3 ® €3) (24)
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where v > 0 and €g + ie; are the eigenvectors of T associated with the
conjugate complex eigenvalues Ay = p = iv. Now, comparing (24) with
(1), ~ A=B=pand C=v. If A = p, eq. (12) becomes th¢; + th¢s =0,
whose solutions are ¢2 = —¢; € (0,00). If A # p, eq. (12) has again the
form (21) with @ = v/(A — p) and b = —1, and expression (23) gives

v+ (A—n)p?
Ty = .
—H
As zyz_ = —1 and a? > b, it results that |[tr_| < 1 and [z,] > 1. So

Lemma 4.1 leads to the following:
Theorem 4.3. Any symmetric tensor T' of type {zz(ll)} admits a two-
perfect fluid interpretation.

With the notation of (24), velocities, pressures and energy densities

of the fluids are given by Theorem 3.2, with ¢, and ¢, given by

A—p—vzx
thgs =z € (-1,z-), th¢y = ——u——
SR S A MERYE
where '
z.=0 = when A=y, ‘and
_JETOE |
g =2 VA (- p) when A # p.

A=p
Generically, there exists a one-parameter family of solutions (¢1,¢2)
to eq. (12) with @1 # $2. Thus, because of Theorem 3.2, the three cases

studied admit a two-parameter fa.mlly of two—perfect fluid mterpreta.tlons
When T is con51dered as a tensor field, these parameters are Ieal functions.

5. ENERGY CONDITIONS

In this section we require that each perfect fluid satisfy the Plebanski
energy conditions [7]. Generally, these conditions are assumed for macro-
scopic physics and they state that, for any observer, the energy density is
non negative and the Poynting vector is non spacelike. Thus, a symmet-
ric 2-tensor T satisfies the Plebanski energy conditlons (caHed in [11] the
dominant energy condition) when

T(u,u) >0, and TZ%(u,u)<0, V u timelike.

For a perfect fluid T; the Plebanski conditions are equivalent to the
inequalities @Q; = p; + p; > 0 and p; — p; > 0. From (17), @; > 0 implies
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that A < 0, and on account of Lemma 2.1, we have, accorchng to prev1ous
results [2,6], :
Lemma 5.1. If an energy tensor T is the sum of two perfect ﬁmds sub-
mitted to the Plebanski energy conditions then T is of type {1,1(11) }.
Now, if T is of type {1,1(11) }, we search for the additional require-
ments in order that 7" may be decomposed into the sum of two perfect fluids
subject to the energy conditions. From Theorem 4.1 and expresswns (15)
and (19), it follows that :

1—1' A% — 2
Ql:m(‘h_}‘)’ Q2=m()_‘o—)\)

so that both @, and Q5 are positive iff A—Ag > A; — A>0. Also we ha.ve
Q1+ Q2 = 2X — Ag — )4, and from (14) one gets

pL—p1=8=2p —Q, p2~p2=~(Ao+ A1) ~s

whence both p; — p1 and pz — p3 are positive ff —(Ag+ A1) > s > 0. Thus
we have the following theorems:

Theorem 5.1. A symmetric tensor 7" may be decomposed into the sum of
two perfect fluids subject to the Plebanski energy conditions if, and only
if, it is of type {1,1(11) } and its eigenvalues satisfy:

Ag + Ag S‘ 0, %('\0+)‘1) <A< )

where Aq (resp. A1) is the simple eigenvalue of 7" which has associated with
it a timelike (resp. spacelike) eigenvector, and A is the double eigenvalue.
Theorem 5.2. Let T be as in the previous theorem. Then, there exists
a two-parameter family of pair {T3,T5} of perfect fluids submitted to the
energy Plebanski conditions such that 77 + T3 = T. _

Velocities, energy densities and pressures of the fluids are glven by

{131 oc'eo+rel,r ugoceo—£81
T
1 ' 1
Pl='§(Q+3), ;~P2='\—AD“}-1—§(Q+S)
1 ' 1
Pl“—‘“z“(Q”S), P2=/\—§(Q—S)

where eg (resp. €;) is the unit eigenvector associated with Ag (resp. A;)
and the parameters r and s taking the values

TE(A; 1)) s € [01 _AU_AI]




Two-Perfect Fluid Interpretation of Energy Tensor 1031

with
A=A

A",\ Ao’ Q"A—;—?('\l A

In Theorem 5.1. we have given the invariant characterization of the
class of tensors which admit a macroscopic two-fluid interpretation. From
this result, and taking into account Lemma 2.2 and expressions (2)-(4),
one obtains a practical characterization in terms of the components of T
in an orthonormal basis adapted to the spacelike 2-eigenplane.
Corollary 5.1. An enérgy tensor T' may be interpreted as a sum of two
perfect fluids subject to the Plebanski energy conditions if, and only if, T
has a spacelike 2-eigenplane and, with the notation of (1), T satisfies

—~A<B<A, A-B+22>0 and C? < (A+X)(B-)).
6. SUMMARY AND CONCLUSIONS

We have presented a general study of the algebraic properties of energy
tensors which admit an interpretation as the mixture of two perfect fluids.
We have shown that only Segré types {1,(111) }, {1,1(11) },-{2(11) } and
{2Z(11) } are possible; the first one if, and only if, the fluids are comoving
(Theorem 3.4). For every type, we give the invariant characterization (only
in terms of its eigenvalues and eigenvectors) and the family (dependmg on
two real functions) of possible interpretations (Theorems 4.1, 4.2, and 4.3).
In this part of the work no energy conditions were imposed because, as
is known [7], these conditions may not be applicable in some microphysi-
cal situations. Finally, the case of fluids subject to the Plebanski energy
conditions has been considered (Theorems 5.1 and 5.2).

It follows from this study that there exist two degrees of freedom in
the splitting of an energy tensor T as a sum of two perfect fluids. This
property was shown in [6]. In our paper we give, for every interpretation,
the explicit expressions of the densities, pressures and velocities. In the
case of macroscopic fluids the degrees of freedom are given by two func-
tions » and s (see Theorem 5.2) taking values in bounded real intervals.
The first function has a kinematic meaning and it determines the relative
velocity of one fluid with respect to the other 8 = (r + A/r)/(1 + A); the
other one is thermodynamic and if fixes the transformations leaving in-
variant p; +ps and p; + p;. Both freedoms may be useful in the research of
two-perfect fluid solutions subject to given kinematic or thermodynamic
properties (equation of state of each fluid, law which describes their inter-
action, particular movement for one or both fluids, etc.).

For example, when both components are formed by dust (p; = 0),
one has necessarily A = 0, and then s depends on r which takes values in
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(—=A1/20,1); in this case there exists a degree of freedom. On the other
hand, when an isotropic radiative fluid (p; = 3p;) and a dust (p; = 0) are
considered, s and r are uniquely determined and then the interpretation is
unique. An approach concerning more general and kinematic restrictions
will be considered elsewhere.
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