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Momentum profitability poses a strong challenge to the theory of asset 
i i t ff t i th t h ll i t i i lpricing – momentum effect is the most challenging asset pricing anomaly

The current research is unable to provide a consistent risk-premium based explanation*

• A momentum effect  captures the short-term (6 to 12 months) return 
continuation effect that stocks with high returns over the past three to 
12 months tend to outperform in the future (Jegadeesh & Titman, 
1993).

• Very simple trading strategy – portfolio is constructed based on 
cumulative return criterion over certain time-horizon 

• Historically momentum strategy earned profits of about 1% per month 
over the following 12 months. 

• The profitability cannot be explained with the existing multi-factor 
models and macroeconomic-based risk explanations

3 © 2006 Svetlozar T. Rachev

*) The finding that returns exhibit momentum behavior at intermediate horizons is at odds with market efficiency. 
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Our approach enables the modification of the decision criteria for portfolio 
t ti d ll t t t f G i tconstruction and allows treatment of non-Gaussian returns

We extend the momentum strategy methodology in several ways

• To reflect risk-return trade-off in portfolio selection, we use of risk-
adjusted criterion instead of return only criterion for portfolio 
construction  

• Use of daily data rather than monthly data, facilitating better capture of 
distributional properties of the data

• Risk-return criteria have form of risk-return ratios compliant with 
coherent risk measures

• Risk-return criteria are applicable when stock returns are not normallyRisk return criteria are applicable when stock returns are not normally 
distributed 

4 © 2006 Svetlozar T. Rachev
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Empirical properties of financial time series show stylized facts that deviate 
f l G i tifrom normal Gaussian assumption

Gaussian distribution is not a realistic assumption for stock returns

• High empirical kurtosis ⇒ heavy tailedness

• Asymmetric empirical distribution

• Slowly decaying correlation of squared returns ⇒ long-range 
dependence

• Heteroskedasticity (volatility clustering)

6 © 2006 Svetlozar T. Rachev
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Example 1: Empirical PDF of 10, 15, 30 and 60-minutes returns of Deutsche 
B k t k i l d t bl fitBank stock prices; normal and stable fits

7 © 2006 Svetlozar T. Rachev
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E l 2 E i i l d St bl D iti f DAX 30Example 2: Empirical and Stable Densities of DAX 30

8 © 2006 Svetlozar T. Rachev
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Example 2 (cont.): Comparison between Empirical and Stable Densities of 
DAX 30DAX 30

9 © 2006 Svetlozar T. Rachev



Institute of Econometrics, 
Statistics and Mathematical Finance

Universität Karlsruhe (TH)

Stable distributions and idea of stochastic subordination enable postulation 
f i h d l f i b h iof richer models for price behaviour

Subordinated model for stock prices (Bochner (1955), Mandelbrot & Taylor 
(1967) Clark (1973) Mandelbrot et al (1998))(1967), Clark (1973), Mandelbrot et al. (1998))

• Stochastically subordinated stock price

))(()()( tTStTStZ

• α-stable processes clock effects (on all time scales)

• Assumptions:

))(()()( tTStTStZ == o

ssu pt o s

S(t) and T(t) independent, 
S(t): R+

0 → R, 
T(t): R+ → R+ T(0) = 0 a s non decreasing pathsT(t): R 0 → R 0 , T(0) = 0 a.s., non-decreasing paths

• Where do heavy tails and long memory come from? 

• What is the probability structure of S(t) and T(t)?

10 © 2006 Svetlozar T. Rachev

What is the probability structure of S(t) and T(t)?
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F t f th b di t d d l f t k iFeatures of the subordinated model for stock prices

Subordinated model expresses the original idea: (log) prices follow Brownian 
motion under a suitable transformation of the time scale 2

• T(t) = No. of transactions up to time t

• S(t) = tick-by-tick price

motion under a suitable transformation of the time scale.2

• Heavy tails, with the stability index depending on time

• Market clock effects (on all time scales)

Features of the subordinated model

Market clock effects (on all time scales)

• Long-range dependence

Heavy tailedness comes from S(t) and 
LRD comes from T(t)

11 © 2006 Svetlozar T. Rachev

2) On days when no new information is available, trading is slow, and the price process evolves slowly. On days when 
new information violates old expectations, trading is brisk, and the price process evolves much faster. (Clark, 1973)
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Application of the stable models extends the common applications in 
t f k t d dit i k tf li ti i ti d f tiassessment of market and credit risk, portfolio optimization and forecasting

Extended stable GARCH (Phi-Alpha) models are developed for range of 
applications (Cognity Integrated Risk Management System FinAnalytica Inc )applications (Cognity Integrated Risk Management System,  FinAnalytica, Inc.)

• Value at Risk Analysis

• Credit Risk Modeling

• Portfolio Optimization

• Forecasting / (Factor models)

• Asset Allocationsset ocat o

12 © 2006 Svetlozar T. Rachev
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Setting a key decision on the momentum strategy within risk-return 
f k l i b dd d i lt lframework, several issues can be addressed simultaneously

What is the aim of the risk-adjusted decision rule?

• Align conceptual risk-return framework of investment strategy with the 
momentum trading decision rule (e.g. capture risk-return profile of stocks)

• Allow treatment of the non Gaussian data which was disregarded in• Allow treatment of the non-Gaussian data which was disregarded in 
previous and contemporary studies

• Apply various risk measures within risk-adjusted criterion that pay more 
tt ti t th l ft t il f th t di t ib tiattention to the left-tail of the return-distribution

• Obtain balanced risk-return performance

• Use risk-adjusted criteria in portfolio optimization problem and devise 
alternative optimized-weighted strategy

14 © 2006 Svetlozar T. Rachev
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Risk-adjusted criterion is compared to cumulative return benchmark and 
t k f f i k t titakes form of a risk-return ratio

What we would like to examine?

• Whether the risk-adjusted criteria can generate more profitable 
strategies than those based on simple cumulative return criterion 

• What is the appropriate risk measure embedded in a risk return• What is the appropriate risk measure embedded in a risk-return 
criterion that obtains the best results (e.g., Variance, ETL/CVaR)

• Evaluate and compare performance of ratios based on different 
di t ib ti l ti d f i kdistributional assumption and measures of risk

• Which criterion gives the most robust strategy regarding transaction 
costs ?

• What is the marginal benefit of the optimized-weighted strategy?

15 © 2006 Svetlozar T. Rachev
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E t d T il L (ETL) i h t i k d i t V RExpected Tail Loss (ETL) is a coherent risk measure and superior to VaR

ETL (Expected Tail Loss, or CVaR) is the average loss below VaR

• Intuitive downside risk measure that is coherent 

• Remarkable portfolio optimization properties4

Stable GARCH models for ETL (Phi-Alpha ETL), FinAnalytica’s Approach

• Fit multivariate stable distribution model

• With stable distribution volatility clustering model

• Generate scenarios and compute ETL=CVaR

16 © 2006 Svetlozar T. Rachev

4 Rockafellar & Uryasev (2000), Journal of Risk
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Momentum methodology is extended by applying stock selection criteria in 
i k t f krisk-return framework

We analyze several risk-return ratios that  differ in treatment of risk and 
distributional behavior of data

• The Sharpe Ratio is the ratio between the expected excess return 
and its standard deviation: 
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• STARR(1-α)100% (CVaR(1-α)100% Ratio) is the ratio between the expected 
excess return and its conditional value at risk:
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Alternative risk-return ratios use ETL as a measure of risk and are able to 
t h t il b h i i th d tcapture heavy tail behaviour in the data

Alternative R-Ratio is the ratio of the expected tail return above the level, divided 
by the expected tail loss

• R-ratio with parameters α and β in [0,1]. 

by the expected tail loss.

)(%100 f rrETL −

• Here, if r is a return on a portfolio or asset, and ETLα(r) is defined as 
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ETLα100% (r) = E(l|l> VaR(1-α)100% (r)), where 

CVaR(1-α)100% (r) = ETLα100%(r)  (we assume continuous return distr.)

• The idea behind the R-ratio is to try to simultaneously capture the 
maximum level of return and get insurance for the maximum loss

The choice of a specific tail probabilities selects a particular risk

18 © 2006 Svetlozar T. Rachev

• The choice of a specific tail probabilities selects a particular risk 
measure in the ETL class of measures and reflects the risk and return 
objectives of an investor
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M t tf li f d i i k t it i d d il d tMomentum portfolios are formed using risk-return criteria and daily data

Data and Methodology

• We use daily data of 382 stocks included in the S&P Index in the 
period January 1, 1992 to December 31, 2003. (stocks with equal and 
complete return history)

• Four “J-month/K-month” strategies based on the ranking and 
holding periods of 6 and 12 months and 10 criteria are examined (i.e., 
6/6, 6/12, 12/6 and 12/12 strategies, overall 40 strategies) 

• Zero-investment portfolio is constructed at the end of each ranking 
period by simultaneously selling winners and losers 

• 10% of the stocks with the highest value of stock selection criterion in• 10% of the stocks with the highest value of stock selection criterion in 
the ranking period constitute winner portfolio (e.g., highest decile) and 
10% of the stocks with the lowest values the loser portfolio

• Winner and loser portfolio are equally weighted at formation and held

20 © 2006 Svetlozar T. Rachev

• Winner and loser portfolio are equally weighted at formation and held 
for subsequent K-months of the holding period  
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Optimization of winner and loser portfolios based on risk-return criteria 
l d t ti i d i ht d t tleads to an optimized-weighted strategy

Portfolio selection and optimization approach follows usual Markowitz (1962) 
approach with portfolio choice based on reward risk criteria

• For every risk-return criterion ρ(·), we compute the optimal winner
portfolio of the max optimization problem and optimal loser portfolio of
the min optimization problem:

approach with portfolio choice based on reward-risk criteria
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where ρ is the ratio criterion, xi and yi are optimized weights in the 
winner and loser portfolios respectively, and N equals the number of 
stocks in winner or loser portfolio

21 © 2006 Svetlozar T. Rachev
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I t f t ti t t tf liImpact of transaction costs on momentum portfolios

Transaction Costs as a cost of implementing a trading strategy

• Korajczyk and Sadka (2004) find for long positions in winner-based 
strategy that proportional spread costs do not eliminate statistical 
significance of momentum profits. 

Issues in consideration with measuring transaction costs impact

• What realistic model of transaction cost impact to apply?p pp y

• Risk and liquidity characteristics of extreme portfolios may have 
impact on the assumptions of the trading cost model

• Realistic assessment shall focus on the actual turnover of the 
portfolios – Tradeoff between profitability and turnover

Adjustment applied at portfolio rebalancing periods

22 © 2006 Svetlozar T. Rachev

• Adjustment applied at portfolio rebalancing periods. 
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Momentum profits are adjusted for transaction costs using realistic 
tiassumptions

Analysis of transaction costs is based on total trading cost and actual turnover

• We use as estimate of the one-way total trading costs that averages 
0.78% of the value of the traded stock (assumption based on 
Chalmers, Edelen, and Kadlec, 2002)

• We apply an optimization model which estimates net adjusted return 
of momentum strategy using one-way transaction cost c, that is 
proportional to the actual value of portfolio’s long or short position

• We analyze the final wealth of the portfolio over all holding periods

• By tracking the actual turnover within the winner and loser portfolio 
for each ranking and holding period, we obtain more precise 
estimation of the incurred transaction costs as compared to other 
methods.

23 © 2006 Svetlozar T. Rachev
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Performance evaluation of momentum strategies is conducted using 
diff t fdifferent performance measures

Performance evaluation measures

• The performance of strategies is examined using average returns, 
cumulative realized profits (accumulated winner – loser spreads) 
and independent risk-adjusted performance measure

• Risk-adjusted performance is evaluated using risk-adjusted measures 
– Sharpe Ratio and an independent performance ratio 

• Risk-adjusted independent performance measure is in the form of• Risk-adjusted independent performance measure is in the form of 
the STARR99%, E(Xt)/CVaR99% (Xt), where Xt is the sequence of the 
daily winner minus loser spreads in the holding period 

I d d t f diff t i ifi• Independent performance measure can use different significance 
levels of the ETL measure reflecting different risk-return profile 
objectives and levels of risk-aversion of an investor  

25 © 2006 Svetlozar T. Rachev

• The criterion that obtains the best risk-adjusted performance is the 
one with the highest value of the independent performance measure. 
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Comparison of equal-weighted and optimized-weighted 6/6 strategy after 
dj t t f t ti t h d t f i lt ti tiadjustment for transaction costs shows advantage of using alternative ratio

Analysis of the final wealth of momentum portfolio for equal-weighted and optimized-
weighted 6/6 strategy using different risk return criteria January 92 December 2003weighted 6/6 strategy using different risk-return criteria, January 92-December 2003

Stock Ranking Criteria Risk-Return 
Ratio 

Portfolio Final 
Wealth  

Cumulative 
Return 

Sharpe Ratio R-ratio 
(0.05, 0.05) 

No transaction cost 1.0774 
(8.98%) 

0.5185 
(4.32%) 

1.1147 
(9.29%) 

 
Equal-

Transaction cost 
0.78% 

0.7221 
(6.02%) 

0.0393 
(0.33%) 

0.6323 
(5.27%) 

weighted 
Strategy 

Transaction cost 
0.485% 

0.8905 
(7.42%) 

0.2206 
(1.84%) 

0.8148 
(6.79%) 

N t ti t 0 7608 1 8941O i i d No transaction cost n.a. 0.7608
(6.34%) 

1.8941
(15.78%) 

Transaction cost 
0.78% 

n.a. 0.28749 
(2.40%) 

1.4245 
(11.87%) 

Optimized-

weighted 

Strategy 
Transaction cost n a 0 4687 1 6069

26 © 2006 Svetlozar T. Rachev

Transaction cost 
0.485% 

n.a. 0.4687
(3.90%) 

1.6069
(13.39%) 
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We analyze the graph of a sample path of cumulative realized profits of 
i d l tf li h ldi i d f diff t it iwinner and loser portfolios across holding periods for different criteria

Cumulative realized returns of winner and loser portfolios for a 6-month/6-month 
momentum strategy and STARR(50%) criterionmomentum strategy and STARR(50%) criterion  

27 © 2006 Svetlozar T. Rachev
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Further optimization approaches based on a two-step and one-step 
d l t d d d Fi A l ti ’ A hprocedure are evaluated and compared- FinAnalytica’s Approach

Two-step procedure optimal portfolio problem:

1. Selection of winners and losers according to selection criterion 
(cumulative return, risk-adjusted criteria or alphas from specific factor 
model) 

2. Solving the zero-value optimal portfolio problem with the winners 
and losers chosen in the step 1).

One-step procedure uses modified objective of the two-step procedureOne-step procedure uses modified objective of the two-step procedure

• Search for the best optimal solution in one step zero-value optimization 
with objective function reflecting the tradeoff  between the  expected 
excess return at given level and (i) tail risk at a given level and (ii)excess return at given level, and (i) tail risk at a given level and (ii) 
transaction costs.

We compare the two-step procedure (benchmark model of a large FI) with one-
step procedure using different search methods

29 © 2006 Svetlozar T. Rachev

step procedure using different search methods
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The results on one-step procedure provide better results than the two-step 
b h k b i th ti l ith hbenchmark by using the genetic algorithm search 

Empirical results and observations for the one-step strategy in the 10 year period 
09/1995 08/2005

• Characteristics of the best solution: 

09/1995 – 08/2005

- Compounded return 19.54%, 

Average return 18 19%- Average return  18.19%

30 © 2006 Svetlozar T. Rachev
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The results show clear advantage of using one-step procedure with direct 
GA th d th b h k d l b d t t dGA method over the benchmark model based on two-step procedure

Comparison of  Cumulative Return  of the two-step benchmark model and the 
one step optimization approachone-step optimization approach 
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The results show that alternative risk-return criteria using expected tail loss 
d b tt i k dj t d lt d l h t il d di t ib tiproduce better risk-adjusted results and less heavy tailed distributions

Conclusions

• Alternative risk-return ratios using the ETL can be conveniently applied at the 
individual stock level for distributions exhibiting heavy tails

• Additional advantage of alternative criteria is to model an investor’s riskAdditional advantage of alternative criteria is to model an investor s risk 
aversion for downside risk and desired risk-return profile

• Alternative ratios provide better risk-adjusted performance, outperforming 
cumulative return criterion will generally depend on the data samplecumulative return criterion will generally depend on the data sample 
properties 

• Traditional Sharpe ratio criterion provides the worst performance indicating 
inappropriateness of the dispersion risk measureinappropriateness of the dispersion risk measure 

• An investor pursuing alternative strategies using R-ratio will accept lower risk 
due to heavy tails than the cumulative return investor

33 © 2006 Svetlozar T. Rachev

• Formulation of the zero-value portfolio problem using one-step optimization 
outperforms two-step procedure  
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Next step – Advanced Portfolio Optimization within the Framework of the 
Phi Al h (St bl GARCH) A hPhi-Alpha (Stable GARCH) Approach

Formulation of the objective function with regards to expected return and ETL of 
the portfoliothe portfolio

• Find x1, x2 , …, xN (instruments weights):

max E(RP)– c*ETL(RP)
bjsubject to

x1+ x2 + …+ xN  = 1
xi > 0 , i = 1…N

E(RP) = x1E(I1) + x2E(I2) + …+ xNE(IN) 
ETL(RP) =  E(-RP| RP <a)
! Prob(RP <a) should be small (~ 1%)

• Input – simulations for possible changes in portfolio assets produced for VaR 
calculations,

• Properties : for the normal distribution case this problem is equivalent to the 
traditional Markovitz optimal portfolio problem (that is – they will produce one

36 © 2006 Svetlozar T. Rachev

traditional Markovitz optimal portfolio problem (that is – they will produce one 
and the same results)
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Example: Advantage of Optimizing Phi-Alpha Portfolios ( 47 Micro-Caps, 
D t f 2000 2001)Data from 2000 – 2001) 

37 © 2006 Svetlozar T. Rachev
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Example: Phi-Alpha is the best investment strategy for Vanguard Index 
F dFunds  

Risk vs. Return
(September 1997 to February 2004)

14.00%

Methodology STARR 
(annual)

6.00%
8.00%

10.00%
12.00%

al
iz

ed
 R

et
ru

n Phi Alpha 1.27

Mean Variance 0.98

0.00%
2.00%
4.00%

0.00% 5.00% 10.00% 15.00% 20.00%

A
nn

ua

Equal Weight 0.38
Annualized Risk: ETL(1%)

Phi Alpha Mean Variance Equal Weight
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E l I t ti l E it P tf liExample: International Equity Portfolio  

• Goal:Goal: 
– Greater total return than MSCI – World index
– High dividend yield
– Manage risk

• Portfolio constructed from dividend paying ADRs
– Predominantly large Cap
– Methodology addresses inconsistent dividend payments

• Selection of dividend paying ADRs
– For each year select top 60 (20) ADRs by risk adjusted yield
– Use equal weights on 20 ADRs for each yearUse equal weights on 20 ADRs for each year

39 © 2006 Svetlozar T. Rachev
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Example: International Equity Portfolio – Extension of Mergent Dividend 
A hiAchievers  

40 © 2006 Svetlozar T. Rachev
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Example: International Equity Portfolio – Extension of Mergent Dividend 
A hiAchievers  

Methodology STARR gy
(monthly)

Phi Alpha 0.14

Markowitz 0 11Markowitz 0.11

Equal Weight 0.10

41 © 2006 Svetlozar T. Rachev
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The results show that risk-return ratios criteria compliant with coherent risk 
f t d h tf ll d b tt lt th t diti l it imeasure of expected shortfall produce better results than traditional criteria

Conclusion and future research

• Conceptually, risk-return ratios that are based on the coherent risk 
measure of the expected shortfall can be conveniently applied at the 
individual stock and portfolio level. 

• Methodologically, we utilize daily data and capture the distributional 
properties of stock returns and their risk component at a different 
threshold level of the tail distribution. 

• Empirically, results show our ratios drive balanced risk-return 
performance and for every examined strategy produce better results 
than a simple cumulative return and the traditional Sharpe ratio 
criterioncriterion. 

• Future research: General analysis of winners and winners portfolios 
(total optimization)
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• Future Research: Stable Factor models “explaining” the profits from 
winners and losers R-ratio optimization
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The results on two-step procedure indicate sensitivity to high transaction 
t d d t f i t bl icosts and advantage of using stable scenarios

Empirical results and observations of the two-step strategy

• The best result was obtained with stable scenarios.   

• High transaction costs reduce the overall performance and are difficult 
to control due to two step processto control due to two-step process

• Using mixed integer programming (MIP) in which the sets of winners 
and losers are not necessary tp be known in advance is cumbersome 
due to computational burdendue to computational burden

• Results shows that it is better to include transaction costs in the 
objective

• Use of stable scenarios outperform the historical method and the 
normal Monte Carlo 
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Incorporating the winners/losers selection in the zero-value optimal portfolio 
bl f t blproblem for one-step problem 

Modification of the objective function of the two-step problem with introduction 
of the constant C0 and additional constraintsof the constant C0 and additional constraints

• Find w1, w2 , …, wN (instruments weights):
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where C0, C1 and C2 are positive constants. 

• The constants C and C remain fixed for the entire back testing and C is

⎪⎩ −= +
iii www
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• The constants C1 and C2 remain fixed for the entire back-testing and C0 is 
calculated for each separate optimization starting from 1 and using multiplicative 
algorithm with coefficient M (constant used to increment C0)


