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Intreducton:

S S —

PRIHERIAEryInGr Variable is the realized
BWoletlitys or variance of a traded

& financial asset over the life of the
= contract, rather than the price of this
asset.




Introauction. g

eRiey are tradedi Decause:
SHEYEZSI A provideEmaiVersification: hey don't
NEEPENd on' prices evolution, but on how fast prices
R alie chianging.
Asither empirical evidence points out, they provide
g eeguate, nedging when facing market turmoil,
B which usually implies correlations quite close to
ONE.

—Hedge funds and other risk seeking investors
usually sell these products due to their high risk
premium.

® The last two reasons imply very asymmetric returns,
with heavy tails.

® Sellers usually earns money very often, but the profits
are really small. They rarely loose money, but looses are
very high when they arise.




INCrOGALICHION.

—

J‘-r- are . usuallyatraded in OfC markets,
50FEstimating e total trading volume
ISprioblematic.

BIBUL recent estimates for daily trading

= yolume on indices are in the region of

=

= 430 to $35 millions of notional.

(Broadie, M. and A. Jain, 2008. “Pricing and
medging volatility derivatives”. _Journal of
DPerivatives. 15, 3, 3-24.)
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SSAPpPreximately: one vear and a halli age the
CHC Ncagor Board " OptionrEXCchange) has
WEENI trading volatility: derivatives. They have
Several derivatives:

& VX

XN, etc.

e WW.CBOE.com

= o Besjdes, there are volatility funds, such us
the Euroption Strategic Fund
(www.europtionfund.com), that only deals
with  volatility derivatives, mainly on
European indexes.
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SSiiolNg Volaullity deryaVESES

o Varlangdele VoIatlllty SWell95

== Uu(s,,H)dt+o(S,,t)dz

(i

- St

]5-3% Brownian, Motion reflecting the evolution of the
e Onderlying security. The realized variance in [0,7] is
::r_ Sdefined by the stochastlc mtegral

: —j o> (S, t)dt

and the realized volatlllty IS:

T =\w"




SSiiolNg Volaullity deryaVESES

BRVENENE and. Volatility A SWap:
—Jt*may be provedthat

Lim, AHO)I}T (n)= pT

with convergence in probability at least.

(Demeterfi, K., E. Derman, M. Karmal, and J. Zou. “A

Guide to Volatility and Variance Swaps”. Journal or
Dervatives, 4 (1999), pp. 9 - 32.)
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SSiiolNg Volaullity deryaVESES

o Variagedeile VoIat|I|ty SWell95

— Consldaperiigiiensanoidrziclige)clziiess

SaleE estimateal variance in [0}, T] is given Dy:

and Af =1, —1,_,,i=12,...,n, Similarly, the estimated
volatility is given by the sguare root of the previous
expressmn 1 &

() - \/ n(A?) 2

=
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5 4b|ng VOlatility 0 ERVAIVESES

o Variance and Volatlicy Sweo:

SANENGE position int a Variance. swap implies the
r), entelra (numerical) price WO at £=0, so as to
Fetevelthe random amount ® " (n) att=T7,

cI> =) being a notional value known by the agents.
The buyer of a Volatility Swap must pay V

~ at £= 0 s0 as to receive the random pay-off ®V " (n)
at t= 1.
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DESTeldINGNVe]atilitysaeRvetVvESS

© Varlanes SWeElg REEie:

S ANI0Ng poesition inf a Variance Swap Future with
maturities /7, <7, implies to accept at £= 0 a
SCEOMMItMENt so as to purchase a Variance Swap at

L with maturity at £, .Consider the trading
dates

B = <.<!, =T <1, <..<t,,
with

i=12,....k+h

=1,
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DESTeldINGNVe]atilitysaeRvetVvESS

o Varlarice Syweo Flclre:
— Ihen:

4 1 k+h
W"(k+h) = y?
( ) (k+h)(At) ; :

k

~ 7 = 1 i
W (k)—k(m)zi

=1
k+h

A |
W(TlaTz)(h) B riz
(h)(A?) i:zk;l

manipulating we obtain:

2 W™ (k+h)— /i W (k)

W(TlaTZ)(h):
do =1 1, =1




[e cﬁﬁﬁg Volatility derivativESES

SIAVEENCE Swap Future: ™
s bEDETNRINEN ariancesSwapaEliburepvithimaturities at
fand £ Is replicated with:
-3 1
tENPUIChase of T -T Variance Swaps with maturity at 15 )

e T —r(71, -1,
3 1 e (I;-1;) T
= hnesaleof ~ Variance Swaps with maturity at £
=and borrowin%g thelprice of the strategy above
= T A e
: VVOT2 — 1 WOT]
I = Tl I Do T1
during the time interval [(), Tl]
—[herefore, the price of the Variance Swap Future is given by

AO<T1,T2> = ., : T o (BT | T
1, -1,




.
Dascrigigie] Volre der eiiieses

S S —

2 Variarica Syele Ceile)s):
SWVENWll consider that the buyer of a Variance Swap
SElropean Call (Put) with maturities /, < /5 has the
B ight (mo obligation) to buy (sell) a Variance Swap at
= withi maturity at £, , and he will pay (receive) the
- = strike £
— |he price of the option is paid at £ = 0, whereas the
strike is paid at 7/
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DESTeldINGNVe]atilitysaeRvetVvESS

2 Covariznies Syeler:
— (*e SIGEr a finite set of trading dates:

=i, < <..<t =T

ConS|der alsor two underlying assets whose price
;f..:___.— processes will be denoted by 5, and S, . Their
= realized covariance in [0, 7] is given by

: el
C'(n)= rr.
(n) n(At>;”
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Dascrigigie] Volre der eiiieses

S S

o Covalrlanes Syelor

—-= buyer of a Covariance Swap with

——

= Mmaturity at 7 will 7pay at ¢ = 0 the
, — numerical price C and he will receive
: the random pay-off ®CT (n)at t=T.

—\Where & is the notional price of one
covariance point.
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PricipicfelpleMslgelcfiple/ rrl2tgiejels

2 ] IV there are two methods:
BVEtiod 1: using infinitely many

;;épﬁons

prlcmg models




fc g andl NEAdING MENIBHSES

o Methge S
S WasHntrecUCed DYz
l\Jel_,:-fra A Sihe Leg Contract™. Journal of Portfolio
VEREGEEnt, Vol. 20, No. 2 (1994), pp. 74 — 80.
EAnC filrther developments were given by Demeterfi, K.

r

=~ et at.

Scholes model and proved that the realized volatility

|s:
B 5 (5
gvas i ﬁ FOT FOT
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PricipicfelpleMslgelcfiple/ rrl2tgiejels

S S —

y Mer od 1:

J _chf ', te second extended the analysis so as to
i) Olve some stochastic volatility models.

,__.he authors also showed that minor

;-Z"- “modifications of the formula allow us to accept
the existence of jumps in the underlying asset
Price process.
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PriciriepelalefplelejiglefaslSiriocls™
J\/Je'o 1: -
From"r'f'C“L: ERAEREGUR TS

S) (g(7)—hg'(h))+5g"(h) + j g" (k)(k—5)dk

'or 2l tow! times differentiable function those Jaapers
Sta ed that the variance swap may be replicate

——

Buylng gidk European Puts with strike k, ) < k& < F
Tk’

—Buying P 1 1) European Calls with strike k, F/ <k<o
2

where the maturity of the options equals the maturity of the
variance swap.
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Priciriefzinle hedglng me_thods

-rll-l!l ?-E -r||'l!l

0

= [} pue)g” (e = puttierg” e+ [ (k — $)g" (e )k

0

— [[(k—S)g" () dk

= FOT makes the remaining terms vanish.
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PriciclcfelpleSnlEefeflaleffrrl=tpoels o

o Caise 230 o b

:P.-:Iy —rajj” - j: put(k)g" (k)dk +j:’ call(k)g" (k)dk =

fﬂ_ﬁﬁrr—f—ﬁ

0

= [ call(kyg" (k)dk + [ call(k)g"(k)dk
=

0

E j:(S—k)g”(k)dk: j;(k—S)g”(k)dk

22
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Pricisle)elaleflglElelefigfefas/=erigcis™

o Metriod 2
Sy Ve Wilet  ana™Hatug™(2002) discussed ™ the
Valliation: of volatility swaps In the GARCH(1, 1)
JrO(“ astic voelatility model.

@EVERE A, P, Wilmott, and E. Haug. “Garch and
\/@ atlllty Swaps”. Working Paper, 2002,
SLeER/WEWIlmott.com).

_thtle and Pant (|2001) developed a finite difference
= method! for the valuation of variance swaps in the case

of discrete sampling in an extended Black-Scholes
framework.

(LCitele, 1., and V. Pant. “A Finite Difference Method for
the Valuation of variance Swaps”. Journal of
%)frwutationa/ Finance, Vol. 5, No. 1 (2001), pp. 74 -
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Pricisle)elaleflglElelefigfefas/=erigcis™

Yt od 2

—C Cairs et al. (2005) prlced OpPLIoNS' on realized variance
J\/ directlys modeling the guadratic variation of the
erlylng PFOCESS Using a Levy process.

( ity H. German, D. Madan, and M. Yor. “Pricing
-~ Ogtlogls gy Reallzed Variance™ . Fnance and
o= —Stochast/cs Vol. 9, No. 4 (2005), pp. 453 - 475).

—
,.-—_-—__
i
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Pricisle¥lnle hedglngﬂn]_g‘thods__.

—Fls efore the \/aianee SWap contract has been priced

SYAUSIHEN ey ePLeNRS,  WHErEas the remaining
copl acts ave, beem priced by usmg an stochastic
volalility pricing model.

_—j_J: first. method has advantage since it doesn’t

BGEPENndionl the theoretical price we use.
Optlon prices are given by the market.

z — —The drawback is that an infinite number of options
can't be traded.




clalejeialeRaleelejislefanltrigc)s™

SIieal recent paper, Broadie; and Jain (2008) use: the
NESUENNTIOEEI RN CPESEN ONPHCE and NECGE VoI atility
SWalPsh aind Variance swap options by Using Vvariance

S\EPs!
SISy they: hedge a position in volatility by trading
BVariance swaps and consequently by trading infinitely

= many. options.

— —They use the pay-off variance as a risk measure to be

minimized when approximating the variance swap
contract by a finite combination of the available options.




.
Pltsigrand hedainauiEoEsees

SUIRUI SR P E W ENP O POSER O USENRHRILEIN SRy OPLORNS
WONEPlICate every: volatility: derivative without using the
Velianee swap to connect the options and the asset to
.-i':—)riced and! hedged.
SIS makes our approach be independent on any
ncmg model.

“:l'.‘

e —We will" use both European and digital options since
digital options may be easily priced in practice from the
combination provided by the European options.
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sinepelnic) raeleflslel rrlstnieelsm

SEURGIERMOre,” the: commItied error due tor the lack™ of Infinitely
(i) available options will be' computed by using a general risk

IRCHON, (an expectation bounded risk measure or a deviation
JIECE ure)

ckafellar R.T., S. Uryasev and M. Zabarankin, 2006.

= — eEnEralized DeVIatlons In Risk Analysis”. Finance & Stochastics,

-_-
—
—

ﬂ:

.__.—-

= —Smce heavy tails and asymmetries are usual when dealing with
volatility the use of the variance could be a shortcoming.

(Ogryczak, W. and A. Ruszczynsky, 2002. “Dual

Dominance and Related Mean Risk Models”
Optimization, 13, 60 - 78).

Stochastic
. SIAM Journal- on
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Usine) JilelIe2 IV sizlelY O Otio)f) S

3 g(S)=g(h)+[ g'(k)dk
r( -a differentiable function, and

J Fror' tHENermulas

"g(S) (g(h)—hg'(h))+5g’ (h)+jg"(k)(k S)dk

-—-
- o
g —

for'a 2 times differentiable function, we can
prove the following results:




|‘"‘i’hf|n|tely ff1=)f)Y optlons

SN ERrem 2 Let be a,hER U {—oo, oo} andg (a b) >R
i) zlfolire ction stichi that giand: its first derivative
axist and are cc UoUsTout o a finite'se

i, <d,<..<d {c(a,b). Suppose that g may
9E e tended and become continuous on(a,d,], and the
Senielproperty holds if (¢.d, | is replaced by,

_;.,,—: .. |.i=1,...m—1,orby[d, . b). Denote by
J theJumpofgatdl,l—l ,m ., Then, if

he (a,b),h<d, and S, is a (random) price at 7
suchl that

U(S, € (a,b)) =1,(S, € DU{h}) =0

—
___,-_-
—
g —

the final pay-off g(S5,) may be replicated by:
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BEIIENRILE] ST RYAG BTSN

- _ —7r.] . h
o [rv/asrtine © SUres AT tHENISKIESs asset.

J lJy J_ Digital Calls with striked,,i =1,2,..
SREUYingG o (k)dk Digital Calls for every strlke
k € (a,b)\ D,k >h .

eII|ng o'(k)dk Digital Puts for every strike
ke(a,b)\D,k<h.

_-'-
ﬁ—'
-

= _—-
Cal

—
m—
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Usine) JilelIe2 IV sizlelY O Otio)f) S

[ I 1- . 1 11 ]: a
1 o - - ¥l T y —
o K ak dignial calls h=1U

2 Proor.

RO O~ | call(h)g' (k)dk =

= jj call(io)g' (k)dk + j: call(io)g' (k) dk =

1 0

= jj o () dk




ih’g"i’hfinitely ey OpuBISES

SRNITEGEm 3: Let be g he Riuf—o cotand g : (a,b) —> N
eIty FUNCEoN" sUchr that' ¢ and" Its first and
Seeoenal derivatives: g”and g” exist and are continuous
olitoraisingle element d € (a,b) . Suppose that g may
JQ extended! and become continuous on (&, d | and the

me property holds if (a,d | is replaced by [/, b)-

E:‘"F"’-‘fl}enote by J ,and J', the jumps of gand g’at d.

e

=~ Then, if ST is a (random) price at 7 such that
1S, € (a,b))=1, (S, =d) =0
the final pay-off £ (ST) may be replicated by:
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Usine) JilelIe2 IV sizlelY O Otio)f) S

J nvw* mg o(d) —hg'(d) Je "'euros in the riskless

0 _)I}\ mg o'(d ) units of the underlying asset.

g--”a o''(k)dk European Puts with strike 4 for
EVERY ke (a,d)-
"o Buylng "' (k)dk European Calls with strike & for

every ke (d,b) -
® Buying .J', European Calls with strike d.

® Buying J 3 Digital Calls with strike 4.




slrle |nf|n|tely pEAIYLogs

PihEse bheerems aply o, replicate every: pay-ofii
e Ui ERoUg IS PartcUlar,  the Varance
gElVelatility’ swaps.

or': Volatiliw swaps notice that the pay-off

: Lm
FO

IS continuous, but its first derivative presents a
jumpat S = FOTwhose valueis 2

V2T FS
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Using gl ilitEEiElel/ O otie)niSu




MUNELC Vardnee Swap pr—

>0) =1 holds the following strategies

‘V. @ = v“.

gy1 (Digital eptions)
ndmg ko ST /7 Euros.
T FO F
Buylng d| 1 } = Dlgltal Calls for every strike £,

T FOT k

— Selling®| 1 1
T FT k
O<k<h.

} Tk Digital Puts for every strike £,




YNUEtic Variance e Swap

o Stratae)aZ: (Euroean PPLIGRAS)

— Borrowigle Jweceuros.

r

units of the underlying asset.

g
h

= European Puts with strike £,

— Selling D ] =1 European Calls with strike £,

TN
h<k<oo.




-i = g
BUELIC Volaulity SR

SIS, > 0) = 1 and (S, = F,) =0, then:

2 Stretec)y 11: (cl%igit]?I ?ptions)

FOT \/? gvas(k)

dk Digital Calls for every strike

SBYing

D r-1
FOTﬁgvaS(k)
ke (0,F7).

dk Digital Puts for every strike




Syiuenic Volality Swep

p—
> Strategy 28 (Elfdeeey) ot ——

— rrowmg o Fo _1e—rfT EUros.

3 ® £ —1
= >F Ilng \/ﬁ ( )2 units of the underlying asset.

r P gms(k) S —H
2k s ()

dk (1)

European Puts with strike , for every & & (0, F i
— Buying (1) European Calls with strike k for everyk € ( FOT ,00) .
— Buying 2 / ﬁ European Calls with strike £ L




SoHeteVarisncerand Volablity s
S0 Ouions.

Wolatility Swap

/

I 5

F 5r
» For the sake of simplicity let us assume that the option maturity
equals the variance or volatility swap maturity. In the general case,
under very weak assumptions we can also prove that the volatility
swap final pay-off is a function depending on S, underlying price at
the option maturity.




SYhuiEuER ariancEsand Volatlllty
SWap, OptionSysee™ =

S The Varfnes Sie OpLien can berreplicated with
PASUIEIUETIES.
s Sru {EN(Digital options):

= 1
= jdk Digital Calls for every strike

=k

| iyl = .
— Selling 7 — . dlk Digital Puts for every strike

T
=2

42




S tEnEN ariancexand Volatlllty
SYWEIN@gilerls —

Strated s (European OPLIERS);

=

(D
SSlnvesting —| | ——— | euros in the riskless asset.

et

D 1 1) _
— Buying —~ units of the underlying asset.

S

e P ]
Blying _Pdk European Puts for every strike fr < Sl :

— Buying %%dk European Calls for every strike k > S >

— Buying cb(l - . European Calls with strike S1 .

Sl F0T<

b ]
— Buying | FT F <
0 v

European Calls with strike S 2 -
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SV PIIELIC/ 213N CE; a1 6R/G] EtlbiAs
| SwWap OpLeNS

SSLElIGyESWE D OpLions:

P
o
=

, _' Analogously, from theorems 2 and 3, we can see that
EERVOIatlity. sSwap option may be repllcated by using
iInfinitely: many: Digital or European options.




GRWIth the avdildbIeOpeISES
and rSeasUres

A ready said Demeteriit et al. proposed an
JEUISHCE procedure to approximate the variance
SWepWihereas, Broadie and Jain solve this
PIOPIENT By mMinimizing the variance of the
RGOMMIted error.

" “This' authors dont consider any transaction

"
e
-

— costs

o We will provide a general method
simultaneously dealing with the lack of infinitely
many options, transaction costs and a general
risk functions.




GRWIth the avdildbIeOpeISES
and rSeasUres

S IS the sk free rate.
SEEilIRoe the underlying final pay-off.

y ~Y will'be the final pay-offs provided by the
allable options.

here dare 4 cases: (0,5, <E,
- = For Digital Calls: ¥, =1
= g S TR,
ML ST<E,
0,5, > E,
— For European Calls: (ST — L, )+
— For European Puts: (£ -5, )

i
_-"-
-

— For Digital Puts: i
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BDEIHGEWIUH thE aVvdildDIEOPHEEES
and flale rrl2esifas

0 F - bld/ask Off the underlylng asset,
B ) :bid/ask of Y

0 enotes an expectatlon bounded risk

Sijeastre; defined over [/, where p satisfies
== -; € LT Thus, Y,,...Y € L7 too.

—

o Usually p = 1.

(xf,xo,xo,xl,xl,...,xn,x”) will be the hedging
strategy.




GRWIth the avdildbIeOpeISES
and rSeasUres

xferf +(x" —x,)S, +(x —xl)Y+ +(x B
wyl) e GhE pay-off.
3 —xf+xOSO—xOS +x Y —xy, . +x" Y —x y

= Wil "be the price. i o +Z<x )Y )

+ny ny <A
x>O

riT

e We may prove that F(4e™ +4=F@©0}e " remains
constant and doesn’t depend on A. And it will be
call the ask price of g(S;

48




S
BDEIHGEWIUH thE aVvdildDIEOPHEEES
and rIeasurese

2> F 'olutlon X 0ff the problem doesn’ t dependion
AREXGEPL fior the risk-free asset.

SNIiE previous: problem may be solved in practice

By duality: methods. So, suppose that gis the
;E?%On]ugate of p 1 - | =
~ S Usually p=1andg=c. p g

o A, € L'js the sub gradient of © (Rockafellar et

at. (2006)). For example if p=CVaR,., then:
A, =12(S;)e L7 E(z(S;)) = 1,0 < 2(S,) < 20}




GRWIth the avdildbIeOpeISES
zlnle r|S'k MEasUreos

dUi2IFprOPIEN IS

max E(g(S;)z(S;))

E(z(S;)) =1

S.e” <E(z(S;)S,)<S%"
et (S, )< Y'e” , j=1,..,n

Jihe dual problem is always linear.

e Both problems are analyzed and solved in Balbas, A., R.
Balbas and S. Mayoral (2009), Portfolio Choice Problems
and Optimal Hedging with General Risk Functions,

European: Journal of Operational research, 192, 2, 605-
620.

50
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ConRclusionSwee

<

> Volzliey der|vat|ves are becomlng very useful
Jeg« they make it easy to compose
diersitied portfolios and also offer protection for

= ?: arket turmoil.
We mave proved that all of them , including
“volatility swaps and variance or volatility futures

and call and put options may be replicated by a
combination of infinitely many European options.

—l—l'.'
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h
ConRclusionSwee

MIMEY cani be aIso rieplicated with digital options.
IISSEEMS! 10 be: an interesting result since digital

Jr) J0ns are easily priced and replicated by using
th

crinderlying.

oreover to overcome the lack of infinitely

many opt|ons in the market, we have provided a
pricing and hedging method related to
Expectation Bounded Risk Measures. The
method also incorporates the usual market
Imperfections.
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