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Daily Prices, S&P500, 1980-2007
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Daily Returns, S&P500, 1980-2007
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U.K. Consol Returns, 1729-1957
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» Volatility changes over time and is clustered in time
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Why to Care About Varying Volatility?

Time-varying volatility plays a central role in many areas:

v
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Sign forecasting and Market Timing
Default risk

Risk management

Asset pricing

Portfolio allocation

Hedging

Option pricing

Order execution strategies
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Outline

2. GARCH Models
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ARCH

» AutoRegressive Conditional Heteroscedastic (ARCH) model
(Engle, 1982, Ecta).
» The ARCH(p) model for log returns r; is given by

re = Wt + €t
€t = Zt0¢,
2 a 2
oz :w—i—Zajst_j,
j=1

where uy = E[r¢|Fi—1], z¢ is an i.i.d. error term with
E[Zt] = 0, and V[Zt] =1.

=- Basic Principle: Mean-corrected asset returns ; = ry — it are
serially uncorrelated, but dependent.
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GARCH

» Problem of the ARCH model: For typical financial time series,
often highly parameterized ARCH models are required.

» Generalized ARCH (GARCH), Bollerslev (1986, JoE).

» The GARCH(p,q) model is given by

&t = Zt0,
2 £ 2 J 2
Oy =W + Zajat,j + Zﬁjatfj’
Jj=1 Jj=1

where z; is an i.i.d. error term with E[z;] = 0 and V[z] = 1.
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Properties

» ARMA model for squared (de-meaned) returns:

Et—w—I—Z aj + 5;) Et_J Zﬁﬂ/t it Vvt

j=1
with vy := 2 — 02, a; := 0 for j > q, ﬁj =0 for j > p and
m = max{p, q}.
» Unconditional variance:
w
Ve =

1- J 1% — Zj’:1ﬁj'
» Kurtosis of £; for an GARCH(1,1) process:

31— (o1 —B1)?)
Kail—(al—i-ﬁl) —20&% >3
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An (Incomplete) List of GARCH Models ...

ARCH Engle (1982)

GARCH Bollerslev (1986)

IGARCH Bollerslev and Engle (1986)

Log-GARCH Geweke (1986), Milhgj (1987), Pantula (1986)
TS-GARCH Taylor (1986), Schwert (1989)
GARCH-t Bollerslev (1987)

ARCH-M Engle, Lilien and Robins (1987)
MGARCH Bollerslev, Engle and Wooldridge (1998)
CCC GARCH Bollerslev (1990)

AGARCH Engle (1990)

CGARCH Engle and Lee (1990)

EGARCH Nelson (1991)

SPARCH Engle and Gonzalez-Rivera (1991)
LARCH Robinson (1991)

AARCH Bera, Higgins and Lee (1992)

NGARCH Higgins and Bera (1992)

QARCH Sentana (1992)

STARCH Harvey, Ruiz and Sentana (1992)
TGARCH Zakoian (1994)

GJR-GARCH Glosten, Jagannathan and Runkle (1993)
QTARCH Gourieroux and Monfort (1992)

VYVVYVVVYVVYVVYVVVYVVYVVYYYVYYVYY
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VYVVYYVYVYVYVYVYYYVYVYYVYYYY

ctd.

Weak GARCH Drost and Nijman (1993)
VGARCH Engle and Lee (1993)

APARCH Ding, Granger and Engle (1993)
SWARCH Hamilton and Susmel (1994)

GQARCH Sentana (1995)

SGARCH Liu and Brorsen (1995)

PGARCH Bollerslev and Ghysels (1996)

HGARCH Hentschel (1995)

FIGARCH Baillie, Bollerslev and Mikkelsen (1996)
FIEGARCH Bollerslev and Mikkelsen (1996)
ATGARCH Crouchy and Rockinger (1997)
Aug-GARCH Duan (1997)

STGARCH Gonzalez-Rivera (1998)

OGARCH Alexander (2001)

DCC GARCH Engle (2002)

Flex-GARCH Ledoit, Santa-Clara and Wolf (2003)
HYGARCH Davidson (2004)

COGARCH Kliippelberg, Lindner and Maller (2004)
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Outline

3. Stochastic Volatility
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Stochastic Volatility

» Continuous time random walk for price process p(t):
dp(t) = pdt + odW/(t),

where 11 denotes the drift, o the volatility and W(t) denotes a
Brownian motion.

> Implied by Black-Scholes formula
> o constant!

» Time-varying volatility:
dp(t) = pdt + o(t)dW/(t),
where o(t) denotes the spot volatility.

» How does o(t) vary over time?
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Stochastic Volatility Models

» Cox/Ingersoll/Ross (1985, Etca):
a(t) = np(t)"/?

» GARCH diffusion (Nelson, 1990, JoE):

do?(t) = (a — Bo(t))dt + no(t)dW(t)
» Heston (1993, RFS):

do?(t) = (o — Bo?(t))dt + no(t)dW(t)
» Log volatility:

dIno?(t) = (a — BIno?(t))dt + ndW/(t)
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Discrete-Time SV Model

» The SV model by Taylor (1986) is given by

It = [+ otly,
j.i.d.
Inoy —a=¢(lnor_1 —a)+n:, 0 = N(O, 0727),
with 0727 = 3%(1 — ¢?), |¢| < 1 and u; and o, independent.

» 0 is log-normally distributed!
» r; follows a normal-log normal mixture!

» Motivated by mixture-of-distribution hypothesis (Clark, 1973,
Ecta).

» Empirically supported?
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Estimating Discrete-Time SV Models

» o is a latent process!
» f(re|Fe—1) is not available in closed form!
» Different ways to estimate the model:

> GMM, Melino and Turnbull (1990, JoE),

> QML estimation, Harvey, Ruiz & Shephard (1994, RES)

> Eff. method of moments, Gallant, Hsie & Tauchen (1997, JoE)

> Simulated maximum likelihood, Danielson (1994, JoE),

> Eff. import. sampling, Liesenfeld & Richard (2003, JEmpF),

> Markov chain Monte Carlo (MCMC), Kim, Shephard & Chib
(1998, RES), Hautsch & Ou (2008, Appl.Quant.Fin., Springer)




4. Realized Volatility 18 | 88

Outline

4. Realized Volatility
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Integrated Variation

» Assume the diffusion
dp(t) = p(t)dt + o(t)dW(t).

» Goal: Estimate the variance over the (normalized) interval
[0, 1] (representing e.g. a trading day).

» Then, the variance of p(1) — p(0) given the volatility sample
path {o(7),0 <7 <1} is computed as

1
IVE/ o?(r)dr
0

» [V is called integrated variation or integrated volatility.
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Realized Volatility

» How to measure the integrated variation

1
/V:/ o?(r)dr 7
0

» Intuitive: Sum of m squared returns of length A = m

m

RV™ =3 (p(A) = p(( = DA =D riam:

Jj=1 Jj=1
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Theory of Quadratic Variation

» Barndorff-Nielsen and Shephard (2002, JRRS B):
Vm(RV™ = IV)[IQ % N(0,2A1Q)

» The integrated quarticity IQ can be consistently estimated
using the realized quarticity:

m _— 1 a 4 P _ ! 4
RQ ZﬁjﬂrjA,m — /Q:/O o' (r)dr
» Then:
RV™ — IV
vm———~ N(0,1).

V2RQM
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Implications

» Asymptotic variance declines with increasing m = A~!I

» 'In-fill' asymptotics: Sampling on highest possible frequencies
crucial!

» Measuring the realized volatility over non-trivial intervals
avoids double asymptotics required for estimating o(t).

» Completely model-free measure!
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Different Realized Volatility Estimators
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Empirical Properties of the RV Estimator

» The unconditional distribution of realized volatility is
approximately log-normal
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RVs for XOM, HD and GE, NYSE, 2006
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The Distribution of r/RV?/?
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r/RV1/2 for XOM, HD and GE, NYSE, 2006
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Empirical ACF of RV, IBM, 2001-2006
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4. Realized Volatility

Empirical ACFs of Realized Volatility

Source: Andersen et al (2001, JASA)
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Realized Volatility Reveals Long Range
Dependence

» If RV ~ I(d), for t =1,2,..., denoting days, then

h
1
E Z RVt.H] ~ch™
j=1

\Y

with a =2H —-2=1-2d.
» Consequently:

h

Z RViyj

Jj=1

A\ ~ ch?dt!
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Realized Volatility Reveals Long Range
Dependence

Log Variance
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Source: Andersen et al (2001, JASA)
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Implications

» The distribution of realized volatility is approximately
log-normal.

» Realized volatility is fractionally integrated.

» RV-standardized returns are approximately normal.

» Distribution of returns is approximately lognormal-normal as
advocated in Taylor's (1986) SV model!
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Modelling Implications

» Dynamical properties suggest using long memory models.

» Fractionally integrated AR model (Andersen et al, 2003,
Ecta):

®(L)(1 - L)(InRV; — ) = ey,

where ®(L) =1 -2, ajld.
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Outline

5. RV Estimation based on Noisy Observations
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Market Microstructure Frictions

» Problem in practice: Market microstructure frictions!

» In reality, we can only observe

p(t) = p(t) + u(t),

where
> p(t): observed (log) price,
> p*(t): "efficient” (fundamental) latent (log) price,
> u(t) ~ WN captures so-called market microstructure "noise”
(bid-ask spread, price discreteness ...).

» p*(t) is assumed to follow the diffusion

dp*(t) = p(t)dt + o(t)dW(t).
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» Under the presence of market microstructure noise:
rinm = pUA) = p(( —1)A) = rjam +&jam
with

riam =P (A)—p* (U —1)A)
ng,m = U(jA) — U((J — ]_)A)

» Then, lima_o E[(rj*A’m)z] = 0 while
- 2
AI'TOE[sJ'Avm] > 0!

» Noise term dominates for A — 0!
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Dynamic Implications of Noise

» If u(t)isi.id.,

> €ja,m follows an MA(1) process.
> Observed returns rja , are first-order (negatively)
autocorrelated.

» If u(t) is autocorrelated, observed returns rja m, are high-order
autocorrelated.

» Suggests HAC-type estimators!
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What Can We Do?

vVvvyVvYvVvyVvyYVvyy

Just ignoring noise?

Sparsely Sampling at Some Lower Frequency?
Sparsely Sampling at Some Optimal Frequency?
Bias Corrections?

Modelling the Noise Parametrically?
Subsampling and Averaging?

Pre-Averaging?

Kernel estimators?
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RV Estimation Under the Presence of Noise

» Hansen & Lunde (2006, JBES), Bandi & Russell (2006, JBES)
» Assume, u(t), is a zero mean stationary process with
7(s) = E[u(t)u(t + s)].
» Then, it can be shown that
E[RV™] = 205, + 2m[x(0) — 7 (A)],
where p, = E[>°7, r,.*Ajmg,Am].
» Asymptotic bias:
mIimOOE[RV’" —IV]=2p— 27r'(0),

with p = limm oo E[3271 1A meia,m]-
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» For independent noise, we have 7/(0) = —oo and thus:

E[RV™] = IV + 2muw?.

» For large m, the RV diverges to infinity linearly in m!

» RV(2m)~! consistently estimates the noise variance w?!

» Market microstructure noise totally swamps the variance of
the price signal!
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Sparsely Sampling?

» Volatility signature plots: Plot the sample mean of RV™,
t=1,2,..., T against A

Average Voatilty
/

Average Volatiity

T 2 3 4 5 3 7 8 o 10
K

Representative volatility signature for liquid and non-liquid assets, k: sampling frequency in minutes.

Source: Andersen, Bollerslev, Diebold and Labys (1999, Risk)
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Bias Correction: A Simple HAC Estimator

» Zhou(1996, JBES):

m m
m _ 2
RV :ZriA’m+22r;A7mr(i_1)A7m
i=1 i=1

> Unbiased!

> Inconsistent: Asymptotic variance increasing in m!

> In the absence of noise, V[RVz] > 3V[RV] (approx.)!

> Optimal sampling frequencies based on MSE minimization.
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Parametric Modelling of Noise

» Ait-Sahalia, Mykland and Zhang (2005, RFS)
» Assume the following (intraday) discrete (log) price process
« j.id.
pPian = Pja +uin,  Ujia " (0,w2),
where
j.i.d.
Fam = Pja—Pna < (0,0°4)
with rJ-*A7m independent of uja.

» Then, riam= rj*AJn + uja — U(j—1)a can be re-parameterized
as a MA(1) process,

fin,m = ia,m + NAG—1)A,ms

where pjam ~ (0,7%).
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» The parameters 7 and v2 can be identified by

’yz(l + ?72) = V[rjam| = o2 A + 2w?

7277 = Cov[rja,m r(jfl)A,m] = —w?

» Consequently, the daily variance o2 as well as the
microstructure noise can be estimated by

6% = IV = A7'5%(1 - )%,

~2 D~
w- ==

where 52 and 7j are ML estimates based on a MA(1) process
using high-frequency returns.
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Optimal Sampling Frequencies

» Hansen & Lunde (2004, JBES), Bandi & Russell (2006, JFEC)
» Define A = w?/IV and let to,m; - - - » tm,m be such that
V[ria.ml = 1V/m (business time sampling).

» Then, the optimal sampling frequencies for RV and RV7'
are given by
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Sub-Sampling

» Sparse (even if optimal) sampling discards a lot of data.
» Sub-Sampling: average of the estimates calculated over
different sample sets

» Introduced by Zhang, Mykland and Ait-Sahalia (2005, JASA)
» ldea: Divide the time domain grid into K subgrids of size m.

P11
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» Subsampling is the average of the estimates calculated over
the different subgrids.

V(avg Z R\/k m

» Bias correction: RVzpa = Rv(ave) — Ryl \where "all’ is
associated with sampling over all observations.

» Extension: Multi-scale estimator, Zhang (2006, Bnlli)
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Realized Kernels

» If the returns rja n are autocorrelated, then

m m
p
ZrIZA,m - Z Vs
i=1 j=—m
where
i = E[riA,mr(ifj)A,m]'

» Kernel-based estimators:

H .
—1
Jj=1
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Realized Kernel Estimator

» Modified Tukey-Hannig kernel (Barndorff-Nielsen et al (2008,
Ecta):

k7 (x) = {1 — cos (1 — x)2} /2,

with bandwidth H* = ¢*/m and ¢* chosen optimally in

dependence of w, IV and IQ.

» Optimal rate of convergence m'/%.

» Requires pre-estimates of w, IV and IQ, e.g. based on
Ait-Sahalia, Mykland and Zhang (2005, RFS) ML estimator.




5. RV Estimation based on Noisy Observations 50 | 88

Other Estimators

» Pre-averaging estimator, Jacod, Li, Mykland, Podolskij and
Vetter (2007, WP), Hautsch and Podolskij (2009, WP)

» Business-time sampling, Oomen (2006, JBES)

» Alternation estimator, Large (2005, WP)

> ...

Accounting for jumps in the price process:
» Realized bipower variation estimator, Barndorff-Nielsen and
Shephard (2004, JFEC)
» Range-based estimators, Christensen and Podolskij (2007,
JoE), Martens and van Dijk (2007, JoE)
> ...
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Outline

6. Estimating Quadratic Covariation
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Quadratic Covariation

» p-dimensional log price process (asynchronously) observed

over [0, 1]:
X(t) = (XO(t), XO (1), ..., XP)(1))

/

» Observation times for the i — th asset: tp, téi), .
» Efficient price process Y(t) follows Brownian semimartingale

Y(t) = /Ot a(u)du + /Ota(u)dW(u),

where a is a predictable locally bounded drift process, o is a
cadlag volatility matrix process and W is a vector of
independent Brownian motions.




6. Estimating Quadratic Covariation 53| 88

» Quadratic covariation of Y:
1
[Y] = / Y (u)du, where Y =00
0
and

[Y]= plim Y {Y(t)) = V() H{Y () - Y(5-1)}"
j=1

m—0o0 i—
» Market microstructure effects:

() _ (40 (i) . j
Ul =x") - vg?),  j=01,....m".

» Noise process Uj(i) is covariance stationary with
(i) E[U] =0, and
(i) >, 1h€p| < oo, where Q4 = Cov[U;, Uj—p].
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Realized Covariance

» Realized covariance:
m
m __ !
RCov :E rin,mtin,m
j=1

where ria m = X(jA) = X((G—1)A), j=1,...,m=A"1,
> If X =Y (i.e. U=0),

1
RCov™ £ / Y (s)ds
0

for m — oo.
» Under the absence of noise, RCov™ is consistent and

asymptotically normal (Barndorff-Nielsen and Shephard, 2004,
Ecta).
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Realized Correlations

» The realized correlation between asset i and j is given by
RCov;

Corr™ —
reers {Rcov,.yﬂ}l/ ? {RCov,y’}l/ ?

» Realized Betas:
{RCovpn}
{RCOV[;;,}’

where {RCOV,-’[,’} denote the realized covariance between asset

RBi =

i and the market portfolio p.
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95% Confidence Intervals for Quarterly Realized Betas
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Based on Daily Returns for Dow Jones Stocks, 1993-1999
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95% Confidence Intervals for Quarterly Realized Betas Based
on 15min Returns for Dow Jones Stocks, 1993-1999
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Challenges in Covariation Estimation

» Positive definiteness (invertibility?)

» Well-conditioned (inversions numerically stable?)

» Efficiency (not throwing away too much data due to sparse
sampling)

» Market microstructure effects

» Asynchronicity of observations in time, Epps (1979, JASA)
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Hayashi-Yoshida Estimator

» Hayashi and Yoshida (2005, Bnlli): Handling the
asynchronicity

» Denote M4 = {t,'},':o71727“_7/\/[A and NB = {tj}j:0,1,2,---,/\/’5 to be
the sets of observation times for two processes A and B.

» Pairwise estimator based on the sum of all overlapping returns:

Ms Mg

HY =323 ral)rs() i sy

i=1j=1

where ' = (t,'_l, t,') and J = (tj_l, tj).
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Properties of the Hayashi-Yoshida Estimator

» Positive definite.

» Only applicable to bivariate processes. Pairwise estimation
problematic in high dimensions!

» Unbiased and consistent under the absence of noise.

» Bias-correction in the presence of noise: Griffin & Oomen
(2006, WP), Voev & Lunde (2007, JFEC)
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Multivariate Realized Kernel Estimator

» Barndorff-Nielsen, Hansen, Lunde and Shephard (2008, WP)

Modelling strategy:

» Synchronizing the data: Refresh time sampling
» Accounting for noise: realized (multivariate) kernel
» Positive semi-definiteness induced by choice of kernel

» Optimal bandwidth selection based on signal-to-noise ratio
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Refresh Time Sampling

“’x;&it: I I 1 | & & L
| | 1 I | I |
I I ] 1 | 1 |
I I ] 1 | 1 |
| | 1 I | I |
I I ] 1 | 1 |
. _\ | | 1 I | I |
Asset 2 + - t & t L * t o
I I 1 1 | 1 |
| | 1 1 | 1 |
I I 1 1 | 1 |
| | 1 1 | 1 |
1 1 | 1 | 1 |
< 9 I | 1 1 | 1 |
Asgety ——18+ . & HI— —— &
T] T2 T3 T4 Ts s 7 Time

» Sample whenever all asset prices have been updated
('refreshed’).

» Induces transaction time synchronization.

» Results into n non-overlapping intervals.
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6. Estimating Quadratic Covariation
Multivariate Realized (Parzen) Kernel

Synchronized returns at time j: rj = [r1j, 12, ..., rpj] for p assets.

K(X) = Z_jl k(H:l) Ch,

h=—n+1
where .
r, = Zf:hﬂ liXi—h ) for h=>0
> —hi1firnx; for h <O
and

1-6x24+6x3 0<x<1/2
k(x) =14 2(1—-x)3 1/2<x<1
0 x>1
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Outline

7. Blocking Multivariate Realized Kernels
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Blocking Multivariate Realized Kernels
» Hautsch, Kyj and Oomen (2009, WP)

Motivation: Refresh Time Sampling makes
» inefficient use of the data (dramatic if p is high!)
» covariance estimator dependent on 'slowest’ assets

ldea:

» Blocking: limit data reduction due to Refresh Time Sampling
> Group similar assets, in terms of trading frequency, into blocks
> ldentifying groups based on mixture models

» Regularization: obtaining invertible and numerically
well-conditioned estimator
> Random Matrix Theory
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Blocking: Step 1
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Blocking: Step 2
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BLocking: Step 3

bbbbbb
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Block Size Determination

Duration between observations

» Group according to liquidity
characteristics (e.g. # of
trades)

» lIsolate similar assets into 7 1
homogeneous groups £ o
(non-synchroneity)

» Grouping: motivated by
estimator s s s o» = % s
Method:
» Finite Mixture Models: Fraley and Raftery (2002)
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Finite Mixture Models

1. Mixture models

n G
LMIX(QI; ceey HG; 71, ...Tg|y) = H Z kak(y/|0k),
i=1 k=1
2. EM algorithm for MLE for mixture models
> unobserved portion of data is group assignment
3. Model selection:
> BIC determines the number of groups
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Finite Mixture Model Example

El W——R 0 G0
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Regularization

Implications of Blocking:
(4) less data reduction due to refresh time sampling
(-) lose positive semi-definiteness of original realized kernel

Perspective:

» Applications call for:

1. positive definite covariance matrices
2. well-conditioned covariance matrices

» Regularize via Random Matrix Theory
> directly address negative/vanishing eigenvalue problem
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Eigenvalue Projection

» Let C being the estimated correlation matrix with spectral
decomposition C = QLQ', where L = diag(l;) and Q is
orthogonal.

» Then, project C on the positive semi-definite cone by setting
all negative eigenvalues equal to zero:

C; := Qdiag(max(/;,0))Q

» Guarantees positive-definitess but not well-conditioning.
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Eigenvalue Cleaning

>
>

>

Clean for noisy eigenvalues inducing ill-conditioning.

Identify noisy eigenvalues by comparing the correlation matrix
with the identity matrix (inducing independence).

If p— 00, m — oco and Q@ = m/p > 1, the Marchenko Pastur
pdf of the eigenvalues pc(A) is given as

,OC()\) — 27TQU2 \/()‘max - ))\\)(A — Amin)’

where

AT = (14+1/Q £2,/1/Q),
with A\ € [Amin, Amax], and o2 being equal to the variance
elements of C.




7. Blocking Multivariate Realized Kernels 75| 88

» Remove eigenvalues with /; > Apax (associated with strong
common components, "signals”).

» (Re-)Compute the remaining contribution of the total
variance: 02 =1—h/p.

> "Tightening” of the Marchenko Pastor pdf
> Allows for smaller signals to be better identified

» Recompute A,.x and repeat the steps until maximal fit is
achieved.
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» Then, the regularized correlation matrix is obtained by

C= diag(&‘l/z)zdiag(z_l/z),

C=QLQ,

L = diag(F),

i if i > Amax

P = trace(Cy)—Y li

(1i>Xmax) H

: otherwise
p—(NO. of l; > )\max)

=)

» Smallest eigenvalues are inflated, signals remain unchanged!
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Eigenvalue Cleaning |

» Estimates eigenvalues for matrix of

, dim=64

» Clearly see 'market’ factor seperate
from the rest > 30

: » Want to extract some more signals
from the 'bulk’ and regularize the
05 noise in such a way that it is "harmless’
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Eigenvalue Cleaning ||

» We zoom in on the bulk

» RMT tests against the null hypothesis
that the matrix is uncorrelated,
independent assets

» Eigenvalues greater than A, are
regarded as rejecting the null, and the

rest are assumed to be noise
1|||hi|“ Lkl 1 » What should we do with 'noise’?
0
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Eigenvalue Cleaning Ill

» Eliminate negative eigenvalues by
projecting onto positive semi-definite
cone

» Vanishing eigenvalues result in

: ill-conditioning (numerical problems)

» Condition by replacing the distribution
2 of 'noise’ with the mean 'noise’

! » Small eigenvalues are inflated
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Observatiopﬂm Frequencies for SPIES)O

7 . =
& &
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
o il
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Simulation: Design based on SP1500

Market Microstructure Effects: X; = Y; + U;, U; ~ N(0,w?)

Noise Ratio v = %
Q5 Q25 Q50 Q75 Q95
Bottom 600 022 027 034 041 0.63
Middle 400 0.23 031 0.38 0.46 0.76
Top 500 020 0.29 036 0.46 0.94

Consider: ~ € (0.25,0.375,0.5,1)
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Simulation: Estimators

1. RK: Realized Kernel estimator.

2. BLOCK: Blocked estimator.
> Five blocks of equal size

3. RMTBLOCK: BLOCK regularized via Random Matrix Theory

> Five blocks of equal size
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Evaluation Criteria

Let ft be our estimate of X; and X be the estimates of the
eigenvalues \.

(i) Check positive semi-definiteness.

1 if Xm,',, >0

PSD =
{ 0 otherwise

(ii) Evaluate distance from 'true’ covariance: Scaled Frobenius
norm

Hit —XillF, = (trace(AAT)/P)l/z,
where A=%, — .
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Positive Semi-Definiteness

0.25 0.375 0.50 1.00

p=10 Extreme 0.97 092 0.88 0.76
llliquid 099 098 0.96 0.93
Medium 1.00 1.00 1.00 0.97

Liquid 1.00 1.00 1.00 1.00

p=50 Extreme 0.01 0.00 0.00 0.00
Illiquid 0.00 0.00 0.00 0.00
Medium 0.00 0.00 0.00 0.00
Liquid 0.23 0.10 0.04 0.01
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fnorm Results in dim=10

liquia

Legend:
RK

00 005 0l 0% 02 05 0%
00 005 0l 0% 02 05 0%

Block ) . .o N
# block: . -

Medium=5
lliquid=5
Extreme=2

XY

om 05 ;05 0 05 0%
-
.
om 05 om0 0m 0% 0%
.
[ X
[ X0
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fnorm Results in dim=50

......

Legend: ¢ :

RK EER EER .
Block N e *
# block: I
Liquid=5 . N

Medium=5 .t ’ :
lliquid=5  “*1. » * R

Extreme=2 2 s
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fnorm Results in dim=100

......

Legend: ) )

RK

Block N 1. . . .
# block: e
Liquid=5 o o

Medium=5 L ] -
lliquid=5  * |, + * S P )
Extreme=2 3 _‘
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Implications

» Blocking significantly increases the performance of the
estimator

» RMT successfully removes negative or small eigenvalues
» Performance increases with the cross-sectional dimension

» Computationally very tractable even if the cross-sectional
dimension is very high!

= Pragmatic approach to handle huge covariances. Relevant in
practice!
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