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The simulation of large crowds of autonomous agents with realistic behavior is still a challenge for
several computer research communities. In order to handle large crowds, some scalable architectures
have been proposed. Nevertheless, the effective use of distributed systems requires the use of
partitioning methods that can properly distribute the workload generated by agents among the existing
distributed resources.

In this paper, we analyze the use of irregular shape regions (convex hulls) for solving the partitioning
problem. We have compared a partitioning method based on convex hulls with two techniques that use
rectangular regions. The performance evaluation results show that the convex hull method outperforms
the rest of the considered methods in terms of both fitness function values and execution times,
regardless of the movement pattern followed by the agents. These results show that the shape of the
regions in the partition can improve the performance of the partitioning method, rather than the
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© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of large crowds of autonomous agents has
become an essential tool for many virtual environment applica-
tions in education, training, and entertainment [2,23,9,18,10].
Crowd simulations model the motion of crowds and other flock-
like groups as interacting particles that display different behaviors
in 2D/3D scenes [20,4]. Agent-based crowd simulations aim to
capture the nature of a crowd as a collection of individuals, each of
which can have their own goals, knowledge and behaviors [19].
These applications require both rendering visually plausible
images of the virtual world and managing the behavior of
autonomous agents at interactive rates. In this sense, simulating
the realistic behavior of large crowds of autonomous agents is still
a challenge for several computer research communities.

The sum of graphical quality and realistic behavior require-
ments results in a computational cost that highly increases with
the numbers of agents in the system, requiring a scalable design
that can handle simulations of large crowds in a feasible way. In
this sense, some proposals tackle crowd simulations as a particle
system with different levels of details [3,24] and other proposals
focus on providing efficient and autonomous behaviors to crowd
simulations [15,7].
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In order to achieve the required scalability, the crowd should be
distributed among different processors. In previous works, we
proposed an architecture that can simulate large crowds of
autonomous agents at interactive rates[11,26] where the simulation
world was partitioned into subregions and each one assigned to one
parallel server. A scheme of the architecture presented in [26] is
shown in Fig. 1. This figure shows how the space occupied by crowd
agents is partitioned into three subregions, and each one is assigned
to one Action Server (AS, labeled in the figure as AS,). In turn, each AS
is hosted by one computer. The agents are execution threads
assigned to one Client Computer (labeled in the figure as Client,)
associated to the corresponding server, AS,. Each AS process hosts a
copy of the Semantic Database. However, each AS exclusively
manages the portion of the database representing the agents in its
region. In order to guarantee the action consistency near the border
of the different regions (see agent; in Fig. 1), the ASs can collect
information about the surrounding regions by querying the servers
managing the adjacent regions. Additionally, the associated Clients
are notified about the changes produced by the agents located near
the adjacent regions by the ASs managing those regions. This
architecture allows to scale up the system, although it also requires
an efficient partitioning method. This partitioning method should
efficiently assign the agents to the existing servers in such a way that
the number of messages exchanged among the servers is reduced
and the system is well balanced.

In order to reduce the overhead imposed by the partitioning
method for crowd simulations, in this paper we analyze the use of
irregular shape regions (convex hulls) for solving the partitioning
problem. We have compared a partitioning method based on
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Fig. 1. General scheme of the distributed crowd architecture.

convex hulls with two techniques that use rectangular regions.
One of them uses a heuristic search method (GA) and the other one
uses an algorithmic method (R-Tree). The performance evaluation
results show that the method based on convex hulls outperforms
the rest of the considered methods in terms of both fitness function
values and execution times, regardless of the movement pattern
followed by the agents. As a result, this method provides better
partitions than the other methods while requiring shorter
execution times. These results indicate that the shape of the
regions in the partition has a major influence on the performance
of the partitioning method, rather than the search method used.

The rest of the paper is organized as follows: Section 2 shows
some related work about crowd simulations and partitioning
methods. Section 3 explains the metrics used for comparing the
performance of the considered partitioning methods. Next, Section
4 describes different region-based partitioning methods (some of
them using rectangular regions and one of them using convex
hulls) and how they have been implemented for partitioning
distributed crowd simulations. Section 5 presents the performance
evaluation of the considered methods. Finally, Section 6 presents
some concluding remarks and future work to be done.

2. Related work

The sum of graphical quality and realistic behavior requirements
in crowd simulations results in a computational cost that highly
increases with the numbers of agents in the system. Therefore,
crowd simulations require a scalable design that can handle
simulations of large crowds in a feasible way. In this sense, some
proposals tackle crowd simulations as a particle system with
different levels of details (e.g.: impostors) in order to reduce the
computational cost [3,24]. Although these proposals can handle
crowd dynamics and display populated interactive scenes (10,000
virtual humans), they are not able to produce complex autonomous
behaviors for their actors. Other proposals focus on providing
efficient and autonomous behaviors to crowd simulations [15,7].
However, they are based on a centralized system architecture, and
they can only control a few hundreds of autonomous agents with
different skills (pedestrians with navigation and/or social behaviors

forurban/evacuation contexts). Taking into account that pedestrians
represent the slowest human actors (in contrast to other kind of
actors like drivers in cars, for example) these results show that
scalability has still to be solved in multi-agent crowd simulations. In
order to address this problem, we proposed a distributed
architecture for crowd simulation [11,26]. In that architecture,
the crowd system is composed of many Client Computers, that host
agents, and one Action Server (AS), that is responsible for checking
the actions (e.g. collision detection) sent by agents [11]. Later, that
architecture was improved by parallelizing the AS in a distributed-
server fashion [26], in such a way that the simulation world was
partitioned into subregions and each one assigned to one parallel AS,
as shownin Fig. 1. However, any distributed architecture requires an
efficient partitioning method that efficiently assign the agents to the
existing servers in such a way that the number of messages
exchanged among the servers is reduced and the system is well
balanced.

Typically, there are two different approaches for partitioning a
crowd simulation. One of them is based on the criterion of
workload [22,14], so that different groups of agents are executed in
different computers. The other approach is region-based, in such a
way that the virtual world is split into regions (usually a 2D cell
from a grid) and all the agents located at a given region are
assigned to a given computer [17]. Both approaches should
guarantee the consistency of the simulation (for example, two
different agents cannot be located at the same point in the virtual
world). The most appropriate approach for the architecture shown
Fig. 1 is the region-based approach, because each Action Server
manages a region of the virtual world.

The region-based partitioning problem for crowd simulation
has been previously addressed. A representative proposal has
achieved that a PLAYSTATION-3 (IBM Cell Engine processor) can
display a crowd composed of 15,000-fishes at 60 frames per second
[18]. This work incorporates spatial hashing techniques and it also
distributes the load among the Cell Engine Synergistic Processor
Elements (SPEs) [8]. The same social forces model has been also
integrated in a PC-Cluster with MPI communications among the
processors, although the number of simulated agents is still low
(512 agents) and the execution times are far from interactive [27].
Another work describes the use of a multicomputer with 11
processors to simulate a crowd of 10,000 agents at interactive rates
[17]. However, they use static agent-processor assignment, and no
workload balancing is provided. A different proposal uses Genetic
Algorithms (GA) for partitioning crowd simulations, in order to
improve the partitioning efficiency [12]. However, all these region-
based partitioning methods add a significant overhead to the
system, and this overhead should be limited as much as possible in
order to provide scalable partitioning methods. Also, there are
purely graphic approaches [16,25] that are not concerned with
scalability problems because they are not focused on managing the
behavior of a high number of autonomous agents.

3. Methodology

The partitioning problem consists of finding a near-optimal
partition of regions (containing all the agents in the system) that
simultaneously fulfills two conditions: it minimizes the number of
agents near the borders of the regions, and it properly balances the
number of agents in each region too. The first element required for
comparing different partitioning techniques is to define a
homogeneous criterion for measuring the quality of the partitions
provided by all the methods.

In order to achieve this goal, we have defined the following
fitness function to be minimized [12]:

H(P) = w; - a(P) + w; - B(P), w1+ wy =1 M
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The first term in this equation measures the number of border
agents in the resulting partition P (those agents whose surround-
ings (Area Of Interest or AOI [21]) crosses the region boundaries).
Since the management of the border agents should be performed
by two or more servers, the workload generated by these agents is
higher that the one generated by those agents located far from the
region borders (in order to check the action of a border agent, each
server should send a locking request to the other servers
managing the AOI of that agent. These locking requests allow
to maintain the consistency of the virtual world in the border
areas, but they involve several servers, requiring a much higher
computational cost). Therefore, the number of border agents must
be minimized. It should be noticed that those agents located in
overlapped regions can be considered also border agents, since
they should be managed by more than one server. That is, the
resulting partition P should contain regions with the minimum
area of overlapping. Concretely, o(P) is computed as the sum of all
the agents whose AOIs intersect two or more regions of the virtual
world (see ag, in Fig. 1). B(P) is computed as the standard
deviation of the average number of agents that each region
contains. Therefore, S(P) measures how balanced the partition P
is. Finally, w; and w; are weighting factors between 0 and 1 that
can be tuned to change the behavior of the search as needed.
Although only the heuristic method uses this function for guiding
the search, for comparison purposes we have used H(P) as the
global fitness function for measuring the quality of the partitions
provided by all the considered methods. The reason is thatin order
to make a fair comparison in the performance evaluation section
(Section 5), the same fitness function must be used for all the
methods.

The results in this paper correspond to weights w; and w, set to
0.6 and 0.4, respectively. We have set these values because we have
empirically observed that parallel ASs are significantly affected by
the number of locking requests among servers (these requests are
used for guaranteeing the exclusive access of a single server to
those agents in overlapping regions, that is, the «(P) values).
However, avoiding the ASs saturation (achieving balanced parti-
tions, that is, good B(P) values) is also crucial for DVE-like systems
[14]. Therefore, when evaluating the fitness function for a
partition, the importance given to the number of border agents
is slightly greater than the one given to the load balancing, a
criterion that makes sense in the distributed system showed in
Fig. 1.

All the methods considered in this paper initially use the k-
means algorithm to obtain the initial partition. Once the
simulation starts, the partition should be adapted to the current
state of the crowd every server cycle. During the simulation each
server knows the location of the agents in its region and also the
number of agents and the mass center of the region assigned to its
neighbor servers. While the heuristic method uses a Genetic
Algorithm (GA) guided by H(P) to search a near-optimal partition
of rectangular regions, the other two methods use spatial
clustering techniques to provide a near-optimal partition. In the
latter cases, the servers periodically assign each of their agents agy
to the server controlling the region r; that minimizes the following
function:

Fatioc (a8, Ti) = dstMC(agy, 1;) + nAgs(r;)+dstMC(agy, 1;) (2)

where f,,. is the allocation function, nAgs(r;) provides the
number of agents in region r;, and dstMC(agy, r;) corresponds to the
Euclidean distance from ag, to the center of mass of the region r;.
Since f ;0. should be minimized, the first term in f .. considers a
spatial criterion and the second term balances the server workload.
Every time a partition is updated, the corresponding state (center
of mass and number of agents) is sent to the neighbor servers.

4. Region-based partitioning methods
4.1. R-Tree

The R-Tree is one of the most popular dynamic index structure
for spatial searching [5]. We have implemented a partitioning
method based on the R-Tree structure that is aimed to optimize the
area of the rectangles enclosing the crowd. The most interesting
feature of this approach is that it is an efficient structure for
managing the partitioning problem, since it let us to handle the
crowd motion as insertions and deletions in the tree, where the
fanoc criteria can be easily introduced.

An R-Tree is a height-balanced tree structure that splits the
space with hierarchically nested, and possibly overlapping,
Minimum Bounding Rectangles (MBRs). A MBR is the minimum
rectangle that encloses a single or a group of agents. Each node of
anR-Tree has avariable number of entries (up to some pre-defined
maximum). Each entry within a non-leaf node stores two kinds of
data: a way of identifying a child node, and the MBR of all entries
within this child node. Each entry within a leaf node stores two
kinds of information: the actual data element, and the MBR of the
data element. There are two parameters that define the shape of a
R-Tree: the maximum and the minimum number of entries in a
node (we will denote these parameters as M and m, respectively).
On other hand, choosing an adequate splitting method is
important, since insertions and deletions will generate node
splits to keep the tree balanced. Therefore, the splitting method
used for dividing a node when it has more than M entries can
determine the performance of the R-Tree method. In our
implementation, we have chosen a value of 5 for the parameter
M and a value of 2 for the parameter m. The reason is that the use of
these values generate the least CPU utilization during R-Tree
updating. Regarding the splitting method, we have used the
Quadratic split method [5], since it shows a lower CPU utilization
for tree searches than the Linear split method and there are no
significant differences with respect to the Linear split method for
low values of the parameter M.

In order to illustrate the implemented R-Tree algorithm, Fig. 2
shows and example of how the partitioning criterion f ), is used.
A set of fifteen agents, represented as labeled circles is shown in
Fig. 2. The square around each agent represents the MBR of the
agent, that will be used for R-Tree insertion or deletion. The set of
agents is partitioned in two regions, delimited each one by the MBR
enclosing its agents. For each region, different subregions are
depicted based on the agents location, and the resulting R-Tree for
the two regions is shown on the right side. The value of parameter
M is set to 3 in both R-Trees, and there is only one non-leaf node,
the root node. Each entry in the root node contains the MBR of it
child node (named each MBR with Rx where x varies from 1 to 6).
These MBRs will be used to guide the search during insertions and
deletions in the tree.

Fig. 2(b) shows how the R-Trees evolve when agents 8 and 12
move. When the agent 8 moves, firstly is applied the f . criterion
to determine whether it must change the region or not. In this case,
fanoc(agsg, region;) < faoc(agg,region,), that is, the criterion
determines a region exchange. Thus, agent 8 is deleted from the
R-Tree 2 and it is inserted in R-Tree 1. The movement of agent 12
does not imply a region change, but the reinsertion in the R-Tree of
Region 1 implies a brach change, since it is reinserted as a child of
MBR R5.

In order to illustrate the partitions provided by the R-Tree
method, Fig. 3 shows three different instants of a crowd
simulation. In this Figure, agents are represented as dots, and
each MBR in the partition shows a different level of grey. It can be
seen that at the beginning (Fig. 3(a)) some overlapping exists
among the MBRs of the regions. As the simulation evolves (Fig. 3(b)
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Fig. 3. Snapshots of the partitions provided by R-Tree at different simulation stages (a) beginning; (b) middle; (c) end.

and (c)), the R-Tree provides partitions with an increasing
overlapping area.

4.2. A Genetic Algorithm

Genetic Algorithms (GA) consist of a search method based on
the concept of evolution by natural selection [13,6]. GA start from
an initial population, made of R chromosomes (solutions of the
considered problem), that evolves following certain rules, until
reaching a convergence condition that maximizes a fitness
function. In this case, we have used H(P) as the fitness function.
Each iteration of the algorithm consists of generating a new
population from the existing one. In the GA proposed for solving
this problem [12], a chromosome consists of an integer array that
contains k Minimum Bound Rectangles (MBR). Each MBR is a
quadruple [x_min,x max,y min,y max ] that defines a rectangu-
lar region of the virtual world enclosing a subset of the crowd.
Thus, a chromosome defines a partition of the crowd in k regions.
As an example, Fig. 4 shows a chromosome for a given population
with k = 4.

In order to generate a new population from the existing one,
different operators can be applied to the chromosomes. The
selection operator allows to select those population individuals
that will be used for reproduction in each iteration of the
algorithm. The purpose of the selection operator is to give more
chances to the most suitable individuals (chromosomes) in the
current population. The crossover operator allows the generation
of an offspring from the previously selected ancestor chromo-
somes. The mutation operator consists of the random alteration of
each of the elements (genes) in the chromosome with a mutation
probability. The purpose of mutation is to produce population
diversity. Finally, the replacement operator consists of replacing

NIBR(A): [ min* Xmaxr Ymins ym«u‘] MBR(C): [‘Trm'u’ Xmaxr -)ilfirl’ ymm—]
/ 2y S "
A Py _— o
=

b3 CCTTEE \

PN A / \
NIBR(B): [xmiu’ Lmaxr Ymint yﬂmr] MBR(D): [xmmJ Xmaxr ¥ min? yﬂm’.\’]

A

Fig. 4. Chromosome used for the Genetic Algorithm.
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Fig. 5. The Genetic Algorithm main loop.

the current population by their offsprings or a mix of both current
chromosomes and offsprings.

Fig. 5 shows the diagram representing the main loop of the
implemented GA. As most of heuristic methods, it starts from an
initial population of R chromosomes randomly generated. These
chromosomes are sorted by the fitness function H(P) associated
with each chromosome in ascending order (the first chromosome
is the one with the best H(P) value). We have denoted this sorted
list as Best Solutions List (BSL). This list represents the initial
population for the Genetic Algorithm, and it will contain the best R
solutions found until that iteration by the GA, that is, the current
population pool. The value of R is a parameter that must be tuned.
We have used a value of R = 10, since the execution time of the
partitioning method is limited by the server cycle in the crowd
simulation. For greater values of R, the GA partitioning method
exceeded the allowed server cycle.

Each GA iteration consists of generating a descendant genera-
tion of R chromosomes, starting from an ancestor generation. The
way that the algorithm provides the next generation determines
the behavior of the GA. We have chosen a sexual reproduction
technique [13], in such a way that each descendant is generated
starting from two ancestors. In each iteration we have used a
pseudo-random selection operator. Concretely, the first ancestor
for the ith chromosome of the population is the ith chromosome of
the population in the previous iteration. The second ancestor is
randomly selected among the 50% of the previous population with
the best fitness function.

From each two ancestors, an offspring is obtained by applying
a crossover operator. Concretely, we have computed a randomly
skewed average of the corresponding coordinates in each of the
ancestors. This skewed average is computed for all the
coordinates in an MBR and for all the MBRs in a chromosome.
As an example, Fig. 6 shows the MBRs corresponding to two
ancestors and an example of the resulting offspring. In this figure,

(xb_min,yb_max) (xb_max,yb_max)

(xa_max,ya_max)

(xa_min,ya_max
‘

(xaﬁmin,ya!min (xafmax,y:afmin)

(xb_min,yb_min) (xb_max,yb_min)

Fig. 6. Offspring generation.

we can see an ancestor MBR a whose coordinates are defined by
the quadruple [xa_min,xa_max,ya_min,ya_max| and a second
ancestor MBR whose coordinates are defined by the quadruple
[xb_min,xb_max,yb_min,yb max]. From these two MBRs, the
MBR with dashed lines is computed.

It must be noticed that this reproduction method can produce
non-valid offsprings, because they define MBRs with different
shapes. For example, the resulting MBR in Fig. 6 is narrower than
ancestor a. If the rest of MBRs in the resulting chromosome do not
include the area of MBR a not covered by the resulting offspring,
then the agents located at that area will not be assigned to the
semantic database. Moreover, the initial partition, provided by the
previous execution of the GA, can be corrupted due to the
movement of agents during the AS cycle. In this case, the initial
population starts from a modified partition where some regions
are expanded as necessary to cover all the agents at the current
locations. When an invalid offspring is generated it is simply
discarded, and another offspring is generated from different
ancestors in the population. When all the ancestor population has
been used for producing offsprings and the number of valid
offsprings reaches R, then the replacement operator should be
applied. Concretely, the new offsprings and the previous chromo-
somes in the BSL are sorted and merged to obtain the new BSL
(population pool) for that iteration. The mutation operator is not
used, since exchanging two or more coordinates between different
MBRs could lead to invalid chromosomes.

Finally, the finishing condition should be checked in order to
detect when the GA should finish. On the one hand, we have
established the execution time as one of the finishing conditions of
the algorithm, since one of the main constraints in crowd
simulations is the execution time of the search. This time must
be shorter than a fraction of the AS cycle, denoted as T, in order to
provide an effective partition. Concretely, we have set T to half of
the AS cycle period, that is, 125 ms. On the other hand, in order to
ensure that the proposed method provides the best possible
solution, we have added the decrease of H(P) as a convergence
condition. That is, if the H(P) value of the first chromosome in the
BSL is not decreased in two successive iterations, then the
algorithm finishes. Therefore, the first chromosome in the BSL is
chosen as the result of the search either when the convergence
condition is reached or when the algorithm has been executed
during T milliseconds.

Fig. 7 shows a snapshot of the different partitions provided by
the GA method during a simulation. It can be seen that at the
beginning (Fig. 7(a)) some overlapping exists among the regions in
the partition. As the simulation evolves (Fig. 7(b) and (c)), the GA
method provides partitions in which the region overlapping area is



230 G. Vigueras et al./ Applied Soft Computing 10 (2010) 225-235

& by B Sy -

(©)

Fig. 7. Snapshots of the partitions provided by GA at different simulation stages (a) beginning; (b) middle; (c) end.

lower than in the case of the R-Tree method. The reason for this
behavior is due to the heuristic search procedure carried out by this
method.

4.3. Convex hull

This approach is similar to the R-Tree technique described
above, since it is aimed to optimize the area of spatial structures
enclosing the crowd. However, unlike the R-Tree technique, it is
based on computing the convex hull of the points representing
agents in a given region. The partitioning technique in distributed
crowd simulations can benefit from the use of convex hulls, since
these spatial structures inherently reduce the area of the regions
assigned to servers when compared to the rectangles used in the R-
Tree technique, and one of the purposes of the partitioning
technique is to minimize the overlapping area of different regions.

Concretely, we have implemented the Quickhull algorithm
(QHull) [1]. As stated above, each server periodically updates the
agents assigned to its region according to the f,;,. function. Once
the agents have been inserted, the convex hull can be recomputed,
so the center of mass and the number of agents can be also
updated.

The complete set of steps followed by each server to update its
region is shown in Fig. 8.

Since agents can migrate among the different regions con-
sidered (and therefore they should be re-assigned to different
servers, notice the Assign function in Fig. 8) a new convex hull

{int N; /«Number of agenilsx/

should be computed each time the partitioning method is
executed, and no updating of previous convex hulls are used.

The computing of the convex hull for each region
(Com pute_con_hull() function) is illustrated in Fig. 9. The steps
followed by the implemented Quickhull algorithm [1] are the
following ones: initially, the first hull is created with the most
distant points (agents) in the vertical and horizontal directions. This
process is shown in Fig. 9(a) and it requires to access to every point of
the initial set (|n|), so it has a linear cost (O(n)). The initial hull may
not include all the points in the region, as Fig. 9(b) shows. Then, the
algorithm recursively finds and connects the most distant points in
the orthogonal direction to each side of the previous hull. Fig. 9(c)
represents these steps. The recursion ends when all the agents are
inside of the current hull, as shown in Fig. 9(d).

Since the execution time of the partitioning method is limited
by the server cycle in the crowd simulation, the partitioning
method must add the lowest overhead as possible. Although the
temporal cost of the QHull method greatly increases with the
number of spatial dimensions, agents are represented as 2-d
points, and therefore the Hull method has a cost of in O(n - log(v)),
being n the number agents and v the number of the hull vertices.
Thus, the QHull method seems to be theoretically adequate for
solving this problem.

In order to illustrate the partitions provided by the QHull
method, Fig. 10 shows three different instants of a crowd
simulation. It can be seen that at the beginning (Fig. 10(a)) there
is no significant overlapping among the regions of this partition. In

2 int k; /«Number of regionsx/

3 int i:j:

4 int Minimum = Max_value;
s/ Quick Hull Methods/

s for (i=1;i<=N;i++){

7 for (j=1;j<=k;j++){

8 falioclagi, ;) = dstMClag;, rj) + nAgs(r;) = dstM Clag;, 75)
° it ( fauoe(agi, rj)<Minimum ) {

10 Minimum = fauo(agi,r;)

11 MinRegion = r;

12 }

13 1

14 Assign (ag; ,MinRegion)

15 }

16 Compute_convex_hull ();

Fig. 8. Algorithm for the Quick Hull method.
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Fig. 9. Steps followed by the Quickhull algorithm.

addition, the QHull method is able to keep a very low overlapping
during all the simulation (Fig. 10(b) and (c)).

5. Performance evaluation

In this section, we compare the performance obtained by the
three methods described in the previous section: R-Tree, GA and

QHull. We propose the evaluation of the partitioning methods by
simulation. That is, we have extracted the motion patterns of each
agent off-line, and we have used this information as an input for
the considered methods. Concretely, we have evaluated each
method in a crowd simulation composed by 8000 autonomous
agents to be distributed in five regions. The simulations have been
performed on a sequential system consisting of an Intel Core Duo
processor running at 1600 MHz and 2 GBytes of RAM.

We have evaluated two different crowd scenarios: an evacua-
tion and an urban environment. The evacuation scenario consists
of a structured 2D world where there are several emergency exits.
The autonomous agents must try to escape from the world as soon
as possible. For this scenario we have used the same well-known
movement patterns considered in our previous work [12]. In order
to achieve these movement patterns, we have considered the
following 2D world configurations: full, where there are a lot of
emergency exits uniformly distributed within the 2D world (CCP
pattern); perimeter, where all the emergency exits are uniformly
distributed along the four borders of the virtual world (HP-Near);
up, where there are only a few exits and they are located at the top
border of the world (HP-All); and down, where there is only one
exit located at the bottom border of the world (HP-All with a single
hot-point). In order to illustrate these configurations, Fig. 11 shows
four snapshots of the virtual world with these configurations at
half of the simulation time. In this figure, the 2D world is viewed
from above, and agents are represented as grey dots.

The second scenario considers an urban environment where the
population size remains constant during the whole simulation. In
this way, the complexity of the partitioning problem does not
decrease with the simulation time. This scenario contains twenty
target locations randomly distributed within the virtual world.
Each agent randomly selects one of these targets and approaches it.
Once the target has been reached, then the agent randomly selects

(a) (b)

(c)

Fig. 10. Snapshots of the partitions provided by QHull at different simulation stages (a) beginning; (b) middle; (c) end.

) (b)

Fig. 11. Movement patterns: (a) full; (b) perimeter; (c) up; (d) down.
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Fig. 12. Fitness function values provided by the partitioning methods for the full
simulation.

the next target and repeats the process, until all the targets have
been reached. We have denoted this configuration as urban.

In order to measure the actual improvement that the different
methods can provide to real systems, we have simulated the five
configurations described above. For each simulation we have
calculated both the execution time and the fitness function. By
execution time we refer to the amount of time required by each
method for computing the provided partition in each cycle of the
simulation.

Firstly, we analyze the results obtained for the evacuation
scenario. Fig. 12 shows the fitness function values provided by each
partitioning method for the full configuration. In this figure, the X-
axis represents the simulation time (measured in simulation
cycles) while the Y-axis represents the fitness function values. As
can be seen, the values provided by the QHull method are around
one half of the values provided by the GA method and around one
third of the ones obtained by the R-Tree method. These differences
progressively decrease towards the end of the simulation. The
reason is that the population size decreases while the agents exit
the virtual world, and so does the complexity of the partitioning
problem.

On the other hand, Fig. 13 shows the execution time values. In
this figure, the X-axis refers to the simulation time (measured in
simulation cycles), and the Y-axis refers to the execution times
needed to compute the partition (in milliseconds). Similarly to the
fitness values, the QHull method requires the shortest execution
times. Specifically, this method requires one third of the execution
time required by the GA method and one fourth of the time
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Fig. 13. Execution times required by the partitioning methods for the full
simulation.
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Fig. 14. Fitness function values provided by the partitioning methods for the
perimeter simulation.
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Fig. 15. Execution times required by the partitioning methods for the perimeter
simulation.

required by the R-Tree method. The ratio between the different
execution times remains constant during the whole simulation.
Once more, the execution times required for all methods decrease
as the simulation proceeds, since the agents exit the virtual world.

Figs. 14 and 15 compare the three partition methods for the
perimeter configuration. In this type of evacuation pattern, the
QHull method better fits the partition during the first half of
the simulation (see Fig. 14). Afterwards, the fitness values are equal
for the three partition methods. However, as Fig. 15 shows, the
QHull method outperforms its competitors with respect to the
execution time. In this case, the QHull method is around three and
a half times faster than the GA method and around six times faster
than the R-Tree method. Again, even though this ratio do not vary,
the execution times decrease as the agents evacuate the scenario.

The comparison of the three partitioning methods for the up
configuration can be seen in Figs. 16 and 17. The fitness function
values in Fig. 16 show how QHull’s partitions are better than the
ones provided by the GA and the R-Tree methods, regardless of
concrete deviations due to this particular movement pattern.
Although the QHull plot reaches the values shown by the R-Tree
plot at some points, this is a eventual behavior. Furthermore, the
execution time values of Fig. 17 reflect that the QHull is once more
the fastest one of the three methods being considered. Concretely,
the QHull's execution time is one third of the GA’s execution time
and one sixth of the R-Tree’s execution time.

The results for the down configuration are analyzed in Figs. 18
and 19. Fig. 18 shows the fitness function values provided by each
partitioning method for the down simulations. This figure shows
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Fig. 16. Fitness function values provided by the partitioning methods for the up
simulation.
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Fig. 17. Execution times required by the partitioning methods for the up simulation.

that the QHull method provides the best fitness function values
during the whole simulation. Concretely, the values provided by
this method are about 50% (or less) of the values provided by the
other two methods in the first two thirds of the simulation. These
differences decrease towards the end of the simulation due to the
emptying of the scenario, as stated above.

In turn, Fig. 19 shows once again that the QHull method
requires the shortest execution times. Applied to this pattern, the
QHull method is around three times faster than the GA method and
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Fig. 18. Fitness function values provided by the partitioning methods for the down
simulation.
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Fig. 19. Execution times required by the partitioning methods for the down
simulation.
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Fig. 20. Fitness function values provided by the partitioning methods for the urban
simulation.

around five times faster than the R-Tree method. Fig. 19 again
shows how the execution times required for all the methods
decrease as the simulation proceeds, since the agents exit the
virtual world.

In order to show the performance of the partitioning methods
when the population size remains constant during the whole
simulation we use the urban scenario. On the one hand, Fig. 20
shows the fitness function values provided by each partitioning
method for the urban simulation. In this case all the plots have
similar shapes, and after a stabilizing period (about 200 ms) all of
them show a flat slope. Fig. 20 clearly shows that again the QHull
method provides the best fitness function values, being around 50%
lower (better) than the values provided by the GA method and
around one third of the values provided by the R-Tree method.

On the other hand, Fig. 21 shows the execution times required
by each partitioning method for the urban simulation. This figure
also shows great differences in the execution times required by
each method. Again, the QHull method requires execution times
that are around one third of the times required by the GA method
and around one fifth of the R-Tree method.

Summing up, these results show that the QHull method provides
the best fitness function values while requiring the shortest
execution times. However, the actual benefits that each method
provides to the crowd simulation should be measured. In accordance
with this, Table 1 shows the performance of the partitioning methods
in terms of the average number of locking requests produced in each
AS cycle among the computers hosting the database. Each value
shown in this table is the average value for all the AS cycles of the
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Fig. 21. Execution times required by the partitioning methods for the urban
simulation.

Table 1
Actual performance provided by the different methods.

Method Locks Std. deviation
Full

GA 357.98 210.12

RTree 691.57 127.06

QHull 180.05 157.64
Perimeter

GA 345.24 391.52

RTree 610.29 277.97

QHull 136.03 469.21
Up

GA 580.61 1277.7

RTree 1163.84 227.2

QHull 337.89 563.04
Down

GA 1133.76 1471.68

RTree 1903.52 327.39

QHull 723.19 351.49
Urban

GA 1895.97 694.31

RTree 3156.02 989.74

QHull 1022.98 439.6

simulation time. Moreover, this table shows the average standard
deviation for the average number of agents assigned to each server.
That is, how balanced the generated partitions are.

Essentially, Table 1 shows that the behavior of each method
does not depend on the movement pattern of the agents, since
similar results are obtained for the four patterns considered in the
evacuation scenario as well as for the urban scenario. As Table 1
shows, the GA method provided an intermediate number of
locking requests and the highest standard deviations (i.e. the worst
balanced partitions) for the five movement patterns. On the
contrary, the R-Tree method provided the highest number of
locking requests and the lowest standard deviations (i.e. the best
balanced partitions). Finally, the QHull method provided the
lowest number of locking requests and also the lowest standard
deviation. Thus, we can conclude that this method is the most
appropriate one for solving the partitioning problem in distributed
crowd simulations.

6. Conclusions and future work
In this paper, we have analyzed the use of irregular shape regions

(convex hulls) for solving the partitioning problem. Concretely, we
have compared partitioning methods (with both a heuristic method

and an algorithmic method) that use rectangular regions with a
partitioning method based on convex hulls.

The performance evaluation results show that the method
based on convex hulls outperforms the rest of the considered
methods in terms of both fitness function values and execution
times, regardless of the movement pattern followed by the agents.
As a result, this method provides partitions containing regions
with lower overlapping area, thus reducing the computational cost
required for managing the crowd. These results indicate that the
shape of the regions in the partition has a major influence on the
performance of the partitioning method, rather than the search
method used.

As a future work to be done, we plan to apply optimization
techniques to the QHull method in order to increase the quality of
the partitions provided by this method.
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