
Balancing social and task oriented behaviors for animation agents∗

Francisco Grimaldo, Miguel Lozano, Fernando Barber

Computer Science Department

University of Valencia

Dr. Moliner 50, 46100 Burjassot (Valencia)

{francisco.grimaldo, miguel.lozano, fernando.barber}@uv.es

Abstract

This paper presents a multiagent framework
oriented to design groups of virtual agents able
to combine task oriented goals while animating
social interactions. The social behaviors intro-
duced can be rational (to increase the global
performance of the group) and also social (to
increase the good relations between friends).
As rationality and sociability are often con-
�icting, the BDI agents created incorporate
mechanisms to make socially acceptable deci-
sions, based on social welfare functions and
a reciprocity model. We show the results ob-
tained by the system while simulating a virtual
bar where groups of waiters and customers are
able to e�ciently serve/consume di�erent or-
ders and also to animate some social behav-
iors, as task passing, planned meetings or sim-
ple chats.

1 Introduction and related work

The notion of socially acceptable decisions has
long been of interest in human societies and
also in the multiagent community [10]. Mul-
tiagent systems are sometimes referred to as
societies of agents and, from the animation
point of view, this points to the design of
an adequate framework to produce good qual-
ity animations for groups of virtual charac-
ters. When designing such agents, the main
concern is normally with the decision-making

∗Supported by the Spanish MEC under grants
TIN2006-15516-C04-04 and Consolider Ingenio 2010
CSD2006-00046.

mechanism as it is the responsible for the ac-
tions that will be �nally animated. Tradi-
tionally, designers have sought to make their
agents rational so that, they can �do the right

thing� e�ciently (i.e. the shorter the plan the
better). However, AI-based character anima-
tion approaches normally operate in a resource
bounded context and obstruction situations
appear when characters compete for the use of
shared resources (i.e. objects in a virtual en-
vironment). Therefore, self interested agents
(i.e. agents devoted to accomplish a set of
goals) easily come into con�icts even though
their goals are compatible.

Many researches have tried to achieve social
skills through multiagent coordination. For
example in Generalized Partial Global Plan-
ning (GPGP) [7], agents merge the meta-plans
describing their operational procedures and
�gure out the better action in order to max-
imize the global utility. Another example is
Multiagent Planning Language (MAPL) [6],
that assigns the control over each resource to a
unique agent and uses speech-acts to synchro-
nize planned tasks. Collaboration is supported
in the RETSINA system [8] thanks to the
use of communicative acts (prede�ned inside
Hierarchical Task Networks) that synchronize
tasks and occasionally manage con�icts. To
adapt better to the dynamism of shared envi-
ronments, an heuristic planner is used in [9] to
support team formation and task coordination
between virtual characters. BDI actors have
also been applied to character animation. In
[4], the reasoning of a virtual human has been
implemented in Jason [2] but no social skills



have been modelled. MAS-SOC [1] is a similar
system in the literature that aims at creating
a platform for multiagent based social simula-
tion. In this context, ongoing work is being
done in order to incorporate social-reasoning
mechanisms based on exchange values, that is,
the set of values assigned to the services ex-
changed among agents during an interaction
[3].

All the approaches presented above focus
on improving the global e�ciency of multia-
gent simulations, however, an excess of coor-
dination can produce unethical behaviors. For
example, an excessive degree of specialization
do not contribute to animating realistic behav-
iors, instead, egalitarian societies of agents can
be more interesting when simulating groups of
virtual humans. Characters that show purely
social behaviors (eg. chatting with other char-
acters or grouping with friends) are required
in many complex environments (e.g. virtual
cities, shops, bars...), where agents should bal-
ance properly rationality and sociability to �-
nally display high quality behavioral anima-
tions.

2 Social multiagent animation

framework

The social multiagent framework presented
here has been developed over Jason [2], which
allows the de�nition of BDI agents using an ex-
tended version of AgentSpeak(L) [5]. Figure 1
shows the main modules of our framework.

The animation framework (virtual charac-
ters, motion tables, etc) is located at the 3D
engine, which can run separately. The agent
decision-making is de�ned in the Agent Speci-
�cation File. This �le contains the initial be-
liefs as well as the set of plans that make up
the agent's �nite state machine. The Ratio-

nal Module contains the set of plans oriented
�to do the right thing� according to the char-
acter's role. This points directly to e�ciency,
hence, in our simulation, these plans sequence
the actions needed to animate a task. For in-
stance, serving a co�ee would require going to
the co�ee machine to get the co�ee and giving
it to the customer afterwards. Here, modular-

Figure 1: Social multiagent animation framework.

ity is guaranteed since the Task library can be
changed depending on the environment being
simulated.

As stated above, only rational behaviors are
not enough to simulate agent societies, there-
fore, our framework also introduces a Social

Module to animate di�erent types of social sit-
uations. Firstly, a Group coordination library

has been included to avoid con�icts between
self-interested agents and to allow them to co-
operate while executing their tasks. This li-
brary includes an auction model that uses a
utilitarian social welfare function. Secondly,
the Reciprocal relations library can be used
to create agents that promote social interac-
tions. Auctions are also used here, but a reci-
procity model has been included in order to
implement a more sophisticated social welfare
function. Finally, the Conversational library

contains the set of plans that handle the an-
imation of interactions between agents (e.g.
task passing, planned meetings, chats between
friends...). The environment is handled by a
Semantic Layer which acts as an interface be-
tween the agent and the world. It is in charge
of perceiving the state of the world and execut-
ing the actions requested by the agents, while
ensuring the consistency of the World Model.

To illustrate the presented social multia-
gent animation framework, we have created a



Figure 2: Virtual university bar environment.

virtual university bar where waiters take or-
ders placed by customers without neglecting
their social capabilities (i.e. group coordina-
tion and partner friendship relations). On the
other hand, customers place orders and con-
sume them when served. Here, sociability is
achieved since customers try to sit with their
friends. The environment models six typical
locations in a bar: a juice machine, a co�ee
machine, a grill, a shelf with snacks, a refrig-
erator with drinks and a larder with pastries
(see �gure 2). These locations behave like re-
sources that have an associated time of use to
provide their products (e.g. an orange juice)
and they can only be occupied by one agent
at a time. Additionally, there is a cash desk
for the customers to place orders, a bar for
the waiters to serve the orders to the corre-
sponding customer and tables with chairs to
consume the served orders. To simulate dif-
ferent workload situations, customers can be
con�gured with the desired order frequency.
Moreover, product probabilities (i.e. probabil-
ity of co�ee, probability of snack...) can also
be set to model the typical scenarios in a bar:
breakfast time, lunch time, etc.

3 Animation agents

The simulation of worlds inhabited by interac-
tive virtual actors normally involves facing a
set of problems related with the use of shared
limited resources and the need to animate pure
social behaviors. In this section, we present
two types of agents that manage these issues:

3.1 Socially rational agents

The exchange of tasks can increase the group
performance in environments where, despite
the use of a resource being limited to one sin-
gle character, it is possible to use a resource
to perform several tasks simultaneously (e.g.
a co�ee machine in our virtual university bar
can be used by a waiter to make more than one
co�ee at the same time). According to this,
we can de�ne socially rational agents in our
framework that use the Group Coordination li-

brary to exchange tasks between them using a
Multiagent Resource Allocation approach with
the following characteristics:

• Type of resource: We use tasks (t) as
the type of resource to be allocated. In
this context, tasks are indivisible and not
sharable (e.g. use the juice machine to
get an orange juice, give a drink to a cus-
tomer, etc.).

• Agent preferences: Each agent (i) has
a performance utility function (U i

perf (t))
that quanti�es its will to perform a task
(t). An important characteristic of tasks
as opposed to resources is the fact that
tasks are coupled with constraints regard-
ing their coherent combination. Thus,
utility functions must take into account
the agent and world states as well as the
task being evaluated.

• Solution method: Tasks are exchanged be-
tween agents using a �rst-price sealed-bid
(FPSB) auction model. The Group coor-

dination library implements this kind of
auctions so that an agent can auction any
task during its animation.

• Social Welfare: Social rationality has
been modelled through a social welfare
function that is used during the winner
determination problem. The aim of this
function is to represent the collective util-
ity function from a multiagent point of
view. The socially rational agent pre-
sented at this point uses the following eli-
tist function:



swel(t) = max{U i
perf (t)|iεAgents} (1)

That is, the winner of an auction will be
the agent that bid the maximum performance
utility for the task t. Note that swel has t as its
domain but not a resource allocation, as it can
be usually found in the social welfare theory.
The reason for this change in the notation is
that we are only interested in the allocation of
the next task. Negotiation of long sequences
of actions is not very interesting for interactive
characters, as plans will probably be broken
due to the dynamism of the environment and
to other unpredictable events (e.g. a meeting
with a friend).

Figure 3 depicts the �nite state machine
that describes a socially rational waiter in the
application example introduced in section 21.
Waiters serve an order basically in two steps:
�rst, using the corresponding resource (e.g.
the grill to produce a sandwich) and second,
giving the product to the customer at the bar.
Tasks are always auctioned before their exe-
cution but once an agent has committed to
do a task to an auctioneer, that task cannot
be reallocated again. Finally, the result of a
subcontracted task is informed to the referred
auctioneer agent.

The performance utility function (U i
perf (t))

employed by these agents is shown in Al-
gorithm 1. This function aims to maxi-
mize the number of parallel tasks being per-
formed. Therefore, cooperation emerges since
all agents want to serve orders as fast as pos-
sible. Socially rational agents can reach high
performances but they can also be unrealis-
tic for the animation of arti�cial human soci-
eties. For example, since they work as much as
they can, they will display unethical or robotic
behaviors. To rectify this situation, agents
should compensate for this elitism with pure
social behaviors. These behaviors are oriented
to animate normal social relations between the
members of a society (e.g. friendliness).

1The �nite state machine is speci�ed by means of
plans in Jason's extended version of AgentSpeak(L)

Figure 3: Socially rational waiter speci�cation.

R=GetResourceUsedBy(t)

if t is Use then

if i is Auctioneer then

if R is free then return(1)

else return(0)

else

if (IsUsing(i,R) and

not(R is complete)) then

return(1)

else return(0)

else if t is Give then

if i is Auctioneer then

if nextAction is NULL then

return(1)

else return(0)

else

if (currentTask is Give and

not(handsBusy<2) then

return(1)

else return(0)

else return(0)

Algorithm 1: PerformanceUtility(i,t)

3.2 Reciprocal social agents

These kinds of agents introduce a relational
model between the members of the group.
Whereas performance utility functions mod-



elled the interest of an agent to exchange a
task still from a rational point of view, we in-
troduce two additional social utilities to rep-
resent the social interest in exchanging a task.
The aim of social utilities is to promote task
allocations that, in the short term, lead the
agents to perform social interactions with their
friends. Hence, agents can now decide whether
to adopt this kind of social allocations or to be
rational as explained previously.
Reciprocal social agents express their

preferences through a tuple of the form
[U i

perf (t), U i
int(j, t, tnext), U

i
ext(j, t, tnext)],

where the de�nitions of the new social
utilities are:

• Internal social utility (U i
int(j, t, tnext)): is

the utility that a bidder agent i assigns
to a situation where i commits to do the
auctioned task t so that the auctioneer
agent j can execute his next task tnext.

• External social utility (U i
ext(j, t, tnext)):

is the utility that a bidder agent i assigns
to a situation where the auctioneer agent
j executes the auctioned task t while i
continues his current action.

Based on these utilities, we de�ne the social
winner of an auction as the agent that maxi-
mizes the following indicators:

SWrec(t) = max{U∗
int(t), U

∗
ext(t)} (2)

U∗
int(t) represents the maximum social util-

ity given by one bidder to get the auctioned
task (see equation 3). Besides, in order to bal-
ance task exchange, internal social utilities are
weighted with a reciprocity matrix (see equa-
tion 4). We de�ne the reciprocity factor wij

for two agents i and j, as the ratio between
the number of favours (i.e. tasks) that j has
made to i and vice versa.

U∗
int(t) = max{U i

int(j, t, tnext) ∗wji|iεAgents}
(3)

wij =
Favoursji

Favoursij
(4)

On the other hand, U∗
ext(t) represents the

maximum social utility given by all bidders to

the situation where the task is not exchanged
but performed by the auctioneer. It is calcu-
lated following equation 5 and the same rea-
soning applies to reciprocity.

U∗
ext(t) = max{U i

ext(j, t, tnext)∗wij |iεAgents}
(5)

At this point, the winner determination
problem has two possible candidates com-
ing from equations 1 and 2. Agents
choose between them in accordance with their
Sociability factor, which is the probability
to get the social winner instead of the ratio-
nal winner. Sociability can be varied in the
range [0, 1] to model intermediate behaviors
between e�ciency and total reciprocity. This
can provide great �exibility when animating
characters, since Sociability can be dynami-
cally changed thus producing di�erent behav-
iors depending on the world state (e.g. the
workload in our virtual bar example).

if j is friend then

endCurTask=RemainTime(currentTask)

intervalA=[endCurTask,

endCurTask + ExecTime(t)]

intervalB=[0,ExecTime(tNext)]

if Overlap(intervalA,intervalB) then

if Near(t,tNext) then

return(1)

else return(0)

else return(0)

else return(0)

Algorithm 2: InternalSocialUtility(j,t,tNext)

if j is friend then

endCurTask=RemainTime(currentTask)

intervalA=[0,endCurTask]

intervalB=[0,ExecTime(t)]

if Overlap(intervalA,intervalB) then

if Near(currentTask,t) then

return(1)

else return(0)

else return(0)

else return(0)

Algorithm 3: ExternalSocialUtility(j,t,tNext)



We have implemented reciprocal social wait-
ers in our virtual bar. Their actuation is gov-
erned by a �nite state machine similar to that
shown in 3 but changing the winner determi-
nation process to include social utilities. Al-
gorithms 2 and 3 implement the internal and
external social utility functions respectively.
The function NEAR computes the distance be-
tween the agents while they are executing a
pair of tasks. Therefore, these functions eval-
uate social interest as the chance to meet a
friend in the near future.

4 Results

In order to test our approach, we have ani-
mated the virtual university bar example with
up to 10 agents serving 100 orders placed
by di�erent customers in a situation equiv-
alent to breakfast time (i.e. Pcoffee = 0.4,
Pjuice = 0.15, Psandwich = 0.2, Ppastry = 0.05,
Pdrink = 0.15, Psnack = 0.05). For space rea-
sons, we focus on the results obtained for the
waiter agents previously presented.
We measure group e�ciency through a

Througput value de�ned as the ratio between
the optimal simulation time (T ∗

sim) and the
real simulation time (Tsim):

Throughput =
T ∗

sim

Tsim
(6)

Througput is an indicator in the range [0, 1]
that estimates how close a simulation is to the
ideal situation in which the workload can be
divided by the agents and no collisions arise.
The simulation time for this hypothetical sit-
uation is estimated using T ∗

sim as follows:

T ∗
sim =

Ntasks ∗ Ttask

Nagents
(7)

, where Ntasks is the total number of tasks
being animated, Ttask is the mean time needed
to complete a task in a single-agent simulation
and Nagents is the number of agents.
Figure 4 compares the Throughput ob-

tained by di�erent types of waiters in our
application example. As expected, self-
interested agents do not perform well when the
number of agents grow. Even though agent

Figure 4: E�ciency obtained by reciprocal social
waiters.

goals are compatible, self-interested agents
collide as they do not cooperate but com-
pete for the use of the resources. These col-
lisions produce high waiting times and low
quality animations. We enhance this low per-
formance result introducing socially rational
mechanisms in the agent decision cycle. As it
can be observed, elitist agents (Sociability =
0) perform better, since resource waiting times
are reduced due to the exchange of tasks with
agents that can carry them out in parallel.
Nevertheless, they produce unrealistic out-
comes since they are continuously working if
they have the chance, leaving aside their social
relationships. To solve this problem, recipro-
cal social agents can use the Sociability factor
to balance rationality and sociability. These
kinds of agents spend some time on their so-
cial interactions (e.g chats between friends), so
it is normal to observe a decrease in their ef-
�ciency. Therefore, the Throughput value for
the sort of animations we are pursuing should
be placed somewhere in between elitist and
fully reciprocal agents (Sociability = 1).

Throughput is an estimator for the behav-
ioral performance but, despite being a basic
requirement when animating groups of virtual
characters, it is not the only criterion to eval-
uate when we try to create high quality an-
imations. A function to measure the quality
of a simulation has to take into account also
the amount of time spent on animating social
interactions. According to this, we de�ne the



Figure 5: Animation obtained by reciprocal social
waiters.

following animation function:

Animation =
T ∗

sim + Tsocial

Tsim
(8)

, where Tsocial represents the time devoted
to chat and to animate social agreements be-
tween friends. In our virtual bar we have em-
pirically estimated Tsocial as the 35% of T ∗

sim.
Figure 5 shows the animation values for 10 re-
ciprocal social waiters with 4 degrees of friend-
ship: all friends, 75% of the agents are friends,
half of the agents are friends and only 25% of
the agents are friends. As we have already
mentioned, low values of Sociability produce
low quality simulations since the values ob-
tained for the animation function are greater
than the reference value (Animation∗ = 1).
On the other hand, high values of Sociability
also lead to low quality simulations, specially
when the degree of friendship is high. In these
cases, the number of social conversations be-
ing animated is too high to be realistic and
animation is far from Animation∗. The an-
imation function can be used to extract the
adequate range of values for the Sociability
factor, depending on the situation being simu-
lated. For example, in our virtual bar we con-
sider as good quality animations those which
fall inside ±10% of Animation∗ (see shadowed
zone in �gure 5). Hence, when all the wait-
ers are friends, good animations emerge when
Sociability ∈ (0.1, 0.3).

Finally, table 1 allows to evaluate the e�ect
of our social mechanism over the actuation of
each particular agent. This table shows the
amount of time devoted to execute each type
of task in executions with 10 socially rational
waiters (Sociability = 0) and 10 fully recipro-
cal social waiters (Sociability = 1). The irreg-
ular values in the columns Tuse and Tgive on
the left side of the table demonstrate how some
socially rational agents have specialized in cer-
tain tasks. For example, agents 2, 5, 9 and 10
spend most of their time giving products to
the customers at the bar. On the other hand,
agents 3 and 7 are mainly devoted to use the
resources of the bar (e.g. co�ee machine, etc)
to get the products ordered. Although special-
ization is a desirable outcome in many mul-
tiagent systems, egalitarian human societies
need also to balance the workload assigned to
each agent. On the bottom part of the table,
fully reciprocal social waiters achieve an equi-
librium between the time they are giving prod-
ucts and the time they are using the resources
of the environment (see balance column, Bal).
A collateral e�ect of this equilibrium is the in-
crease in the waiting times, since social agents
will sometimes prefer to meet his friends in a
resource than to reallocate the task (compare
columns Twait). As a consequence, a new per-
centage of the execution time appears (Tchat)
within which agents can animate pure social
interactions (e.g. chats between waiters that
are friends).

5 Conclusions and future work

The animation of groups of intelligent char-
acters is a current topic with a great num-
ber of behavioral problems to be tackled. We
aim at incorporating human style social rea-
soning in character animation. Therefore, this
paper presents a technique to properly bal-
ance social with task-oriented plans in order
to produce realistic social animations. The
multiagent animation framework presented al-
lows the de�nition of di�erent types of social
agents: from elitist agents (that only use their
interactions to increase the global performance
of the group) to fully reciprocal agents. These



Sociability = 0

Ag Twait Tchat Tuse Tgive Bal

1 0 0 32 19 -6
2 3 0 4 26 -3
3 14 0 52 1 28
4 3 0 16 28 -3
5 0 0 7 30 -16
6 3 0 37 17 -1
7 0 0 67 4 21
8 0 0 45 17 1
9 7 0 5 23 -11
10 1 0 6 41 -10

Sociability = 0

1 16 36 69 34 -2
2 18 62 58 24 -2
3 41 66 45 16 0
4 48 61 60 27 3
5 34 68 58 12 -1
6 48 74 64 14 -2
7 18 66 48 24 1
8 33 76 45 24 4
9 46 58 36 21 0
1 27 69 56 20 -1

Table 1: Time distribution for reciprocal social
waiters (time values are in seconds)

latter agents extend the theory of social wel-
fare with a reciprocity model that allow con-
trolling the emergence of unethical agent spe-
cialization and promote social interactions be-
tween the members of a group.
Ongoing work is being done to provide the

agents with mechanisms to self-regulate their
Sociability factor depending on their social re-
lations (e.g. degree of friendship) and on their
previous intervention (e.g. amount of time al-
ready devoted to chat). Thus, agents will be
able to dynamically adjust to the situation in
order to stay between the boundaries of good
quality animations at any time.

References

[1] R. H. Bordini, A. C. da Rocha, J. F. Hüb-
ner, A. F. Moreira, F. Y. Okuyama and
R. Vieira. MAS-SOC: a Social Simulation

Platform Based on Agent-Oriented Pro-
gramming. Journal of Arti�cial Societies

and Social Simulation, vol. 8, no. 3, 2005.

[2] R. H. Bordini and J. F. Hüb-
ner. Jason, 6th of March 2007.
http://jason.sourceforge.net/.

[3] M. Ribeiro, A. C. da Rocha and R. H. Bor-
dini. A System of Exchange Values to Sup-
port Social Interactions in Arti�cial Soci-
eties. In AAMAS'03: Autonomous Agents

and Multiagent Sistems. ACM, 2003.

[4] J. A. Torres, L. P. Nedel, and R. H. Bor-
dini. Using the bdi architecture to produce
autonomous characters in virtual worlds.
In IVA'03: International Conference on

Intelligent Virtual Agents. Springer, 2003.

[5] A. S. Rao. AgentSpeak(L): BDI agents
speak out in a logical computable lan-
guage. In Proceedings of MAAMAW'96,
LNAI 1038, pages 42�55, 1996.

[6] M. Brenner. A multiagent planning lan-
guage. In Proceedings of ICAPS'03 Work-

shop on PDDL., 2003.

[7] K. S. Decker and V. R. Lesser. Designing
a family of coordination algorithms. Read-
ings in Agents; Huhns and Singh editors,
1997.

[8] J. A. Giampapa and K. Sycara. Team-
Oriented Agent Coordination in the
RETSINA Multi-Agent System. On Tech.

Report CMU-RI-TR-02-34, Robotics
Institute-Carnegie Mellon University,
2002.

[9] F. Grimaldo, M. Lozano, and F. Barber.
Integrating social skills in task-oriented 3D
IVA. In IVA'05: International Conference

on Intelligent Virtual Agents. Springer,
2005.

[10] L. M. Hogg and N. Jennings. Socially in-
telligent reasoning for autonomous agents.
IEEE Transactions on System Man and

Cybernetics, 31(5), 2001.


