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Abstract

This paper presents a multi-agent framework oriented to
animate groups of synthetic humans that properly balance
task-oriented and social behaviors. We mainly focus on the
social model designed for BDI-agents to display socially
acceptable decisions. This model is based on an auction
mechanism used to coordinate the group activities derived
from the character’s roles. The model also introduces reci-
procity relations between the members of a group and al-
lows the agents to include social tasks to produce realistic
behavioral animations. Furthermore, a conversational li-
brary provides the set of plans to manage social interactions
and to animate from simple chats to more complex negotia-
tions. The framework has been successfully tested in a 3D
dynamic environment while simulation a virtual university
bar, where groups of waiters and customers can interact and
finally display complex social behaviors (e.g. task passing,
reciprocity, planned meetings...).

1. Introduction

Socially intelligent agents are autonomous problem
solvers that have to achieve their goals by interacting with
other similarly autonomous entities [13]. Bearing this in
mind, multi-agent systems are normally referred to as so-
cieties of agents, and provide an elegant and formal frame-
work to design social behaviors for 3D autonomous charac-
ters. A major goal in behavioral animation is the construc-
tion of an intelligent system able to integrate the different
techniques required for the realistic simulation of the behav-
ior of virtual humans. Among them, we can include percep-
tion, motion control, goal selection, action execution, com-
munication between agents, their interaction with the envi-
ronment, etc [14]. Many agent models have been introduced
in 3D virtual worlds to increase the behavioral complexity
of the actors involved. When designing such agents, the
main concern has normally been with the decision-making
mechanism, as it is the responsible for the actions that will

be finally animated. Traditionally, designers have sought to
make their agents rational so that they can act efficiently
(i.e. the shorter plan the better). Therefore, social sim-
ulations have incorporated group coordination, as self in-
terested agents (i.e. agents devoted to accomplish a set of
goals) easily come into conflicts even though their goals are
compatible, producing low quality animations. However,
virtual humans in 3D scenarios normally appear represent-
ing roles (e.g. a virtual guide, a waiter, a customer, etc.) and
social aspects should also be considered.

In this paper we introduce a market-based social model
that follows the Multi-Agent Resource Allocation approach
presented in [13], where agents express their preferences
using utility functions. This model coordinates the activi-
ties of groups of virtual humans and include social actions
in the agent decision-making. In accordance with the main
parameter of the model, that isSociability, the agents can
autonomously balance their task-oriented behaviors (e.g.
waiters serve products to customers) and their social skills
(e.g. negotiation to obtain these products, assumption of
external actions/favours or animation of simple chats). The
dynamics of social interactions is inspired by the theory of
Piaget [18], over which we have implemented reciprocal
task exchanges between agents.

The structure of the paper is as follows. In section 2 we
describe briefly some previous literature on the field. In sec-
tion 3 we present the social multi-agent framework and sec-
tions 4 and 5 review the main components of the behavioral
multi-agent system implemented. Section 6 describes an il-
lustrative example modelled to test our framework and also
comments some of the plots extracted from the simulated
characters. Finally, section 7 summarizes the theoretical re-
sults extracted from the previous experiments and analyzes
them.

2. Related work

Many research has been done in behavioral animation of
virtual agents during the last few years [22, 16, 2, 10, 15,
17, 8]. A good introduction to the field can be found in



[1]. The pioneer work of Dimitri Terzopoulos [25] showed
how to design a framework to animate natural ecosystems
with minimal input from the animator. He simulatedArti-
ficial fishesin virtual underwater worlds. However, human
behavior is clearly different and more complex to emulate.
Possibly, the more relevant works in this field came from
Thalmann’s group [7, 21, 24]. The goal of these previous
works was to design agents with a high degree of auton-
omy without loosing control. Their agents are an extension
of the BDI architecture described in [20], and they include
internal states as emotions, reliability, trust and others.

Behavioral animation has also been tackled from the
field of coordinated multi-agent systems. For example in
Generalized Partial Global Planning (GPGP) [6], agents
merge the meta-plans describing their operational proce-
dures and figure out the better action in order to maximize
the global utility. Another example is Multi-agent Plan-
ning Language (MAPL) [5], which assigns the control over
each resource to a unique agent and uses speech-acts to syn-
chronize planned tasks. Collaboration is supported in the
RETSINA system [9] thanks to the use of communicative
acts that synchronize tasks and occasionally manage con-
flicts. Team formation and task coordination for heuristic
search planning characters is presented in [12] to adapt bet-
ter to the dynamism of shared environments. MAS-SOC [3]
aims at creating a platform for multi-agent based social sim-
ulations, which is similar to our purposes. In this context,
work is ongoing in order to incorporate social-reasoning
mechanisms based on exchange values [23].

Although the results obtained by the previous ap-
proaches show realistic simulations of many task-oriented
behaviors, autonomous characters should also display so-
cial behaviors (e.g. interchanging information with their
partners or grouping and chatting with their friends). This
kind of socially intelligent animation agents is required in
many complex simulation environments: military/civil sim-
ulations, social pedestrians in virtual cities, games, and
probably very soon in large scale distributed environments
such as Second Life. The multi-agent framework presented
aims to easily design groups of socially intelligent anima-
tion agents. These agents manage autonomously their ra-
tionality and sociability skills at interactive frame rates, and
they are designed to display high quality behavioral anima-
tions in 3D dynamic worlds.

3. Social multi-agent framework

The social multi-agent framework presented in figure 1
has been developed over Jason [4], which allows the defini-
tion of BDI agents using an extended version of AgentS-
peak(L) [19]. The animation system (virtual characters,
motion tables, etc) is located at the 3D engine, which can
run separately. The agent decision-making is defined in the

Figure 1. Multi-agent animation framework.

Agent Specification File. This file contains the initial beliefs
as well as the set of plans that make up the agent’s finite
state machine. TheTask Librarycontains the set of plans
that sequence the actions needed to animate a task. For in-
stance, a virtual waiter serving a coffee will go to the coffee
machine to get the coffee and will give it to the customer
afterwards. Here, modularity is guaranteed since theTask
library can be changed depending on the environment and
the roles being simulated.

As stated above, only rational behaviors are not enough
to simulate agent societies, therefore, we have included a
Social libraryto manage different types of social situations.
This library is based on an auction model that uses the social
welfare concepts to avoid conflicts and allow the agents to
behave in a coordinated way. TheSocial libraryalso incor-
porates a reciprocity model in order to promote social inter-
actions among the members of a group. TheConversational
library contains the set of plans that handle the animation of
the interactions between agents (e.g. ask someone a favor,
planned meetings, chats between friends...). Finally, the en-
vironment is handled by aSemantic Layer[11] which acts
as an interface between the agent and the world. It is in
charge of perceiving the state of the world and executing
the actions requested by the agents, while ensuring the con-
sistency of theWorld Model.

4. Social library

The simulation of worlds inhabited by interactive virtual
actors normally involves facing a set of problems related to
the use of shared limited resources and the need to animate
pure social behaviors. Both types of problems are managed
by the Social library by using a Multi-agent Resource Al-
location approach [13]. This library allows any agent to
auction tasks in order to reallocate them so that the global
social welfare can be increased. Tasks are exchanged be-
tween agents using a first-price sealed-bid (FPSB) auction
model where the agents express their preferences using per-
formance and social utility functions.

The performance utility functionU i
perf (〈i ← t〉) of a

bidder agent i reflects the efficiency achieved when the task



t is allocated to the agenti (〈i ← t〉). There can be many
reasons for an agent to be more efficient: it may perform
the task faster than others because of his know-how or it
may be using a resource that allows several tasks to be per-
formed simultaneously – e.g. a coffee machine in a virtual
bar can be used by a waiter to make more than one coffee
at the same time. The utility function has to favor the per-
formance of the agents, but high performances can also be
unrealistic for the animation of artificial human societies.
For example, if all agents work as much as they can, they
will display unethical or robotic behaviors. Furthermore,
agents should also show pure social behaviors to animate
the normal relations between the members of a society.

Whereas the performance utility function modelled the
interest of an agent to exchange a task from an efficiency
point of view, we introduce two additional social utilities
to represent the social interest in exchanging a task. The
aim of social utilities is to promote task allocations that lead
the agents to perform social interactions with other agents
– e.g. planned meetings with their friends. Therefore, these
functions take into account the social relations established
between the agents and defined in the ontology to compute
the value that expresses their social preferences. Negotia-
tion of long sequences of actions is not very interesting for
interactive characters, as plans are likely to be thwarted due
to the dynamism of the environment and to other unpre-
dictable events. Thus, we define the following social utility
functions:

• Internal social utility (U i
int(〈i ← t, j ← tnext〉) ): is

the utility that a bidder agenti assigns to a situation
wherei commits to do the auctioned taskt so that the
auctioneer agentj can execute his next tasktnext.

• External social utility (U i
ext(〈j ← t〉)): is the utility

that a bidder agenti assigns to a situation where the
auctioneer agentj executes the auctioned taskt while
i continues with his current action.

The winner determination problem has two possible can-
didates coming from performance and sociability. In equa-
tion 1 the welfare of a society is related to performance,
hence, the winner of an auction will be the agent that bid
the maximum performance utility. On the other hand, equa-
tion 2 defines the social winner based on the maximum so-
cial utility received to pass the task to a bidder (U∗

int(t)) and
the maximum social utility given by all bidders to the situ-
ation where the task is not exchanged but performed by the
auctioneerj (U∗

ext(t)).

winnerperf (t) ={
kεAgents|U i

perf (t) = maxiεAgents{U i
perf (〈i ← t〉)}

(1)

winnersoc(t) ={
j U∗

ext(t) >= U∗
int(t)

i U∗
ext(t) < U∗

int(t) ∧ U i
int(t) = U∗

int(t)
(2)

To balance task exchange, social utilities are weighted
with a reciprocity matrix (see equations 3 and 4). We define
the reciprocity factorwij for two agentsi andj, as the ratio
between the number of favors – i.e.tasks – that j has made
to i (see equation 5).

U∗
int(t) = max

iεAgents
{U i

int(〈i ← t, j ← tnext〉) ∗ wji} (3)

U∗
ext(t) = max

iεAgents
{U i

ext(〈j ← t〉) ∗ wij} (4)

wij = Favoursji/Favoursij (5)

At this point, agents can decide whether to adopt this
kind of social allocations or to be only rational as explained
previously. They choose between them in accordance with
their Sociability factor, which is the probability to select
the social winner instead of the rational winner.Sociability
can be adjusted in the range [0,1] to model intermediate be-
haviors between efficiency and total reciprocity. This can
provide great flexibility when animating characters, since
Sociability can be dynamically changed thus producing dif-
ferent behaviors depending on the world state.

5. Conversational library

The auction-based model presented above represents a
useful technique to obtain group coordination through so-
cial commitments. Apart from the auction carried out in-
ternally, it is clear that the agreements should be animated
according to the situation being simulated. To manage the
animation of social commitments, we have developed a set
of plans that uses several conversations to display the agree-
ment reached.

Table 1 summarizes the actor plans depending on the
winner of an auction. On the upper half of the table, when
a task (t) is auctioned, a bidder (i) will be the performance
winner only if he can do it faster than the others. When
an agenti wins an auction, the auctioneer (j) can approach
i and animate the agreement starting a dialogue. For in-
stance, he can shout at the winner:”Please, make a cup
of coffee for me!”; where a positive answer is necessary to
be consistent with the agreement previously reached. When
the auctioneer is also the winner no social agreement is nor-
mally produced. However, these situations can be also use-
ful to animate some failures in social commitments, which
will add more variability to the character’s behavior (e.g.
”Sorry I can not do it now because I have a lot of work to
do” ).

The lower half of the table shows the actions performed
when the winner is a social winner, that is, an agent that



Performance winner
W Precondition Action Response
j None None None

near(i,Res) shout(j,i,make(t)) shout(i,j,no)
not(near(i,j))
near(i,Res) tell(j,i,make(t)) tell(i,j,no)
near(i,j)

i noise(high) approach(i) tell(i,j,yes)
noise(high) tell(j,i,make(t))
noise(low) shout(j,i,make(t)) shout(i,j,yes)

Social winner
W Precondition Action Response
j None plan meeting(j,i) chat(i,j)

chat(j,i)
i noise(high) approach(i) tell(i,j,yes)

tell(j,i,make(t)) chat(i,j)
plan meeting(j,i)
chat(j,i)

noise(low) shout(j,i,make(t)) shout(i,j,yes)
plan meeting(j,i) chat(i,j)
chat(j,i)

Table 1. Conversations to animate perfor-
mance and social agreements.

obtains the best social reward in accordance with the utility
values received from its friends. In this case, a conversation
always occurs and the auctioneer canapproach and tellor
shout atits partner the commitment made (e.g.”Go to the
counter, please, I want to chat with you!”). Planning social
meetings is a mechanism oriented to animate short chats
between two actors, therefore, they will start chatting when
they are close enough and a meeting was previously planned
between them. In both cases, the animated actions have
preconditions, such as the level of noise in the environment
or the distance between actors or resources (near(x,y)). The
noise level can be easily derived from the whole number of
actors in the bar and those who are near the winner.

6. Application example

In order to test the presented social multi-agent frame-
work, we have created a virtual university bar where wait-
ers take orders placed by customers. The typical objects
in a bar (e.g. a juice machine) behave like resources that
have an associated time of use to supply their products (e.g.
2 minutes to obtain an orange juice) and they can only be
occupied by one agent at a time. Waiters are governed by
the finite state machine shown in figure 2, where orders are
served basically in two steps: first, using the corresponding

Figure 2. Waiter specification file.

resource (e.g. the grill to produce a sandwich) and second,
giving the product to the customer. Tasks are always auc-
tioned before their execution in order to find good social
allocations.

Equations 6 and 7 define the utility values returned by
the performance utility function for these tasks. This func-
tion aims at maximizing the number of parallel tasks being
performed and represents the waiters’ willingness to serve
orders as fast as possible. Social behaviors defined for a
waiter are oriented to animate chats between his partners.
Therefore, waiters implement the internal and external so-
cial utility functions detailed in equations 8 and 9, where
Near computes the distance between the agents while they
are executing a pair of tasks. These functions evaluate so-
cial interest as the chance to meet a partner in the near future
(i.e. a planned meeting).

U i
perf (〈i ← ’Use’〉) =




1 if [(i = Auctioneer) ∧ IsFree(Resource)]∨
[IsUsing(i, Resource)∧
not(IsComplete(Resource))]

0 Otherwise
(6)

U i
perf (〈i ← ’Give’〉) =




1 if [(i = Auctioneer) ∧ nextAction = NULL]∨
[currentTask = ’Give’ ∧ not(handsBusy < 2)]

0 Otherwise
(7)



Figure 3. Customer specification file.

U i
int(〈i ← t, j ← tnext〉) =




1 if IsFriend(i, j) ∧Near(t, tnext)∧
ExecT ime(tnext) > RemainT ime(currentTask)

0 Otherwise
(8)

U i
ext(〈j ← t〉) ={
1 if IsFriend(i, j) ∧Near(currentTask, t)
0 Otherwise

(9)
On the other hand, customers place orders and consume

them when served. Now, we are not interested in improv-
ing customer performance but in animating interactions be-
tween the members of a social group. Thus, we have imple-
mented three classes of customers that use auctions to solve
the problem of where to sit. The finite state machine in fig-
ure 3 governs the actuation of customers. Depending on his
or her sociability factor, a customer randomly selects a chair
or starts an auction to decide where to sit and consume. This
auction is received by all customers in the bar, which use
the external social utility function defined in equation 10 to
promote meetings with others of the same class. We define
the performance and the internal social utility functions as
0 since task passing is not possible in this case (i.e. no-one
can sit instead of another customer). Finally, when a social
meeting emerges, both waiters and customers use the plans
in the Conversational Library to sequence the speech-acts
needed to animate commitments, greetings or simple con-
versations.

U i
ext(〈j ← ’Sit’ 〉) =




1 if IsSameClass(i, j)∧
IsConsuming(i, auctionedTable)

0 Otherwise

(10)

The Sociability factor of both customers and waiters

Figure 4. Waiter specification file.

can be adjusted in order to balance performance and so-
ciability. For example, the plot depicted in figure 4 cor-
responds to a simulation in the virtual bar where 2 waiters
with Sociability = 0.6 take the orders placed by 4 cus-
tomers. In this animation, all customers want to have a
sandwich but the grill, that is needed to prepare them, is
shared by the waiters. Although the grill cannot be used by
more than one agent at a time, we have provided this object
with the capability of making 4 sandwiches simultaneously.

Waiters in figure 4 can chat while no customer is wait-
ing to be served. Then, waiters serve customers in order of
appearance using a standard dialogue as seen in snapshot
5a. When a resource that is needed to perform a task (e.g.
the grill to make a sandwich) is already in use, a waiter has
two possibilities: (a) try to pass the task and continue serv-
ing; or (b) animate social chats (i.e. casual conversations)
while waiting for the resource to be free. The decision is
made probabilistically depending on theSociability factor
of the agent. For example, whenWaiter 2 takes the order
from Customer 2, he realizes thatWaiter 1 is also prepar-
ing a sandwich, hence, he asks him to make another sand-
wich (see snapshot 5b). However, this situation is solved
in a different way when the same waiter attendsCustomer
3. In this case, he decides to wait for the shared resource
(Queue(grill)) to be able to chat with his partner. Once



Figure 5. Animating interaction situations:
(a) attend situation, (b) action request situa-
tion, (c) inform result situation and (d) serv-
ing situation.

Figure 6. 3D virtual university bar example.

a reallocated task has been completed, the waiter that has
performed it informs the applicant agent about its result.
For instance, in snapshot 5c,Waiter1tells Waiter 2that the
sandwich is ready to be served. Similarly to using a re-
source for solving several tasks simultaneously, the waiters
can use their two hands to carry more than one product at
the same time. In snapshot 5d,Waiter 2carries two sand-
wiches that are given toCustomer 2andCustomer 3.

Finally, the effects of sociability over customers are
shown in figure 6. Here, 7 waiters serve 16 customers
belonging to three social groups (represented as differ-
ent avatars in the scene). We have defined customer
Sociability as 1, thus, when served, they try to sit with
other customers of their same group. See how avatars of the
same class sit at the same table whenever it is possible.

7. Results

To illustrate the effects of the social techniques previ-
ously applied we have animated the virtual university bar
example with 10 waiters serving 100 customers both with
different sociability factors1. We measure the efficiency of
a group of waiters as the ratio between the optimal simu-
lation time and the real simulation time (see equation 11).
Throughput is an indicator in the range [0,1] that estimates
how close a simulation is to the ideal situation in which the
workload can be distributed among the agents and no colli-
sions arise.

Throughput =
T ∗sim

Tsim
=

Ntasks ∗ Ttask/Nagents

Tsim
(11)

Figure 7 shows theThroughput obtained by different
types of waiters versus self-interested agents (i.e. agents
with no social mechanisms included). Self-interested agents
collide as they compete for the use of the shared resources
and these collisions produce high waiting times as the num-
ber of agents grows. We can enhance this low performance
with elitist agents (Sociability = 0) which exchange tasks
with others that can carry them out in parallel thus reducing
the waiting times for resources. Nevertheless, they produce
unrealistic outcomes since they are continuously working if
they have the chance, leaving aside their social relationships
(e.g. chats between friends). TheSociability factor can
be used to balance rationality and sociability. Therefore,
the Throughput for the sort of animations we are pursu-
ing should be placed somewhere in between elitist and fully
reciprocal social agents (Sociability = 1).

Throughput is an estimator for the behavioral perfor-
mance but, despite being a basic requirement when simulat-
ing groups of virtual characters, it is not the only criterion
to evaluate when we try to create high quality simulations.
Therefore, we have defined another estimator that takes into
account the amount of time that the designer of the simula-
tion wants the agents to spend on their social interactions.
According to this, we define the following simulation esti-
mator:

Animation =
T ∗sim + Tsocial

Tsim
(12)

, whereTsocial represents the time devoted to chatting
and to animating social agreements among friends. In our
virtual bar we have chosenTsocial as the 35% ofT ∗sim. Fig-
ure 8 shows the animation values for 10 reciprocal social
waiters with 4 degrees of friendship: all friends, 75% of the
agents are friends, half of the agents are friends and only

1Visit http://www.uv.es/ agentes to download some 3D animation
videos of the virtual university bar.



Figure 7. Throughput results for waiters.

Figure 8. Animation results for waiters.

25% of the agents are friends. As we have already men-
tioned, low values ofSociability produce low quality sim-
ulations since the values obtained for the animation function
are greater than the reference value (Animation = 1). On
the other hand, high values ofSociability also lead to low
quality simulations, especially when the degree of friend-
ship is high. In these cases, the number of social conversa-
tions being animated is too high to be realistic and anima-
tion is far from the reference value. The animation function
can be used to extract the adequate range of values for the
Sociability factor, depending on the situation being simu-
lated. For example, in our virtual bar we consider as good
quality animations those which fall inside±10% of the ref-
erence value (see shared zone in figure 8). Hence, when
all the waiters are friends, good animations emerge when
Sociability ∈ [0.1, 0.3].

Agent Twait Tuse Tgive Balance
1 0 32 19 -6
2 3 4 26 -3
3 14 52 1 28
4 3 16 28 -3
5 0 7 30 -16
6 3 37 17 -1
7 0 67 4 21
8 0 45 17 1
9 7 5 23 -11
10 1 6 41 -10

Table 2. Time distribution for 10 waiters with
Sociability = 0 (time values are in seconds).

Finally, tables 2 and 3 show the amount of time devoted
to execute each type of task in executions with 10 elitist
waiters (Sociability = 0) and 10 fully reciprocal social
waiters (Sociability = 1). The irregular values in the
columnsTuse andTgive in table 2 demonstrate how some
agents have specialized in certain tasks. For instance, agents
2, 5, 9 and 10 spend most of their time giving products to the
customers while agents 3 and 7 are mainly devoted to using
the resources of the bar (e.g. coffee machine, etc). Although
specialization is a desirable outcome in many multi-agent
systems, egalitarian human societies need also to balance
the workload assigned to each agent. In table 3, fully recip-
rocal social waiters achieve equilibrium between the time
they are giving products and the time they are using the
resources (see columnsTuse andTgive). Furthermore, the
reciprocity factor balances the number of favors exchanged
among the agents (seeBalance column). The payoff is the
increase in the waiting times, since social agents will some-
times prefer to meet friends in a resource than to reallocate
the task (compare columnsTwait in tables 2 and 3).

8. Conclusions

The animation of groups of intelligent characters is a cur-
rent research topic with a great number of behavioral prob-
lems to be tackled. We aim at incorporating human style so-
cial reasoning in character animation. Therefore, this paper
presents a technique to properly balance social with task-
oriented plans in order to produce realistic social anima-
tions. The multi-agent animation framework presented al-
lows for the definition of different types of social agents:
from elitist agents (that only use their interactions to in-
crease the global performance of the group) to fully recip-
rocal agents. These latter agents extend the theory of social
welfare with a reciprocity model that allows the agents to
control the emergence of unethical behaviors and promote



Agent Twait Tuse Tgive Balance
1 16 69 34 -2
2 18 58 24 -2
3 41 45 16 0
4 48 60 27 3
5 34 58 12 -1
6 48 64 14 -2
7 18 48 24 1
8 33 45 24 4
9 46 36 21 0
10 27 56 20 -1

Table 3. Time distribution for 10 waiters with
Sociability = 1 (time values are in seconds).

social interactions among the members of a group. Work
is ongoing to provide the agents with mechanisms to self-
regulate theirSociability factor depending on their social
relations and on their previous intervention. Thus, agents
will be able to dynamically adjust to the situation in order
to stay within the boundaries of good quality animations.
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