Classification-based multimodality fusion approach
for similarity ranking

Emilia Lopez-Ifiesta, Miguel Arevalillo-Herrdez, Francisco Grimaldo
Department of Computer Science
University of Valencia
Avda. de la Universidad s/n. 46100-Burjassot (SPAIN)
Email: eloi@alumni.uv.es,{miguel.arevalillo,francisco.grimaldo} @uv.es

Abstract—The need for similarity rankings is common to a
wide diversity of Pattern Recognition problems. When multiple
modalities are available, effective combination methods that
exploit the information contained in the different representations
are required. In this paper, a method for effectively combining
the information in the different modalities is presented. The
method adopts the common framework used in metric learning
and assumes that training samples are available, in the form of
pairs of objects labeled as similar or dissimilar. For each pair, one
or more distance measures are computed in each representation
space, and these are used to train a soft classifier. Estimated
class conditional probabilities are then used as scores for ranking
purposes. The approach has been tested and compared to other
existing combination methods in an image retrieval context,
showing competitive results.

I. INTRODUCTION

Similarity rankings are a common instrument used in
retrieval problems (e.g., image, video). In the single modality
case, distance functions can directly be used for ranking
purposes e.g., Manhattan, Euclidean, Mahalanobis, Canberra,
etc. When multiple representations are available, it is usually
more effective to compute distances in each space and then
combine them to produce a single score.

One typical approach to combining distances consists of
using a weighted linear combination, sometimes preceded by
some kind of normalization e.g., Gaussian [1], [2] or re-
scaling [3]. Weights can be directly indicated by the user or
automatically calculated by using a training set. In the latter
case, some type of optimization algorithm is used to find a
solution that best fits the training data. Genetic algorithm and
linear optimization techniques have commonly been used for
this purpose e.g., [1], [4]. Other more elaborate approaches
have searched for non-linear combinations, by using genetic
programming [5] or probabilistic frameworks [6].

Existing proposals use training data in different formats.
For example, each training element in [5] is composed of a
query and the set of images that should ideally be retrieved.
In [1], the best match image for each query needs also to
be provided. In [4], triplets of images are used instead. Each
triplet is composed of a focal image and two other images,
with a label indicating which one is more similar to the focal
image.

In this paper, we first present a classification based tech-
nique to combine multiple modalities into a single similarity
measure. As many classical metric learning approaches [7], [8],

[9], binary pairwise comparisons between samples are used for
training. Available samples are used to train a soft classifier,
which is then used to obtain a score for any new pair. The
approach has been tested in a Content-Based Image Retrieval
(CBIR) context, and compared to other existing methods in
three databases with distinct characteristics.

As a second contribution, we have extended the technique
by using several distance measures in each subspace. A sig-
nificant improvement has also be obtained in this case.

II. THE PROBLEM
A. Notation

Let us assume a repository X containing a set of objects
x;,t = 1,2,...,m conveniently represented in a particular
feature space where the whole set of available (vector) features
is designated as F and {F(")}"_, is a family of subspaces of
IF.

Let us also assume that a similarity/dissimilarity measure
has been defined in each subspace u using the subset of
features F(*) and let this be expressed as

$y  FW x FW 5 R 1)

The feature based representation used and the family of
similarity measures {s,};_; make it possible to define the
function s

s: XA XX —R" 2)

by which a pair of objects pairy = (z;, ;) is associated with
a tuple of n values < vy 1 ...V, >, where each value vy,
represents the similarity between the pair of objects pairy as
produced by function s,, (see Figure 1).
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Fig. 1. Function s maps two objects x; and x; to an n-tuple of real values.

Each value represents the similarity between the two objects in a particular
feature space.
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Fig. 2. Training of the soft classifier to compute the function s’. Each labeled image pair pairy, results in a labeled training instance. To this end, the function
s is used to compute a tuple of n values, each using a similarity measures defined in the corresponding subspace.

B. Problem formulation

Let us assume that a similarity relation among the objects
in X exists, so that any pair of objects pairy = (z;,2;) can be
considered either as similar or dissimilar. Let us also assume
that a list of ¢ binary judgments is available and that each entry
in this list is composed of a pair and a label (pairy, labely),
which takes value S (similar) or D (dissimilar).

By using the notation above, our objective is to use the
information available to learn a new function s’

s R — [0,1] 3

that is able to convert the n-tuple produced by function s into
a single value in the closed interval [0, 1], which represents the
similarity between the object pair according to the same (and
maybe unknown) criteria that was used in the list of judgments
provided for training.

Once the function s’ has been obtained, the composition
of the functions s and s’ allows one to associate any pair of
objects with a continuous similarity value, which can be used
for ranking purposes.

Sos: X xX—[0,1] 4)

C. Antecedents

Some typical approaches to tackle this problem assume
that all measures s, have equal importance, are statistically
independent, and/or the similarity values they produce follow
a Gaussian distribution. These assumptions make it possible to
use relatively simple probabilistic frameworks to compute an
estimate for the probability p, (similar|z,, z;) in each feature
space, and then combine the estimates into a single score. The
use of normalization approaches, the assignment of different
weights to each set of descriptors [10], [11], [3], and the use
of the product and sum rules [12] are common in this context.

In [2], a Gaussian normalization of the distance values
obtained in each subspace was proposed. This consists in
a mapping $,(2;, ;) — (Su(i, ;) — py)/304, Where i,
and o, represent the mean and standard deviation of the
values produced by the function s,. Under the Gaussianity

assumption, this normalization ensures a 99% probability that
the normalized value be in [—1, 1]. Then, the results obtained
in each subspace are added to yield a single score. A major
limitation of this method is that equal emphasis is placed in
all descriptors.

To reflect the user’s different emphasis of each representa-
tion in the overall similarity, the replacement of the standard
sum rule by a linear combination of the distance values has
also been proposed. In [10], a Gaussian normalization was
also used, but it was combined with a method that dynami-
cally updated the query weights by using relevance feedback
information.

In a more recent work [6], the Gaussianity assumption was
made unnecessary. In this case, training samples are used to
build a probability mapping function p,,(similar|s,(z;, z;))
in each subspace F(*). Functions p, are computed inde-
pendently in each subspace, and relate any similarity value
produced by the function s,, for a pair of images pairy to the
probability that images ¢ and j would be considered similar by
a general user. To this end, kernel density estimation [13] is
used, and the distribution of similarity values for positive and
negative pairs in the training set are both taken into account.
Finally, the desired function s’ is given as a two step process.
First, the values s, obtained by each similarity function are
mapped to probabilities by using the corresponding function
Py Then, statistical independence is assumed and the values in
each subspace are multiplied to get the final similarity value.

D. Proposal

To remove the need for the statistical independence as-
sumption, this problem can also be approached from a classical
supervised learning perspective, and solved by using a standard
soft classifier in the similarity space defined by the function
s. At a first stage, labeled pairs are used to train the classifier.
To this end, the similarity function s is used to convert
each training pair pairy = (x;,z;) into a labeled input
vector < s1(x;,x;), s2(xi, ), -, sn(®;, x;) >. The inferred
function represents the desired function s’ (see Figure 2).

Once the classifier has been trained, a similarity score
can easily be computed for any new unseen pair of
objects (x;,x;). This is done by providing the vector
< s1(xi,zj), s2(xs,5), - -, Sn(24s, x;) > as an input to the



classifier. The conditional probability of the similar class S
represents p(similar|z;,z;) and hence can be used as a
similarity estimate (see Figure 3).
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Fig. 3. Computation of a similarity score. To compute a similarity score
between a new pair of objects, the new pair is provided as an input to the
classifier. The conditional probability of the similar class S computed by the
classifier is used as a similarity score.

Note that the approach presented does not depend on
whether the individual functions s,,u = 1...n are similarity
or dissimilarity measures. In addition, the final similarity
score can be turned into a dissimilarity (distance) score by
considering the conditial probability of the dissimilar class
(D).

E. Extension

Other than the combination method used, the quality of
the final score is highly sensitive to the family of similarity
measures {s, }”_; used in the definition of the function s. The
selection of the most appropriate measure in each particular
subspace F (%) is context dependent and varies across different
data sets.

Given that different similarity measures may result in
significant variations in performance, additional gains can po-
tentially be achieved by embedding several similarity functions
per subspace into the approach.

For illustrative purposes, we have used different L,, norms
(Minkowski distances). These are widely used dissimilarity
measures. In addition, the relatively large differences in per-
formance of different L, norms on the same data [14], [15]
suggest that they may be combined to obtain improved results.

III. EMPIRICAL EVALUATION

A number of comparative experiments to validate the
success of the proposal have been carried out in a CBIR

TABLE L DETAILS OF THE THREE DATABASES USED IN THE

EXPERIMENTS.
[ Name | Size | Descriptors | Dimensions [ Categories |
Small 1508 10 12-7-3-4-11-11-6-30-10-10 29
Art 5476 10 12-7-3-4-11-11-6-30-10-10 63
Corel 30000 4 32-32-9-16 71

context. In a first experiment, results obtained with the plain
proposal by using Euclidean distances at each subspace are
compared to the ones obtained by using: (a)

1) the probabilistic method presented in [6]. This
method uses a similar problem formulation based on
exactly the same training information.

2) astandard Gaussian normalization as described in [2],
[10]. This consists of a mapping function d; — (d; —
w)/30, where 11 and o represent the mean and the
standard deviation of the distance d;.

3) alinear combination of the Euclidean distances com-
puted at each subspace, with all distances contributing
equally.

In the remaining of this section, these three approaches
will be referred to as probabilistic, Gaussian normalization and
linear combination, respectively.

In a second experiment, the additional benefits obtained by
using the proposed extension are evaluated. In this case, results
are compared to the ones obtained by using the plain proposal
on different L, norms.

A. Databases

Experimental results have been validated in three different
databases that have been previously used in other similar
studies e.g., [16], [17]. Table I shows a summary of the
details of each database. The size indicates the number of
images in the repository. The descriptors column refers to
the number of different subspaces n. Dimensions refers to
the number of features in each subspace F(*). The categories
column represents the number of classes in each reposi-
tory, according to the database classification provided. These
repositories, along with further details about their contents
can be found in http://kdd.ics.uci.edu/databases/CorelFeatures
and http://www.uv.es/arevalil/dbImages/, for the Corel and the
other two databases, respectively.

B. Implementation details

Despite that several classification methods have been
attempted, only results for the Support Vector Machine
(SVM) [18] are reported in this paper. These were consis-
tently better than those obtained by using other classification
methods, namely Naive Bayes [19] and ID3 [20]. The kernel
chosen has been a Gaussian radial basis function. The pa-
rameters v and C have been tuned by using an exhaustive
grid search on a held out validation set composed of a
30% partition of the training data (C € {0.1,1,10} and
~ € {0.0001,0.001,0.01,0.1, 1, 10}).

To test the extended method, we have used different p-
Norms (p € {0.5,1,1.5,2}) in each subspace F(). This
implies that the dimension of the training vectors is multiplied
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Fig. 4.
database; b) the Art database; and c¢) the Corel database.

by a factor of 4. Fractional values of p have been included
because they have been reported to provide more meaningful
results for high dimensional data, both from the theoretical and
empirical perspective [14]. In addition, these results have been
confirmed in a CBIR context [15].

C. Experimental setting

Results obtained with each distance combination are evalu-
ated by using a ranking-based method. At a first stage, the same
5000 pairs of images (half similar and half non-similar) are
supplied to all methods as training data (except for the Gaus-
sian normalization and linear combination methods, which
do not use any training information). These are randomly
selected from the set of all possible pairs in the database. The
available categories at each repository are used to simulate
user judgments, so that images under the same category are
considered subjectively similar.

Results are evaluated on a new set composed of another
5000 image pairs. To this end, all methods evaluated are used
to rank the 5000 pairs in descending order of similarity. Then,
the fraction of similar pairs that appear in between the first r
positions of the ranking (recall) is measured for every value of
r = [1,5000], and used to visually compare the performance
of all methods.

To increase the reliability of the results, all experiments
have been repeated 100 times and results have been averaged.

D. Results

Fig. 4 shows the comparative performance of plain proposal
against the probabilistic, gaussian normalization and linear
combination approaches. This plot reveals noticeable perfor-
mance differences in recall in the Small and Art databases,
clearly in favor of the proposed approach. In the Corel
database, very similar recall results can be observed for the
three methods in all databases (only very small differences

Comparative performance between the plain proposal and the probabilistic, gaussian normalization and linear combination approaches in a) the small

in favour of the probabilistic method can be observed for
ranking positions 7 > 2000). This may be due to the higher
subjectivity involved in the classification of the images in this
large-sized database, where different criteria might have been
applied (also by different people), that results in a classification
that considers possibly similar concepts under different labels.
As an example, the Corel database includes Insects and Insects
II as two different categories. Hence, our experimental setting
would consider images in these two groups as dissimilar.

In Fig. 5, the extended method using multiple p-norms
is compared to the plain combination proposal, when using
different L, norms to define the similarity functions s, used
in each subspace F(*). A first interesting result relates to the
comparative performance of the different L,, norms used. No
consistent behavior is observed, and the best norm in one
database can be the worst when used with another data set.
For example, norm 0.5 performs the best in the Art database
but the worst in the small repository.

A second and more relevant result relates to the fact that
the performance when the four L, norms are combined is
always equal or better than when using any of the single
norms. This is an interesting result because despite the large
literature on using different norms, most approaches aim at
selecting the one that offers the highest performance, rather
than combining them to improve retrieval results e.g., [14],
[15], [21]. The results obtained in this experiment suggest that
important performance gains can be obtained by combining
L, norms.

For clarity reasons, Fig. 6 shows the performance of
the extended approach when compared to the other compet-
ing methods. It can be observed that the extended proposal
consistently performs better than the original one, and also
outperforms the other three methods in all databases. Again,
differences are specially relevant in the Small and the Art
databases. In the Corel repository, only a small difference in
favor of the extended proposal can be observed. This is in
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Fig. 5. Performance gains by using the proposed extension in a) the small database; b) the Art database; and c) the Corel database.

contrast to the result offered by the plain proposal, which
was slightly worse than the Probabilistic method for values
of r > 2000.

IV. CONCLUSIONS

In this paper, a distance combination method based on
binary pairwise comparisons between samples has been pre-
sented. In addition, an extension that uses several distances
in each subspace has been introduced. In particular, four
L, norms per subspace have been used. Results by using
this approach have clearly outperformed the ones obtained
by using two other competitive methods. In addition, they
have provided an evidence of the potential of combining L,
norms for retrieval tasks. The most appropriate L,, norm to be
used with the approach is an important topic that deserves
further investigation. In addition, the combination of other
similarity/distance measures is currently an issue under study.

The utility of the methods proposed depend on the partic-
ular application context. One typical application of distance
combination methods is as part of classification approaches.
However, the proposed methods result in a non-metric esti-
mate. Although this is not an inconvenience for ranking pur-
poses, the effect when used in conjunction with classification
algorithms (e.g., nearest neighbor) needs to be investigated in
more depth.

Further research that could potentially improve the results
obtained with the extended approach include a) fine tuning
the SVM by trying a wider range of parameter values or other
different kernels; b) using cross validation to determine the
most convenient set of distances to be used in each subspace
and c) using classification methods other than the ones used
in this work.

V. ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry of
Science and Innovation through project TIN2011-29221-C03-
02

(2]

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

H. Shao, J.-W. Zhang, W.-C. Cui, and H. Zhao, “Automatic feature
weight assignment based on genetic algorithm for image retrieval,” in
IEEE International Conference on Robotics, Intelligent Systems and
Signal Processing, vol. 2, 2003, pp. 731-735.

Q. Igbal and J. Aggarwal, “Combining structure, color and texture
for image retrieval: A performance evaluation,” in /6th International
Conference on Pattern Recognition (ICPR), Quebec City, QC, Canada,
August 2002, pp. 438—443.

G. Giacinto and F. Roli, “Nearest-prototype relevance feedback for
content based image retrieval,” in Proceedings of the 17th International
Conference on Pattern Recognition (ICPR), vol. 2, 2004, pp. 989-992.

A. Frome, Y. Singer, and J. Malik, “Image retrieval and classification
using local distance functions,” in Neural Information Processing Sys-
tems Foundation (NIPS), Vancouver, Canada, December 2006.

R. da S. Torres, A. X. Falcao, M. A. Gonalves, J. P. Papa, B. Zhang,
W. Fan, and E. A. Fox, “A genetic programming framework for content-
based image retrieval,” Pattern Recognition, vol. 42, no. 2, pp. 283 —
292, 2009.

M. Arevalillo-Herrdez, J. Domingo, and F. J. Ferri, “Combining simi-
larity measures in content-based image retrieval,” Pattern Recognition
Letters, vol. 29, no. 16, pp. 2174-2181, 2008.

E. P. Xing, A. Y. Ng, M. L. Jordan, and S. Russell, “Distance met-
ric learning, with application to clustering with side-information,” in

Advances in Neural Information Processing Systems 15. MIT Press,
2002, pp. 505-512.

J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in International Conference on Machine
Learning, Corvalis, Oregon, USA, June 2007, pp. 209-216.

A. Pérez-Suay, F. J. Ferri, and M. Arevalillo-Herrdez, “Passive-
aggressive online distance metric learning and extensions,” Progress
in Al vol. 2, no. 1, pp. 85-96, 2013.

Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback:
a power tool for interactive content-based image retrieval,” IEEE Trans.
Circuits Syst. Video Techn., vol. 8, no. 5, pp. 644—655, 1998.

Q. Zhang and E. Izquierdo, “Optimizing metrics combining low-level
visual descriptors for image annotation and retrieval,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 2, 2006, pp. 405-408.

J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3,
pp. 226-239, 1998.



Small database Art database Corel database

rzad
0.9 i | 0.9 e 0.9 ~
gt s 7
s s "I, 'l,'l
0.8} Pl - 0.8 va 0.8} 7 g
Eaa ’ ~
4. r v
S 7 /a
0.7t o 1 0.7t /7 0.7t “ 1
,’1 0 /’ ,'.'

0.6 o 8 0.6 / 0.6 / ]
= Y = o =
E K g % g /
Q 05f B 1 Q 05f ) Q 05f / 1
i P o p i /

0.4t & 1 0.4f 4 0.4t 4 1

" P 4
s K 4
03t /¢ 1 0.3F /4 0.3t i -
s ’
I J o
ool It i 021} ool — Extended proposal ,
- - -Probabilistic
0.1 — 0.1 0.1 - - Gaussian normalization |-
Linear combination
% 1000 2000 3000 4000 5000 % 1000 2000 3000 4000 5000 % 1000 2000 3000 4000 5000
cut—off value (r) cut—off value (r) cut—off value (r)

(a) (b) (©

Fig. 6. Comparative performance between the extended approach and the sum and probabilistic methods in a) the small database; b) the Art database; and c)
the Corel database.

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[14] C. Aggarwal, A. Hinneburg, and D. Keim, “On the surprising behavior
of distance metrics in high dimensional space,” in Database Theory
ICDT 2001, ser. Lecture Notes in Computer Science, J. Bussche and
V. Vianu, Eds. Springer Berlin Heidelberg, 2001, vol. 1973, pp. 420—
434.

[15] P. Howarth and S. Riiger, “Fractional distance measures for content-
based image retrieval,” in Proceedings of the 27th European conference
on Advances in Information Retrieval Research (ECIR). Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 447-456.

[16] M. Arevalillo-Herrdez, M. Zacarés, X. Benavent, and E. de Ves,
“A relevance feedback CBIR algorithm based on fuzzy sets,” Signal
Processing: Image Communication, vol. 23, no. 7, pp. 490-504, 2008.

[17] M. Arevalillo-Herrdez and F. J. Ferri, “An improved distance-based
relevance feedback strategy for image retrieval,” Image and Vision
Computing, vol. 31, no. 10, pp. 704 — 713, 2013.

[18] A. Christmann and I. Steinwart, Support Vector Machines.  Springer
New York, 2008.

[19] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, ser. UAI’95. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1995, pp. 338-345.

[20] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, Mar. 1986.

[21] J. Zhang and L. Ye, “An unified framework based on p-norm for
feature aggregation in content-based image retrieval,” in Ninth IEEE
International Symposium on Multimedia (ISM), 2007, pp. 195-201.



