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Abstract. This paper presents a multiagent framework designed to animate 
groups of synthetic humans that properly balance task oriented and social be-
haviors. The work presented in this paper focuses on the BDI agents and the so-
cial model integrated to provide socially acceptable decisions. The social model 
provides rationality, to control the global coordination of the group, and socia-
bility, to simulate relations (e.g. friends) and reciprocity between members. The 
multiagent based framework has been tested successfully in dynamic environ-
ments while simulating a virtual university bar, where several types of agents 
(groups of waiters and customers) can interact and finally display complex so-
cial behaviors (e.g. task passing,  reciprocity, planned meetings). 
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1   Introduction and related work 

Socially intelligent agents are autonomous problem solvers that have to achieve 
their goals by interacting with other similarly autonomous entities [7]. Bearing this in 
mind, multiagent systems can be referred to as societies of agents. Within the field of 
behavioral animation for autonomous synthetic characters, this points to the design of 
an adequate framework to produce good quality animations for groups of virtual hu-
mans. When designing such agents, the main concern has normally been with the de-
cision-making mechanism, as it is the responsible for the actions that will be finally 
animated. Virtual humans normally play a role (e.g. a virtual guide, seller, client…), 
thus, it is very important not to avoid the social aspects involved. The notion of so-
cially acceptable decisions has long been of interest in human societies and also in the 
multiagent community. Traditionally, designers have sought to make their agents ra-
tional so that, they can “do the right thing” efficiently (i.e. the shorter the plan the bet-
ter). Since agents operate in dynamic resource bounded contexts, obstructions rapidly 
appear when characters act and compete for the use of shared resources (i.e. objects in 
a virtual environment). Therefore, self interested agents (i.e. agents devoted to ac-
complish a set of goals) easily come into conflicts even though their goals are com-
patible, producing low quality animations. Many researches have tried to achieve so-
cial skills through multiagent coordination. For example in Generalized Partial Global 
Planning (GPGP) [4], agents merge the meta-plans describing their operational proce-
dures and figure out the better action in order to maximize the global utility. Another 



example is Multiagent Planning Language (MAPL) [3], which assigns the control 
over each resource to a unique agent and uses speech-acts to synchronize planned 
tasks. Collaboration is supported in the RETSINA system [5] thanks to the use of 
communicative acts that synchronize tasks and occasionally manage conflicts. Team 
formation and task coordination were applied to heuristic planning based characters in 
[6] to adapt better to the dynamism of shared environments. MAS-SOC [1] is a simi-
lar system in the literature that aims at creating a platform for multiagent based social 
simulations. In this context, work is ongoing in order to incorporate social-reasoning 
mechanisms based on exchange values [9]. All these approaches focus on improving 
the global efficiency of a multiagent society, however, an excess of coordination can 
produce unethical behaviors which are less interesting to animate. Instead, egalitarian 
societies of agents are more interesting when simulating groups of virtual humans. In 
these simulations, autonomous characters should display social behaviors (e.g. inter-
change information with their partners or grouping and chatting with their friends) 
and task oriented behaviors, in accordance with the role defined (e.g. a waiter serving 
at a virtual bar). This kind of socially intelligent animation agents is required in many 
complex simulation environments: military/civil simulations, virtual cities (e.g. social 
pedestrians), games, etc. The multiagent framework presented here is directed at de-
signing socially intelligent agents able to balance properly their rationality and socia-
bility, as it is necessary to finally display high quality behavioral animations. 

2   Social multiagent framework 

The social multiagent framework presented in figure 1 has been developed over Jason 
[2], which allows the definition of BDI agents using an extended version of AgentS-
peak(L) [8]. The animation system (virtual characters, motion tables, etc) is located at 
the 3D engine, which can run separately. The agent decision-making is defined in the 
Agent Specification File. This file contains the initial beliefs as well as the set of plans 
that make up the agent's finite state machine. The Task Library contains the set of 
plans that sequence the actions needed to animate a task and achieve a particular goal. 
Here, modularity is guaranteed since the Task library can be changed depending on 
the environment and the roles being simulated.  

As stated above, only rational behaviors are not enough to simulate agent societies, 
therefore, we have added to the architecture a Social library to manage different types 
of social situations. This library is based on an auction model that uses the social wel-
fare concepts to avoid conflicts and allow the agents to behave in a coordinated way. 
The auction model is a numerical model, in contrast with the logical model of the task 
library. Both libraries do not necessarily propose the same behaviour for the agent. In 
those cases, the conflict is resolved by means of a sociability factor, which allows 
choosing one of the behaviours. The Social library also incorporates a reciprocity 
model in order to promote social interactions between the members of a society. The 
Conversational library contains the set of plans that handle the animation of the inter-
actions between agents (e.g. planned meetings, chats between friends...). Finally, the 
Semantic Layer is in charge of perceiving the state of the world and executing the ac-
tions requested by the agents, while ensuring the consistency of the World Model. 



 

Fig. 1. Social multiagent framework. 

3   Social library 

The simulation of worlds inhabited by interactive virtual actors normally involves fac-
ing a set of problems related to the use of shared limited resources and the need to 
animate pure social behaviors. Both types of problems are managed by the Social li-
brary by using a Multiagent Resource Allocation approach [7]. This library allows the 
auctioning of tasks by any agent in order to reallocate them so that the global social 
welfare can be increased. Tasks are exchanged between agents using a first-price 
sealed-bid (FPSB) auction model where the agents express their preferences using 
performance and social utility functions. 

The performance utility function U iperf(<i←t>) of a bidder agent i reflects the effi-
ciency achieved when he performs the task t. There can be many reasons for an agent 
to be more efficient: he might perform the task faster than others because of his know-
how or it might be using a resource that allows several tasks to be performed simulta-
neously (e.g. a coffee machine in a virtual bar can be used by a waiter to make more 
than one coffee at the same time). The utility function has to favor the performance of 
the agents, but high performances can also be unrealistic for the animation of artificial 
human societies. For example, if all agents work as much as they can, they will dis-
play unethical or robotic behaviors. Furthermore, agents should also show pure social 
behaviors to animate the normal relations between the members of a society.  

Whereas the performance utility function modeled the interest of an agent to ex-
change a task from an efficiency point of view, we introduce two additional social 
utilities to represent the social interest in exchanging a task. The aim of social utilities 
is to promote task allocations that lead the agents to perform social interactions with 
other agents (e.g. planned meetings with their friends). Negotiation of long sequences 
of actions is not very interesting for interactive characters, as plans will probably be 
broken due to the dynamism of the environment and to other unpredictable events. 
Thus, we define the following social utility functions: 

• Internal social utility (U i
int(<i←t, j←tnext>) ): is the utility that a bidder agent i as-

signs to a situation where i commits to do the auctioned task t so that the auctioneer 
agent j can execute his next task tnext. 

• External social utility (U iext(<j←t>)): is the utility that a bidder agent i assigns to a 
situation where the auctioneer agent j executes the auctioned task t while i contin-
ues his current action. 



The winner determination problem has two possible candidates coming from per-
formance and sociability. In equation 1 the welfare of a society is related to perform-
ance, hence, the winner of an auction will be the agent that bid the maximum per-
formance utility. On the other hand, equation 2 defines the social winner based on the 
maximum social utility received to pass the task to a bidder (U*

int(t)) and  the maxi-
mum social utility given by all bidders to the situation where the task is not ex-
changed but performed by the auctioneer j (U*

ext(t)). 
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To balance task exchange, social utilities are weighted with a reciprocity matrix 

(see equations 3 and 4). We define the reciprocity factor wij for two agents i and j, as 
the ratio between the number of favors (i.e.tasks) that j has made to i (see equation 5). 
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At this point, agents can decide whether to adopt this kind of social allocations or 

to be only rational as explained previously. They choose between them in accordance 
with their Sociability factor, which is the probability to select the social winner in-
stead of the rational winner. Sociability can be adjusted in the range [0,1] to model in-
termediate behaviors between efficiency and total reciprocity. This can provide great 
flexibility when animating characters, since Sociability can be dynamically changed 
thus producing different behaviors depending on the world state. 

4   Application example 

In order to test the presented social multiagent framework, we have created a virtual 
university bar where waiters take orders placed by customers (see figure 2a). The 
typical locations in a bar (e.g. a juice machine) behave like resources that have an as-
sociated time of use to supply their products (e.g. 7 seconds to make an orange juice) 
and they can only be occupied by one agent at a time. 



 
Fig. 2. (a) Virtual university bar environment, (b) Waiter specification. 

The waiters are governed by the finite state machine1 shown in figure 2b, where 
orders are served basically in two steps: first, using the corresponding resource (e.g. 
the grill to produce a sandwich) and second, giving the product to the customer. Tasks 
are always auctioned before their execution in order to find good social allocations. 
Equations 6 and 7 define the utility values returned by the performance utility func-
tion for these tasks. This function aims at maximizing the number of parallel tasks be-
ing performed and represents the waiters’ willingness to serve orders as fast as possi-
ble. Social behaviors defined for a waiter are oriented to animate chats between his 
partners. Therefore, waiters implement the internal and external social utility func-
tions detailed in equations 8 and 9, where Near computes the distance between the 
agents while they are executing a pair of tasks. These functions evaluate social inter-
est as the chance to meet a partner in the near future (i.e. a planned meeting). 
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1 Specified by means of plans in Jason’s extended version of AgentSpeak(L) 
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On the other hand, customers place orders and consume them when served. Now, 

we are not interested in improving customer performance but in animating interac-
tions between the members of a social class. Thus, we have implemented three classes 
of customers that use auctions to solve the problem of where to sit. A finite state ma-
chine similar to that in figure 2b governs the actuation of customers. Depending on 
his or her sociability factor, a customer can randomly choose a chair or start an auc-
tion to decide where to sit and consume. This auction is received by all customers in 
the bar, which use the external social utility function defined in equation 10 to pro-
mote meetings with others of the same class. We define the performance and the in-
ternal social utility functions as 0 since task passing is not possible in this case (i.e. 
no-one can sit instead of another customer). Finally, when a social meeting emerges, 
both waiters and customers use the plans in the Conversational Library to sequence 
the speech-acts needed to animate commitments, greetings or simple conversations. 
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5   Results 

To illustrate the effects of the social techniques previously applied we have animated 
the virtual university bar example with 10 waiters serving 100 customers both with 
different sociability factors (visit http://www.uv.es/~agentes to download some ani-
mation videos). To measure the efficiency of a group of waiters we use the ratio be-
tween the optimal simulation time and the real simulation time (see equation 11). 
Throughput is an indicator in the range [0,1] that estimates how close a simulation is 
to the ideal situation in which the workload can be distributed among the agents and 
no collisions arise. 
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Figure 3a shows the Throughput obtained by different types of waiters versus self-

interested agents (i.e. agents with no social mechanisms included). Self-interested 
agents collide as they compete for the use of the shared resources and these collisions 
produce high waiting times as the number of agents grows. We can enhance this low 
performance with elitist agents (Sociability = 0) which exchange tasks with others that 
can carry them out in parallel thus reducing the waiting times for resources. Neverthe-



less, they produce unrealistic outcomes since they are continuously working if they 
have the chance, leaving aside their social relationships (e.g. chats between friends). 
The Sociability factor can be used to balance rationality and sociability. Therefore, the 
Throughput for the sort of animations we are pursuing should be placed somewhere in 
between elitist and fully reciprocal social agents (Sociability=1). On the other hand, 
figure 3b demonstrates that the higher the Sociability factor is, the larger the number 
of social meetings that will be performed by the customers when they sit at a table. 

 

 
Fig. 3. (a) Waiter Throughput, (b) Customer social meetings. 

Finally, table 1 compares the amount of time devoted to execute each type of task 
in executions with 10 elitist waiters (Sociability=0) and 10 fully reciprocal social 
waiters (Sociability=1). The irregular values in the columns Tuse and Tgive on the left 
side of the table demonstrate how some agents have specialized in certain tasks. For 
instance, agents 2, 5, 9 and 10 spend most of their time giving products to the custom-
ers while agents 3 and 7 are mainly devoted to using the resources of the bar (e.g. cof-
fee machine, etc). Although specialization is a desirable outcome in many multiagent 
systems, egalitarian human societies need also to balance the workload assigned to 
each agent. On the right side of the table, fully reciprocal social waiters achieve equi-
librium between the time they are giving products and the time they are using the re-
sources of the environment (see columns Tuse and Tgive). Furthermore, the reciprocity 
factor balances the number of favors exchanged among the agents (as shown in Bal-
ance column). A collateral effect of this equilibrium is the increase in the waiting 
times, since social agents will sometimes prefer to meet his friends in a resource than 
to reallocate the task (compare columns Twait).  

6.   Conclusions and Future Work 

The animation of groups of intelligent characters is a current research topic with a 
great number of behavioral problems to be tackled. We aim at incorporating human 
style social reasoning in character animation. Therefore, this paper presents a tech-
nique to properly balance social with task-oriented plans in order to produce realistic 
social animations. The multiagent animation framework presented allows for the defi-
nition of different types of social agents: from elitist agents (that only use their inter-
actions to increase the global performance of the group) to fully reciprocal agents. 



These latter agents extend the theory of social welfare with a reciprocity model that 
allow the agents to control the emergence of unethical behaviors and promote social 
interactions among the members of a group.  

Work is ongoing to provide the agents with mechanisms to self-regulate their So-
ciability factor depending on their social relations and on their previous intervention. 
Thus, agents will be able to dynamically adjust to the situation in order to stay within 
the boundaries of good quality animations at all times. 
 
Table 1.  Time distribution for 10 waiters in the bar (time values are in seconds).  

 Sociability = 0 Sociability = 1 
Agent waitT  useT  giveT  Balance waitT  useT  giveT  Balance 

1 0 32 19 -6 16 69 34 -2 
2 3 4 26 -3 18 58 24 -2 
3 14 52 1 28 41 45 16 0 
4 3 16 28 -3 48 60 27 3 
5 0 7 30 -16 34 58 12 -1 
6 3 37 17 -1 48 64 14 -2 
7 0 67 4 21 18 48 24 1 
8 0 45 17 1 33 45 24 4 
9 7 5 23 -11 46 36 21 0 

10 1 6 41 -10 27 56 20 -1 
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