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This paper presents a Q-Learning-based multiagent system oriented to provide navigation skills to simulation

agents in virtual environments, We focus on learning local navigation behaviours from the interactions with
other agents and the environment, We adopt an environment-independent state space representation to provide
the required scalability of such kind of systems. In this way, we evaluate whether the learned action-value
functions can be transferred to other agents to increase the size of the group without loosing behavioural
quality. We explain the learning process defined and the the results of the collective behaviours obtained in a
well-known experiment in multiagent navigation: the exit of a place through a door.

1 INTRODUCTION

During last years, the most popular approaches to
multiagent navigation have been inspired in differ-
ent kind of rules (phyisical, social, ctological, elc),
‘These systems have demostrated that it is possible to
group and to combine different rules (eg, cohesion,
obstacle avoidance (Reynolds, 1987)) to finally dis-
play high quality collective navigational behaviours
(eg. flocking). However the main drawbacks are also
known. All the rules must be defined and adjusted
manually by the engineer or author., The number of
rules required for modelling complex autonomous be-
haviours can be high, and generally they are systems
difficult to adjust when scaling the number of agents,
where some problems (eg. local minimum or dead-
locks) can appear. Beyond handwritten rules sys-
lems, other discrete techniques, as celular automata
or multi-layer grids have been also used in these do-
mains (Lozano et al., 2008) for representing different
kind of navigational maps, as they can precompute
important information for the agents when they have
to plan and to follow their paths.

In this paper we present a Reinforcement Learning
(RL) approach that consists on modelling the problem
as a sequential decision problem using Markov De-
cision Pracess (MDP). Reinforcement learning tech-

niques have been used successfully to find policies
for local motion behaviors without knowledge of the
environment (Kaelbling et al.,, 1996). It has been
also applied in cooperative tasks, where several agents
maximizes the collective performance by maximizing
their individual rewards (Ferndndez et al., 2005). Tn
these cooperaltive tasks, like Keepaway (Stone et al.,
2005), the relationship among individual rewards and
the cooperative behavior is typically unknown, but co-
laboration emerges from the individual behaviors.
The aim of the paper can be summarized in: a)
setting a RL multiagent local navigation problem to
simulate a single-door evacuation and b) to study the
possibility of transferring the learned behaviors from
a specilic scenario to other bigger and more popu-
lated environments, which represents the basic con-
cept of scalability in this domain. We propose the use
of multiagent reinforcement learning using indepen-
dent learners to avoid the “curse of dimensionality”
of pure multiagent systems. We do not model the
problem as a single-agent RL problem to allow the
emergence of different solutions providing variabil-
ity to the simulation. We explore the scalability (to
hundreds of agents) and portability (to larger grids)
of the approach. Scalability from a reduced set of
agents to large ones is performed through the transfer
of the value functions (Taylor and Stone, 2005). We
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Figure 2: Mean reward curve and mean length of the
episodes curve for one agent in the learning process,

3 SCALING UP THE NUMBER OF
AGENTS

In simulation, we will use the learned value func-
tions in a larger environment with different number of
agents. We exploit the action-value functions using
the greedy action selection as the optimal policy for
an agent. Since the action and the state spaces are the
same that used for learning, no mapping is required.
However a generalization of the distance is neces-
sary because the new grids are bigger in simulation
time and agents can be placed initially farther than the
learned distances. Our generalization criteria is based
on the idea that the distance feature loses its discrimi-
natory power when it is large. Therefore the distances
higher than the MaxDist — 1 value are mapped to a
distance in the range [MaxDist — 1, MaxDist /2] using
an empirical criteria.

Each action-value function is used to animate an
incremental number of agents in the simulation en-
vironment to know their scalability. Thus then, the
number of simulated agents grows in a factor x 1, x2,
X3,..,% 10 with the following meaning: a set of 20
functions corresponding with the learning process of
20 agents will have a scaling sequence of x1 = 20
agents, x2 =40 agents, x3 = 60 agents, etc,

4 EVALUATING THE
EXPERIMENT

We have defined five evaluation parameters,

I. Parameter 1. It is the mean of random actions car-
ried out by an agent and it is related with the qual-
ity of the learned action-value function. When the
generalization process described formerly fails,
the agent chooses a random action.
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Figure 3: Parameter 4 for the experiment. These data are
averages over 100 trials

2. Parameter 2. It is the total number of crashes that
happened in the simulation time. Bad learning of
states is a possible situation because convergence
is warranted only with infinite iterations and to
visit infinitelly often all the states is not guaran-
teed due to the on-line data adquisition based in
the interaction with the environment.

3. Parameter 3. It is the total number of simulated
episodes that have ended without success. When
the agent has spent a maximum number of steps
in one episode, it finishes with no success.

4. Parameter 4. It is the relative difference between
the minimum amount of steps necessary o arrive
to the exit from the initial position and the ac-
tual number of steps used. It represents the value
(i‘ﬁﬁﬂﬂ) where 1,,;, is the minimum number of
actions to reach the exit from a position with a sin-
gle agent and 1, is the number of actions actoally
carried out, It gives the idea of the difference be-
tween the actual performance and the minimum
possible number of actions to reach the door. A
value of 1.0 means that the number of actions is
two times the minimum.

.5. Parameter 5. It is an average density map that let
us to estimate the collective behaviour achieved
by the multiagent system during simulation. It
gives a shape of the crowd in the grid, that is a ref-
crence parameter normally considered in pedes-
trian dynamic simulations (Helbing et al., 2000).

We have performed scaling simulations up to a
scaling factor of X 10 in the number of agents, cor-
responding to a maximun of 200 agents.

Concerning the Parameter 1, the percentage of
aleatory actions used in simulation is 0% for our ex-
periment in all the scaling factors. This result shows
two facts: the generalization strategy has provided
candidates in all the cases and the Q function for states
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