Security in Virtual Worlds,
3D Webs, and Immersive
Environments:

Models for Development,
Interaction, and Management

Alan Rea
Western Michigan University, USA

‘ Information Science \ INFORMATION SCIENCE REFERENCE
Hershey - New York



Director of Editorial Content: Kristin Klinger
Director of Book Publications:  Julia Mosemann

Acquisitions Editor: Lindsay Johnston

Development Editor: Joel Gamon

Publishing Assistant: Julia Mosemann, Natalie Pronio
Typesetter: Natalie Pronio

Production Editor: Jamie Snavely

Cover Design: Lisa Tosheff

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@jigi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Security in virtual worlds, 3D webs, and immersive environments : models for
development, interaction and management / Alan Rea, editor.
p. cm.

Includes bibliographical references and index.

Summary: "This publication discusses the uses and potential of virtual
technologies and examines secure policy formation and practices that can be
applied specifically to each"--Provided by publisher.

ISBN 978-1-61520-891-3 (hardcover) -- ISBN 978-1-61520-892-0 (ebook) 1.
Computer networks--Security measures. 2. Web sites--Security measures. 3.
World Wide Web--Security measures. 1. Rea, Alan.

TK5105.59.S442 2011

005.8--dc22

2010045520

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.



123

Chapter 7

Sociable Behaviors in
Virtual Worlds

Francisco Grimaldo
Universitat de Valéncia, Spain

Miguel Lozano
Universitat de Valéncia, Spain

Fernando Barber
Universitat de Valéncia, Spain

Juan M. Orduiia
Universitat de Valéncia, Spain

ABSTRACT

When simulating three-dimensional environments populated by virtual humanoids, immersion requires
the simulation of consistent social behaviors to keep the attention of the users while displaying realistic
scenes. However, intelligent virtual actors still lack a kind of collective or social intelligence necessary
to reinforce the roles they are playing in the simulated environment (e.g. a waiter, a guide, etc). Decision
making for virtual agents has been traditionally modeled under self interested assumptions, which are
not suitable for social multi-agent domains. Instead, artificial society models should be introduced to
provide virtual actors with socially acceptable decisions, which are needed to cover the user expecta-
tions about the roles played in the simulated scenes. This chapter reviews the sociability models oriented
to simulate the ability of the agents that are part of an artificial society and, thus, interact among its
members. Furthemore, it also includes a full description of a social model for multi-agent systems that
allows the actors to evaluate the social impact of their actions, and then to decide how to act in ac-
cordance with the simulated society. Finally, the authors show the social outcomes obtained from the
simulation of a particular 3D social scenario.

INTRODUCTION

Three-dimensional environments have signifi-
cantly evolved since their beginning in the late

DOI: 10.4018/978-1-61520-891-3.ch007

sixties. The continuous increase of the available
hardware as well as the improvement of the graphic
software, in parallel with the evolution of com-
puter networks, have brought virtual environments
closer to the physical world; as science fiction
already envisioned (Stephenson, 1992). 3D virtual

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



worlds are at the cutting edge of the evolution
of the Internet towards the new Web 2.0. Some
well-known examples of such kind of applications
are Massively Multiuser Virtual Environments
(e.g. World of Warcraft (Blizzard Entertainment,
2009), SecondLife® (Linden Lab, 2009)...). The
aim of these applications is the immersion of the
users within a fictitious world. However, apart
from the classical goal of immersive technologies
(achieved by means of virtual reality devices such
as data gloves or head-mounted displays) these 3D
worlds aim at achieving the user’s mental immer-
sion by populating virtual worlds with synthetic
actors, whose animated behavior resembles their
equivalent in reality.

The simulation of virtual worlds is a current
research topic with a great number of problems
to be tackled. One of them is the challenge of
populating virtual worlds with autonomous agents
emulating human behaviors. Besides showing a
good graphical appearance, these virtual actors
must perform like-life behaviors. The behavioral
animation requires the development of intelligent
systems that can simulate believable behaviors for
the 3D characters. This challenge involves dealing
with perception, motor or animation control, goal
selection, action planning and communication
skills to interact with other characters or users.
Therefore, this complex problem has led to the
integration of different artificial intelligence
techniques thatreproduce intelligent skills such as
autonomy, reactivity, pro-activity and sociability
(Wooldridge, 1995).

Day after day, virtual worlds are incorporat-
ing new services that not only complement the
originals located in the real world but also create
a hybrid total experience of the physical and vir-
tual reality, also known as interreality (Kokswijk,
2007). Consequently, the incorporation of social
skills in the behavioral animation of different
kinds of synthetic characters is a keystone in the
development of last generation 3D virtual worlds
(Williams et al., 2006; Yee et al., 2007). These
social synthetic characters could be used to im-
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prove the user’s mental immersion in Massively
Multiuser Virtual Environments (Rehm & Rosina,
2008). Additionally, they could be used to model
different behaviors in crowd simulations, in order
to evaluate the overall impact of different poli-
cies in critical circumstances such as catastrophic
events (Pelechano et al., 2008).

The complexity of the behavioral animation
requires splitting the problem and managing each
part independently. Since virtual actors should
have a reactive nature, which can be easily rec-
ognized by the users or other actors, this feature
is usually considered crucial for providing cred-
ibility. According to this, the literature of virtual
humans contains a high number of works focused
on reactive skills (Reynolds, 1987). Secondly,
proactive behaviors require the use of planning
or decision making mechanisms that introduce a
new intelligence layer to be integrated. Hence,
there is a significative reduction in the number of
works covering both behavioral aspects (Funge
et al., 1999). Finally, social behaviors are rarely
considered, as they add a new complex problem
to be integrated (Reilly, 1996). Sociability refers
to the ability of agents, which are part of an
artificial society, to interact among them. Some
works have faced sociability by providing syn-
thetic characters with skills such as navigation
(Helbing & Molnar, 1995), emotions or affection
(Lim & Aylett, 2009). Nevertheless, intelligent
virtual actors still lack a kind of collective or
social intelligence beyond these agent-centered
skills. As virtual humans usually play a role in
the simulated environment (e.g. a waiter, a guide,
etc.), they generate certain expectations associated
with their activities and their relationships with
the rest of agents in the scene, including the user.
However, virtual characters’ decision-making has
generally been modeled under self interested as-
sumptions, which are not suitable for multi-agent
domains. Instead, artificial society models should
beintroduced to provide virtual actors with socially
acceptable decisions. Actors need to evaluate
the social impact of their actions to decide how
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to act in accordance with the society. However,
social decision-making entails complex cogni-
tive processes that require an abstract knowledge
of the elements of the environment. Different
works have proposed the inclusion of semantic
information in virtual environments (Badler et
al., 2000; Farenc et al., 1999). Regardless of the
nature of the application, the definition of a basic
semantic knowledge will benefit the production,
the visualization and the interaction associated
to 3D virtual worlds. Moreover, the possibility
of reusing ontological descriptions previously
designed also constitutes an interesting feature
that approaches virtual worlds to the field of the
Semantic Web (Grimaldo ef al., 2008b).

In the next section, we analyze the social
decision-making techniques currently proposed
and their evolution. We also review the literature
around social virtual agents, as a specific use case.
Then, we focus on MADeM (Multi-modal Agent
Decision Making) (Grimaldo et al.,2008a),anew
open-source project based on the Multi-Agent
Resource Allocation theory (Chevaleyre et al.,
2006), that provides a robust social simulation
tool. MADeM is able to simulate different kinds
of societies (e.g. elitist, utilitarian, etc), as well as
social attitudes of their members such as, egoism,
altruism, indifference or reciprocity. All these
features are evaluated from the results obtained
in the Virtual University Bar, a social simulation
environment designed as an interesting example
to evaluate the features provided by the MADeM

Figure 1. From Rational agents towards social agents
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this context to avoid the behavioral inconsisten-
cies produced when displaying the animation of
groups of virtual actors. Task and goal passing
techniques are nomally used to provide a certain
degree of coordination in this context. Further-
more, the agents must be also prepared to cooperate
themselves when sharing the same goals, which
is also a normal group state.

On the other hand, socially intelligent agents
are autonomous problem solvers that have to
achieve their goals by interacting with other
similarly autonomous entities (Hogg & Jennings,
2001). Bearing this in mind, multi-agent systems
are normally referred to as societies of agents,
and provide an elegant and formal framework to
design social behaviors for autonomous agents.

The definition of a proper MAS organization
is not an easy task, since it involves dealing with
three main dimensions: functioning, structure, and
norms (Hiibner ef al., 2002). On the one hand,
as functionality is normally required, the MAS
generally aims at achieving the best plans and
cover aspects such as: the specification of global
plans, the policies to allocate tasks to agents, the
coordination of plans, etc. (Decker, 1998; Tambe,
1997). Onthe other hand, there are systems thatare
focused on defining the organizational structure
(i.e. roles, relations among roles, groups of roles,
etc.) and try to accomplish their global purpose
whereas the agents follow the obligations/permis-
sions their roles entitle them (Ferber, 1998; Fox
et al., 1998).

Frombehavioral animation area, muchresearch
hasbeen done in virtual agents for the last few years
(Badler et al., 1993; Reynolds, 1987; Thalmann
& Monzani, 2002). The pioneer work of Dimitri
Terzopoulos showed how to design a natural eco-
systems animation framework with minimal input
from the animator (Tu & Terzopoulos, 1994). He
simulated Artificial fishes in virtual underwater
worlds. However, human behavior is clearly dif-
ferent and more complex to emulate. In (Raupp
& Thalmann, 2001; Thalmann & Monzani, 2002)
the goal is to design controlled agents with a high
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degree ofautonomy. These agents are an extension
of the Belief-Desire-Intention (BDI) architecture
described in (Rao & Georgeff, 1991), and they
include internal states such as emotions, reli-
ability, trust and others. Emotional architectures
have been also applied to virtual agents (animals
and humans) to manage sociability and rational-
ity and to produce believable groups of synthetic
characters (Delgado-Mata & Aylett, 2004; Prada
& Paiva, 2005).

Social reasoning has been extensively studied
in multi-agent systems in order to incorporate
social actions to cognitive agents (Conte & Castel-
franchi, 1995). As a result of these works, agent
interaction models have evolved to social networks
that try to imitate the social structures found in
real life (Hexmoor, 2001). Social dependence
networks allow agents to cooperate or to perform
social exchanges attending to their dependence
relations (i.e. social dependence/power (Sich-
man & Demazeau, 2001)). Trust networks can
define different delegation strategies by means
of representing the attitude towards the others
through the use of some kind of trust model (e.g.
reputation (Falcone et al., 2004)). Finally, agents
in preference networks express their preferences
(normally using utility functions) so that personal
attitudes can be represented by the differential
utilitarian importance they place on the others’
utilities. Following this preferential approach, the
MADeM (Multi-modal Agent Decision Making)
model (Grimaldo et al., 2008a) is a market-based
mechanism for social decision making, capable of
simulating different kinds of social welfares (e.g.
elitist, utilitarian, etc.), as well as social attitudes
of their members (e.g. egoism, altruism, etc.).
It considers multi-modal decisions as those that
are able to merge multiple information sources
received from the group. Hence, MADeM agents
express their preferences for the different solu-
tions considered for a specific decision problem
using utility functions. Thus, coordinated social
behaviors such as task passing or planned meetings
can be evaluated to finally obtain socially accept-
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able behaviors. The nextsection fully explains the
MADeM procedure as well as its implementation
asan open-source library over Jason (2009), a well-
known multi-agent programming framework.

THE MADEM MODEL

The MADeM model provides agents with a
general mechanism to make socially acceptable
decisions. In this kind of decisions, the members
of an organization are required to express their
preferences with regard to the different solutions
for a specific decision problem. The whole model
is based on the MARA (Multi-Agent Resource
Allocation) theory (Chevaleyre et al., 2006).
Therefore, it represents each one of these solu-
tions as a set of resource allocations. Thus, the
definition domain of MADeM is composed by
the following elements:

A set of agents 121 = {al,...,an} where each

a, represents a particular agent involved in the

decision. A vector of weights w = w,,...,w _is

associated to each agent representing the internal
attitude of the agent towards other individuals.

.,7 } to be al-

located by the agents, where each r, represents

A set of resources R = {r;,..

resources in the form of task(slot), where the slot
is a parameter that needs to be assigned in order
to execute the fask. Then, it identifies each one
of the solutions for a specific decision problem
as an allocation P of elements (either agents or
objects) to task-slots as follows:
P={t (51) —e,nl (s”) —e (51) e et (8,) — €.}
A set of utility functions U = {U",U?,...,U"}.
These utility functions will be used to evaluate
the allocations from different points of view. Ad-
ditionally, each agent will have a vector of utility

weights w = w,,...,w, representing the im-

portance given to each point of view in the multi-
modal agent decision making.

. A collective utility functions Cuf = {elit-
ist, egalitarian, utilitarian, Nash}, repre-
senting the social welfare of the simulated
society, that is, the type of society where
agents are located.

MADeM uses amarket-based winner determi-
nation problem to merge the different preferences
being collected according to the kind of agent
or society simulated. The details of the whole
decision making procedure are explained in the
following subsection.

Decision Making Procedure

MADeM uses one-round sealed-bid combinatorial
auctions to choose among different solutions to a
decision problem. Auctioneer and bidderroles are
not played by fixed agents throughout the simula-
tion. Instead, every agent can dynamically play
each role depending on his/her needs or interests.
For example, an agent would be the auctioneer
when he wanted to pass a task to another agent.
On the other hand, agents receiving the auction
would bid their utility values provided that they
were interested in the task being auctioned. Thus,
MADeM lies in between centralized and distrib-
uted market-based allocation.

Anoverview of the multi-modal decision mak-
ing procedure followed by the agents is shown in
Figure 2. This procedure is mainly based on the
following steps:

Auctioning phase: This phase is carried out
by a single agent (a, ) who wants to socially solve
a decision problem (e.g. where to sit). This agent
then constructs the set of allocations representing
all the possible solutions for the problem (
P,P,...,P ). These allocations have the form
of task slots assignations such as
itAt(Obj )« table . Next, he auctions them to
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Figure 2. MADeM Procedure

auk < {P,... P_}, U = auction < allocations, utility-function
rauk <u”( {P,... P_} )> = response-ag -auction < utility-function{allocations) >

{7) Auctioneer agent (") Bider agent

aut < {P,... P}, U1 >

1.- Start: Send allocations (au)
2.- Receive Social Feedback (rau)
3J.- Calculate the winner allocatio

-

aukt < {P,... P_J, Uk

auk < {P,... P}, UK>

aparticular group of agents, that we call the target
agents. Each auction also includes a single type
of utility function that the agent is interested in
evaluating from the others (au" (P, P,,..., P, ,U")).
As complex decisions require taking into consid-
eration more than one point of view, the auction-
eer agent can start different auctions for the same
set of allocations (au' through au?).

Bidding phase: Since the auctioneer informs
about both the task slot allocations and the utility
functions being considered, bidders simply have
to compute the requested utility functions and
return the values corresponding to each auction
back to the auctioneer

(rau; =U'(PB),...,U(P,)).

1. Winner determination phase: In this phase,
the auctioneer selects a winner allocation for
each launched auction. To do this, he uses
a classical winner determination problem.
Afterwards, he chooses one final winner al-
location among these auction winners using a
multi-modal decision making process. Thus,
the final winner allocation will represent an
acceptable decision for the society being
simulated. The details of these calculations
are fully described in the next section.
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rau,s <UK(P,), ... UF( P,)

i "'-: auk < {P,... P}, Uk>
a

2

rau  <U K(P,), ..U k(P ) >

Winner Determination Problem

Once bidders have answered to an auction call
(no answering means no preference, therefore,
utility zero) the auctioneer agent has the utility
values (U !(PJ) ) given by each bidder (i € A) to
every allocation being evaluated (Pj ). Equation
1 groups these utility values in a set of vectors,
one for each allocation.

Vjel.m]
(M

Remember that every agent had an associated
vector of weights representing its attitude towards

the otherindividuals (w = w,,...,w, ).According
to it, the auctioneer weighs the utility vectors in
equation 1 doing a component by component
multiplication with the attitude vector as shown
in equation 2.

Vjel.m]
2
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Attitude weights are used to model the social
behavior of the auctioneer agent. For example,
a whole range of behaviors between egoism and
altruism can be modeled using the vector of equa-
tion 3, where p=0represents the previous behavior,
p=1represents total altruism and p=0.5 represents
an egalitarian behavior or indifference between
oneself and the rest of the agents.

Egoism — Altruism:

w=p...,pl=p,p,....p w =1=pw,_, = pi= Myself

3)

i

Itis also possible to model reciprocal attitudes

by means of the vector w. A simple example is
shown in equation 4, where weights are based on
the interchange of favors between agents.

Favors _ from(i)

4

Reciprocity: w. =
prociy:, Favors _to(i)

In order to socially behave, the auctioneer
agent attends to the social welfare value when
selecting the winner allocation of each auction.
Therefore, the winner determination problem
chooses the allocation that maximizes the welfare
of the society (equation 5).

VEke(l.q]

Auction Winner:
P > sw(P ) = max sw (Pj) ®)]

wk wk jell..m]

To compute the social welfare of an allocation,
the auctioneer uses Collective Utility Functions
(CUFs) and the weighted utilities defined in
equation 1 (as shown in equation 6). MADeM
allows selecting among different CUFs when
evaluating the social welfare of an allocation. At
the moment, four CUFs have been integrated in

MADeM, each one related to a kind of society:
utilitarian, egalitarian, elitist and Nash.

sw(P) =cuf |U, (P) where

=2 u,(0)
U e = i {u, ()}
cuf,,., = mazx {uu(z)}
cufy,g = | [w.,(0)

An agent can ask other agents about different
points of view (e.g. efficiency, tiredness, etc). In
order to do this, he performs several auctions with
different types of utility functions (see parameter

Cuf;tilimrian

(6)

U" in Figure 2). Once all these auctions have
been resolved, the auctioneer has the winner al-
location for each point of view and the social
welfare obtained provided that allocation is ad-
opted (see equation 7).

Lastly, the MADeM final winner allocation is
that which maximizes the welfare of the society
after having multiplied it by the corresponding

utility weight w , as shown in equation 8:

Final Winner:
— sw(P ) = maxw, (k)*sw(P )

w w kefl..q] wk

(8)
J-MADeM: MADeM over Jason

This section describes how the MADeM model
can be used by an agent programming language
to make socially acceptable decisions available to
agents eventually part of an organization. Among
several languages foragent programming, we have
chosen the AgentSpeak language (Rao, 1996) and
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its open source interpreter Jason (Bordini et al.,
2007) to program this kind of social agents. This
choice was made because the language is based on
the well known BDI architecture and the interpreter
can be easily customised to include the MADeM
support. The coupling of MADeM with Jason is
inspired in other extensions of Jason, in particular
J-MOISE+ (Hiibner et al., 2007) and hence the
name J-MADeM, as it joins Jason and MADeM.

The J-MADeM is built upon the Jason Com-
munication Infrastructure, thus extending the
communication level options available in Jason
with a set of modules that provide agents with the
built-in feature of performing MADeM decisions.
Figure 3a illustrates how these components are
integrated into Jason. The J-MADeM basically
offersto the AgentSpeak programmer: (i) an agent
architecture that Jason agents can use to carry out
their own MADeM decisions, (ii) an interface to
develop utility functions that can be used along
with the MADeM model and (iii) a set of internal
actions to manage the parameters of these kinds
of decisions.

The J-MADeM Agent Architecture extends the
Jason Agent Architecture in order to incorporate
all the necessary modules that allow MADeM
decisions to be automatically carried out. The

Sociable Behaviors in Virtual Worlds

main components of the J-MADeM Agent Archi-
tecture are shown in the figure 3b, where we can
identify the following elements:

. MADeM Parameters: This data storage
contains the MADeM context currently de-
fined for the agent. Essentially, it stores the
personal weights, the utility weights, the
collective utility function and the bid time-
out to be used in future MADeM decisions.

. Decision Launcher: This module starts
the MADeM process for a particular deci-
sion. Firstly, it stores the MADeM context
for this decision into the Decision Data
storage, thus allowing other decisions to
be concurrently performed with different
MADeM parameters. Secondly, it auctions
each of the allocations being considered as
solutions to the target agents.

. Decision Data: This data storage holds
all the information related to the MADeM
decisions still in process. Therefore, it
contains their MADeM context, their con-
sidered allocations and the preferences re-
ceived for each of them.

. MADeM Communication Module: This
module extends the Jason agent com-

Figure 3. (a) Overview of the J-MADeM architecture and (b) detailed view of the J-MADeM Agent

Architecture.
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munication module in order to deal with
MADeM messages. When it receives a
MADeM auction, it invokes the Bidder
Module to get the agent’s preferences over
the considered allocations. On the other
hand, when it receives a MADeM bid, it
informs the Auctioneer Module about the
received preferences.

. Bidder Module: This module manages the
reception of a MADeM auction. It extracts
the considered allocations and bids for
them according to the agent’s preferences.
To express these preferences it relies on
the utility values provided by the Utility
Functions Manager.

. Utility Functions Manager: This com-
ponent acts as an interface between the
built-in MADeM mechanism and the user
defined Utility Functions. Thus, it is in
charge of locating and invoking them in
order to calulate the agents’ utilities for the
set of considered allocations.

. Auctioneer Module: This module man-
ages the reception of MADeM bids. It
extracts the sender’s preferences and
stores them into the Decision Data. As
soon as the preferences from all the tar-
get agents have been received, it calls the
Winner Determination Module to solve the
decision.

Figure 4. Multi-agent simulation framework

| 3D Engine |
I .
<
4]
@
P e e e e =
-t
World Model s

Semantic Layer

. Winner Determination Module: This
module solves the MADeM winner de-
termination problem using the informa-
tion stored into the Decision Data for the
decision being resolved (i.e. considered
allocations, agents’ preferences, personal
weights, utility weights, social welfare...).
Once resolved, it notifies the agent about
the winner solution.

For a complete description of the utility func-
tion interface and the set of internal actions refer
to the J-MADeM documentation available at the
Jason website (Jason, 2009).

APPLICATION EXAMPLE

In this section, we show how we have integrated
MADeM into a multi-agent framework oriented
to simulate socially intelligent characters in 3D
virtual environments. This framework is devel-
oped over Jason (2009), so that the J-MADeM
library is used to provide BDI agents with the
ability to perform MADeM decisions. Figure 4
depicts the architecture of the system, which can
be basically divided into two parts:

e The Semantic Virtual Environment uses
ontologies to define the world knowledge

Socially intelligent agent

..............................

Agent Specification File

Conver-
Sational
library,

Social relations

Domain Specific Ontology

SVE Core Ontology

E Semantic
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! Environment
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base (i.e. the object taxonomy and the ob-
ject interrelations) as well as the set of all
possible relations among the agents within
an artificial society. The environment is
handled by the Semantic Layer, which acts
as an interface between the agent and the
world, thus sensing and executing the ac-
tions requested by the agents. The anima-
tion system — virtual characters, motion
tables, etc. — is located at the 3D Engine
that can extract graphical information from
the World Model database in order to per-
form visualization.

. Socially intelligent agents receive senso-
rial information from the Semantic Layer
and compute the appropriate sequence of
actions in order to achieve their goals. The
agent’s finite state machine is defined in
the Agent Specification File. 1t calls the
following libraries to enrich agent behav-
ior: the Task Library, that contains the op-
erators that sequence the actions needed to
animate a task; the J~-MADeM Library, that
provides the agents with the mechanisms
to make social decisions; and finally, the
Conversational Library, that contains the
set of plans that handle the animation of
the interactions between characters (e.g.
ask someone a favor, planned meetings,
chats between friends...).

In order to test MADeM, we have created a
virtual university bar where waiters take orders
placed by customers. The typical objects in a bar,
such as a juice machine, behave like dispensers
that have an associated time of use to supply
their products (e.g. 2 minutes to make an orange
juice) and they can only be occupied by one agent
at a time. Therefore, waiters should coordinate
to avoid conflicts. Additionally, agents can be
socially linked using the concepts defined in the
ontology (Grimaldo ef al., 2008b). For example,
waiters and customers create social relationships
with their friends and this social network is used
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when deciding whether to do favors, to promote
social meetings, etc.

Waiters serve orders basically in two steps:
first, using the corresponding dispenser (e.g. the
grill to produce a sandwich); and second, giving
the product to the customer. For each task, a waiter
evaluates whether to carry out the task against the
chance to pass it to another waiter and perform
his next task. That is, tasks are always auctioned
using MADeM before their execution in order
to find good social allocations. When calling
MADeM, waiters take into account three points
of'view (i.e. utility functions): performance, chat-
ting and tiredness. First, the performance utility
function aims at maximizing the number of tasks
being performed at the same time and represents
the waiters’ willingness to serve orders as fast
as possible. Second, social behaviors defined
for a waiter are oriented to animate chats among
its friends at work. Therefore, the social utility
function evaluates social interest as the chance to
meet a friend in the near future, thus performing
a planned meeting. Third, the tiredness utility
function implements the basic principle of mini-
mum energy, widely applied by humans at work.
Finally, the type of society being simulated for
waiters is elitist. That is, waiters will choose those
allocations that maximize the utility functions
previously defined.

On the other hand, customers place orders
and consume them when served. Now, we are
interested in animating interactions between
customers that are consuming with their friends.
Therefore, customers call MADeM to solve the
problem of where to sit. In this case, the task slot
being auctioned is the place where to sit and the
candidates being evaluated are all the tables in the
environment as well as the bar. Customers con-
sider two points of view when calling MADeM:
sociability and laziness. The social utility function
defined for customers assigns a maximum value
to a table provided that there is a friend sitting
on it. To consume standing up at the bar is not
considered of social interest at all, hence, its util-
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ity value is defined as zero. The laziness utility
function evaluates each table according to their
distance to the customer and, opposite to sociabil-
ity, standing at the bar is now considered the best
option. The type of society being simulated for
customers is utilitarian, therefore, customers will
choose those allocations that maximize the addi-
tion of the utility values previously defined. For
a full description of the utility functions used by
waiters and customers see (Grimaldo et al.,2008a).

Results

In order to verify the social outcomes obtained
with MADeM agents, we have simulated dif-
ferent types of waiters serving customers (see
Figure 5 for a snapshot of the running 3D virtual
environment). The results shown in this section
correspond to simulations where 10 waiters attend
100 customers.

As we have previously mentioned, we have
modeled an elitist society of waiters within which
agents consider three points of view (i.e. perfor-
mance, sociability and tiredness), each of them
represented by its own utility function. In this
context, utility weights can be adjusted to create
different types of social waiters. For example, a
coordinated waiter could be an agent that choos-
es its decisions following performance 75% of
the times and following sociability or tiredness
in the rest of the situations. The vector of utility
weights for a coordinated waiter would then be

—

w, = 0.75,0.125,0.125 , where each component

represents the importance given to each utility
function being evaluated. Similarly, we have
defined social waiters as agents with the follow-

ingvectorofutilityweights w = 0.125,0.75,0.125
and egalitarian waiters as agents with

—

w, = 0.125,0.125,0.75.

Table 1 summarizes some performance results
obtained with coordinated, social and egalitarian

Figure 5. 3D virtual university bar environment

waiters against self-interested waiters with no
social mechanism included. Firstly, column
Tasks/s results from dividing the total number of
actions performed by all the waiters by the amount
of time needed to serve all the customers. Sec-

ondly, column NChats is the average number of
chat actions carried out by each waiter. Thirdly,

column o shows the standard deviation in

NTasks
the number of actions performed by each waiter.

According to these results, coordinated waiters
perform better (see higher values in column
Tasks/s) since the majority of conflicts caused by
the use of the same dispenser (e.g. the coffee
machine) are resolved with specialization, that is,
by passing the task to another waiter already us-
ing the dispenser. On the other hand, social wait-
ers take more time to serve customers but animate
a greater number of chats among friends (compare
the average number of chats being animated in

column NChats ). Egalitarian waiters look at the
tiredness utility function and try to allocate the
task to the least tired waiter, therefore, the standard
deviation in the number of tasks performed by
each agent tends to zero (see column o, . ).
Finally, self-interested waiters demonstrate to
perform worse than any kind of social waiter. As

these agents are unable to do task passing nor
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Table 1. Performance results of different types of waiters

Agent Tasks/s NChats O N Tasks
Coordinated 0,91 5 6.73
Social 0.65 29.4 437
Egalitarian 0.62 6.6 2.74
Self-interested 0.17 - -

chatting, columns o, . and NChats are not

sks
considered.
Besides the possibility to define the importance

of each point of view through the vector of util-

ity weights ;: ,MADeM allows for the definition

—

of a vector of personal weights w that models
the attitude of an agent towards the other indi-
viduals. Table 2 shows the task passing results
obtained for the defined waiters using the models
of attitude considered previously: indifference,
reciprocity, altruism and egoism. In this table,

column Favors refers to the average number of
favors (tasks) exchanged between the agents and
column o, refers to the standard deviation in
the number of favors. Agents using indifference
do not apply any modification over the utilities
received. Therefore, we consider the results of

this attitude as the base values to compare with
for each type of waiter. Reciprocity weights
utilities attending to the ratio of favors already
done between the agents. This attitude produces
equilibrium in the number of favors exchanged
as it can be seen in column o, . Altruism has
been implemented in such a way that the weight
given to oneself utilities is 0.25 whereas the
weights for the rest of the agents are 0.75. As
expected, altruist agents do more favors, since
the importance given to the other’s opinions is
three times the importance given to their own
opinion (see high values for the average number

offavors exchanged Favors ). Onthe other hand,
egoism weights are 0.75 to oneself and 0.25 to
the others, thus, agents rarely do favors (see low

values in column Favors).
Agent’s preferences can sometimes go against
personal attitudes. Forexample, whereas reciproc-

Table 2. Task passing results for different personal weights

Coordinated Social Egalitarian
Attitude Favors Favors Favors Favors Favors Favors
Indifference 7.57 6.9 3.52 8.7 7.58 13.6
Reciprocity 1.15 8.8 1.76 7.8 2.4 15.5
Altruism 5.94 17 6.66 12.7 4.44 17.9
Egoism 1.41 0.7 0.81 0.4 0.47 0.1
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ity tries to balance the number of favors, tiredness
tends to assign tasks to the least tired waiter (see
the greater o, ~  for egalitarian waiters). An-
other example is egoism applied to egalitarian
waiters, in this case no task at all is passed among

the agents (Favors = 0.1). However, agent’s
preferences can also empower personal attitudes.
For instance, altruism applied to coordinated
waiters produces a high level of specialization.
This type of agents produces big values for o,
as the agents already using a dispenser (e.g. a
juice machine) keep on getting products from the
dispenser following both an altruist and a coor-
dinated behavior that reduces collisions for the
use of an exclusive resource. Despite this issue,
personal weights have demonstrated to produce
similar effects on the agents regardless of the kind
of'waiter being considered (i.e. coordinated, social
or egalitarian).

Unlike waiters, customers make decisions
within a utilitarian society where they consider
two points of view: sociability and laziness. Fig-
ure 6 shows the behavior obtained with different
types of customers. We compare two metrics: the
meannumber of social meetings performed among
the customers and mean distance covered to con-

Figure 6. Lazy vs. social customers

18

sume. Lazy customers, with low utility weights
for sociability, most of the time choose to consume
at the bar or to sit at a nearby table (see point

—

w = 0.3,0.7). Therefore, the mean distance to
the consuming place is short but only a few social
meetings are animated. On the other hand, social
customers, with higherutility weights for sociabil-
ity, perform more social meetings but they also
need to move longer distances to find their friends.

Points E = 0.6,0.4 and E = 0.7,0.3 in figure

6 correspond to some examples of social custom-
ers.

FUTURE RESEARCH DIRECTIONS

3D virtual worlds have significantly evolved
since their beginning. However, users often point
to their lack of immersion due to the great num-
ber of uninhabited scenes or to the elementary
interactions between avatars and autonomous
humanoids. Currently, synthetic actors still need
to incorporate a broad range of social techniques
to enhance their behavioral animation, which will
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finally improve the mental immersion of the user
within 3D virtual worlds.

Therefore, future work in this research area
must cover the integration of new social tech-
niques in the agent decision making, such as the
one presented in this chapter. This goal must lead
the researchers to look for the synergy among
computer graphics, artificial intelligence and
social sciences. This sort of socially intelligent
actors will be useful to populate professional
environments such as a 3D e-government office
(where autonomous humans can socially follow
the protocols between the administration and the
citizens) as well as entertainment scenes such as
the virtual bar showed in this chapter.

CONCLUSION

This chapter has presented a new social decision-
making technique to provide 3D virtual agents
with consistent social behaviors suitable to be
animated. Firstly, we have analyzed the literature
and evolution of social decision-making in multi-
agent domains. Then, we focus on MADeM and
its integration into Jason (J-MADeM), a new
open source library oriented to create different
types of simulated societies. The main feature of
J-MADeM agents is that they are able to merge
several points of view received from other agents.
This social feedback is modeled via utility func-
tions that express the preferences of each agent for
every solution being considered. The application
example presented aims at incorporating human
style social reasoning for character animation. This
way, we evaluate the social outcomes provided
by the J-MADeM. The results obtained for the
virtual university bar show how two groups of
socially intelligent agents can consider different
points of view in their decision making: first, a
team of waiters using performance, sociability and
tiredness; and second, a model of customer that
evaluates sociability and laziness. Furthermore,
this example allows the agents to manage several
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personal and collective utility functions as well
as a set of weights (personal and utility-based) in
order to perform elaborated social simulations.
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