An efficient synthetic vision system for 3D
multi-character systems *

Miguel Lozano', Rafael Lucia?, Fernando Barber!, Fran Grimaldo?, Antonio
Lucas!, Alicia Fornes Bisquerra?

! Computer Science Department, University of Valencia,
Dr.Moliner 50, (Burjassot) Valencia, Spain
2 Institute of Robotics, University of Valencia,
Pol. de la Coma s/n (Paterna) Valencia, Spain
{Miguel.Lozano}Quv.es

Abstract. This paper deals with the problem of sensing virtual environ-
ments for 3D intelligent multi-character simulations. As these creatures
should display reactive skills (navigation or gazing), together with the
necessary planning processes, required to animate their behaviours, we
present an efficient and fully scalable sensor system designed to provide
this information to different kinds of 3D embodied agents (games, sto-
rytelling, etc). Inspired in Latombe’s vision system [5], as recently pre-
sented by Peters [1], we avoid the second rendering mechanism, looking
for the necessary efficiency, and we introduce a fully scalable commu-
nication protocol, based on XML labelling techniques, to let the agent
handle the communication flow within its 3D environment (sense + act).
The synthetic sensor system presented has been tested with two plausible
local navigation formalisms (Neural Networks and Rule based System),
whose models and results have been also reported.

1 Introduction

Artificial humans or 3D intelligent characters normally display their intelligence
through their navigation skills, full-body control, and decision-taking formalisms
adopted. The complexity involved in these kinds of agents, normally suggests de-
signing and executing them independently of the 3D graphics generator, so the
agent could be focuss on their control problems (figure 1). As Thalman pointed
out [4], the major challenge now is to integrate in the same framework a set of
various techniques which are required to simulate behaviours of virtual humans.
We are working in that direction, that is, towards the creation of a robust sim-
ulation framework for Intelligent Virtual Environments [2], where different 3D
embodied agents are able to sense their environment, to take decisions, to navi-
gate in a dynamic scenario and finally to carry out the necessary motor actions
which will animate their behaviours. This can be considered as a requirement
for 3D multi-character simulations, as described in storytelling domains.

* partially supported by the GVA-project CTIDIB-2002-182 (Spain).

2 Miguel Lozano et al.

In this paper we propose a general way to handle the relationship between
the agent and its 3D environment. Sensing a 3D environment normally relies
on the behavioural model supported by the simulation environment. As classi-
cal time based environnments with a scenegraph manager (OpenGL-Performer,
Java3D, etc), lacks a consistent communication protocol between the geometry
encapsulated in their nodes, we have adopted an event driven 3D environment
(Unreal Tournament 3) which offers a general mechanism to manage the neces-
sary environmental changes, as it has been used previously in this context [9].
In this way, we consider storytelling domains as an adequate simulation frame-
work for 3D intelligent characters or 3D multi-character system, so from this
particular point of view, the agent sensory systems designed should be able to
manage the two information sources, typically considered when studying arti-
ficial humans. Firstly, the low level, as the information required for reactive
behaviours (visual attention, reactive navigation, etc), and secondly, the high
level or symbolic one, which represents the visible state perceived from any
object/agent accepted by the vision test (eg.: actorl:free, doorl:open, etc), or
another external stimuli that the agent should know, in order to be consistent
with the story or the simulation (audio events, user-interactions, etc).

The sense-act system implemented has been designed according to these re-
quirements, and has been integrated in the Unreal Tournament (UT) graphics
engine, where it will be tested as an efficient method to support 3D multi-
character navigation tasks.

3D Virtual Environment

Visible objects and changes

Navigation Planning

@ Q Memory Model

. Agent
Actions

Fig. 1. Agent scheme

The paper has been organized mainly in three sections. Firstly we review
previous works on 3D characters or humanoids which reproduce a local infor-
mation flow. Secondly we explain the synthetic vision system implemented and
its integration in the Unreal Tournament engine. Finally we briefly present the
Neural Network and Rule based system formalisms adopted to test the vision
system in a 3D dynamic environment, where both types of agents will navigate
only according to the local information provided by their vision systems.

3 Epic Games, USA

Lecture Notes in Computer Science 3

1.1 Related work

The number of 3D characters or humanoids which reproduce a local information
flow, is still reduced, as these kind of agents can normally access the complete
visual data base. This situation has motivated a higher exploration of global
approaches for human character navigation. From the games community, the
problem of animating 3D intelligent characters has been approached mainly with
global heuristic search algorithms (A* family) in 2D-grids [6]. On the other
hand, the characters will receive the necessary environmental events (collisions,
other NPCs,...), to be informed about the state of environment at a higher
representational level. This behavioural side is typically managed by finite state
machines (FSM), which normally support the reactive character behaviours.

Tu and Terzopoulos have researched artificial sensing with individuals and
schools of fish [12]. They have used the double-rendering and false-color tech-
niques to simulate the synthetic vision processes. This model has been also ported
to virtual humans [11]

Renault et al. introduces a synthetic vision module for animating 3D actors,
focused mainly on navigation tasks. The scene is again rendered from the agent’s
point of view, and the output is stored in a 2D array. This array stores first the
pixel at that point, secondly the distance from the actor, and lastly an identifier
for any object at that position. As the goal of this vision system is to allow
the actor to navigate in a corridor with obstacles and actors, they used DLA’s
(Displacement Local Automata), which encapsulate the necessary knowledge to
face normal navigation situations [3].

Noser et al. extended the previous work introducing new memory mech-
anisms, although the vision processes remain the same. They consider global
navigation with a simplified map for pathplanning tasks in a static world, so in
order to deal with the environmental changes, they introduce a local navigation
system, which will receive the navigation sub-goals from the global system. As
the local navigation formalism has no environmental model, the actor will create
an octree data structure to represent its long-term memory during simulation
[4].

Kuffner and Latombe present a perception-based navigation system for ani-
mated actors. A record of perceived objects and their properties are kept as the
character explores an unknown virtual environment, providing a relatively com-
pact and fast representation of the actor’s internal world, as recently presented
in [1]. Again a combination of global and local systems lets the agent explores
3D environments.

2 Synthetic Vision and Perception

Synthetic vision has been considered as the process of capturing the list of visible
actors (objects or agents) from the agent point of view. Although the possibility
of directly accessing the database is simple and fast, it suffers from scalability and
realism problems. On the other hand, the application of a second rendering from

4 Miguel Lozano et al.

the agent viewpoint using a false coloring object identification, offers an elegant
way to achieve this list (simulating a human retinal image) [12][3][5][1]. However,
it is normally the bottleneck of the system, so finally a single or small number
of agents can be simulated in real time. To avoid this bottleneck, without losing
visibility consistency, we are simulating inter-actors occlusion in local domains
based on simple and fast geometric techniques extracted from [10]. In this way,
the synthetic vision process has been mainly undertaken in two phases.

Firstly we extract the nearest actors from the Unreal Tournament 3D envi-
ronment map area (UT). Secondly, as NPC’s during games are normally allowed
to see through walls and other objects, we have filtered this UTLst (see figure
1) removing the occluded actors from the agent point of view (Visible List).
Both processes have been fully integrated in UT through the necessary scripts
to finally provide the Observation List for the main agent process.

Synthetic
Vision

Unreal List = {obj1, obj2, obj3, A, B, C, D }

Visibility List = fobj1, A, B, C, D }

Observation List = {obj1(appereance, state), ...,
removed A(appereance, state),...,D(appereance, state)}

— N
xyz, hpr, Bbox, color, ||. on(table, A), on(B, D),
- state(closed) state(open)
v
| XML-TCP Module |—>
to the Agent Visual

Memory Model

Fig. 2. Synthetic vision model

2.1 Integrating sense/act agents in UT

Assuming the general procedure for distributing all the simulation changes in
the 3D environment (event-driven), and in order to be consistent with the be-
havioural model of such graphic engine, we have implemented the following com-
munication modes to let the agent deal with its vision system:

— Event-driven mode (on property change): Vision can inform the agent
anytime an actor or an object property has changed. To support this mode,
the synthetic vision modules compares, at regular time intervals, the current
Observation List against the previous one. In this way, when the vision
system detects a change inside the agent field of view, that is, when a visible
actor exits, a new actor enters, or a visible actor’s property is updated, the
correspondent XML token is sent to the main agent process.

Lecture Notes in Computer Science 5

— Fixed time mode (on time): The vision system can be programmed to

send its current Observation List at fixed time intervals.

— Agent’s demand (on demand): As the sensor system presented will be

always managing the current environmental information, it can provide this
information when needed.

In this way we let different type of agents handle autonomously the sensory

information perceived from their fields of views. Actions, observations and in-
teraction modelling are normally big agent problems. We have introduced easily
scalable XML labelling techniques to be able to manage a general and robust
mechanism for the knowledge embedded in 3D multi-character simulation sys-
tems. Currently we are applying it to:

— The communication mode: Any agent formalism provided with a typical

socket connection (IPaddr, Port), is allowed to instantiate its vision module
in UT, simply by sending the XML token defined for this purpose. The vi-
sion system is continually listening to the map entry port, so when an agent
wants to participate in a simulation, a new vision system is created in UT
to handle an independent communication flow between them. This initial
message will also include the communication mode (on events/on time/on
demand), together with the agent properties interested in receiving informa-
tion (appearance/state/all).

The actor’s properties: We consider the semantic list approach adopted,
similar to [5] [1], as an adequate technique to manage the necessary knowl-
edge for 3D real time multi-character simulation systems. This knowledge
is currently located in the actor properties, and is divided into two main
groups, appearance an state. Appearance include position, orientation,
speed, vertex list (bounding box), size, etc. State representation covers the
visible semantic information the actor is representing and will be useful for
the agent planning tasks. Currently, it is based on tuples < atomy, valy, vals >,
eg. box::< state, closed, NULL >, or box::< on, table,a >, although for cur-
rent navigation purposes this is logically disabled. As previously cited and
according to the communication mode defined, the actor properties changed
can shape an XML token which will be finally sent to the agent (Figure 2).
The agent actions: The communication established between the agent and
its 3D environment can be also used to inform the motor agent system about
the actions to be carried out. We have used classical STRIPS representation
for action modelling, in previous experiments focussed on Heuristic Search
Planning (HSP) for character behaviour animation [8]. According to this,
we are using the representation previously introduced which is sufficient for
simple keyframing based actions. For instance, if an agent tries to open a
box, the UT box-script, which controls this action, should know its effects
(state(open)), so, as it control the action execution it will be allowed to
produce a change on the box state properties, depending on action results
(success/failure). Furthermore, the labelling technique used will let us in-
clude some ezecution conditions in character actions, which will be evaluated

6 Miguel Lozano et al.

during action execution. Although this paper has been focussed on the effi-
ciency of the vision system, tested for navigation tasks, however we expect
to integrate the HSP system designed, for resolving storytelling problems as
soon as possible.

The communication model presented is simple (text based tokens) and can
be easily scalable to new information resources, such us audio, non-verbal com-
munication, or another virtual human environmental perception requirements.
Furthermore, the parsing of XML text sequences is a robust technique which can
be easily integrated in both logic based agent systems (Prolog, Lisp) and pro-
cedural languages (C++). Finally, this semantic-list approach clearly facilitates
the integration of layered agent systems, where both reactive and deliberative
layers can work in parallel using the information provided by their sensor and
memory models.

3 Reactive navigation formalisms

In order to test the visual information system designed, we have implemented
two reactive navigation formalisms.

Feedforward 3-layered Neural approach [7]: Angular velocity maps have
been used as it provides for an accurate vision memory model for navigation
tasks. Basically they are collections of classical neurons, which represent all the
possible navigation directions from an egocentric view. As figure 2 resumes,
parsing the bounding box of each agent observation a couple of vectors (rays),
which cover any plausible obstacle from its point of view, can be extracted. This
information is enough for the 3-layered (G-C-M) feedforward design presented
in [7], where the goal following layer (G) will compute the goal direction, the
correction layer (C)will manage the forbidden directions anytime, and lastly,
the motor layer (M) will give us the current agent direction, as a combination
of previous layer activities. This feedforward metaphor could be also used to
model visual attention, as the correction layer could be used, in this case, to
represent the degree of interest in each direction (according to the perceived
object properties, such us, position, size, color, etc).

A rule based system based on qualitative perceptions has been also im-
plemented.The rule based system we are using for navigation works with the
classical cycle of simulation: sense - think - act. The way it communicates there-
fore with the UT world is on demand and not driven by events like the neural
network approach. Every time a cycle begins, the system sends a petition to
the UT world for sensor information. The system processes this information and
sends back to the UT world the action to be performed.

All the sensor information received from UT is stored in the working memory
of the rule based system. We have used a qualitative approach for the represen-
tation of this knowledge so the rules are more simple to write and to understand.
The information received is translated to a qualitative representation from the
agent viewpoint before it is stored in the working memory. Once stored, the

Lecture Notes in Computer Science 7

inference engine is launched and the action to be carried out is deduced from
the sensor information. For the implementation of the agents with a rule based
system we have used Prolog, although the syntax for the rules is similar to the
CLIPS rules, so they can be easily ported.

4 Results

Figure 3 summarizes the results obtained. In the first one (a), we are comparing
the two navigation formalisms briefly introduced, with a single character which
has to perform a 6 lentgh plan. Both navigation models, the Neural Network
agent (NN) and the Rule based one (RB), handle a simple Short Term Memory
model by simply adding a timeout to the received observations. As the figure 3
shows, this is enough to solve some local minima situations, as characters can
remember previous object locations for solving the current navigation decision.
Figure 3b mainly shows the internal memory model (from rays to 2D boxes)
managed by the NN agent. In this case we have introduced a small 3D pylon to
show the plan sub-goals (1-6), so the agent has to avoid them too. Figure 3¢ and
3d shows multi-character results

Fig. 3. Navigation results

8 Miguel Lozano et al.

5 Conclusions and Work in progress

The sensory system presented constitutes an efficient approach for 3D multi-
character simulations, as it let us distribute the information represented in the 3D
environment according to normal vision processes. In this way, a finite number
of agents can share a common and unknown 3D environment managed by the
graphic server. All the results has been obtained in a dual PC-PentiumlIV with
a standard 3D graphics accelerator board.

The full integration of the HSP system together with the neural network
design roughly described here, constitutes the work actually in progress. As a
result of this integration, the intelligent characters created will be able to perceive
its environment, and animate autonomously their behaviours for solving different
storytelling problems.

References

1. C. Peters, C. OSullivan: Synthetic Vision and Memory for Autonomous Virtual
Humans. Computer Graphics Forum Volume 21, Issue 4 (November 2002)

2. Aylett R. Luck M. -7 Applying Artificial Intelligence to Virtual Reality: Intelligent
Virtual Environments”. Applied Artificial Intelligence, 2000.

3. Renault, O., D. Thalmann, and N.M. Thalmann.: A vision-based approach to be-
havioural animation. Visualization and Computer Animation, Vol. 1, pages 18-21,
1990. 2, 3

4. H. Noser, O. Renault, D. Thalmann, N. Magnenat Thalmann, Navigation for Digital
Actors based on Synthetic Vision, Memory and Learning, Computers and Graphics,
Vol.19, Nol, 1995, pp.7-19.

5. J. Kuffner and J.C. Latombe. ” Fast Synthetic Vision, Memory, and Learning for
Virtual Humans”. Proc. of Computer Animation, IEEE, pp. 118-127, May 1999.

6. M. Cavazza, S. Bandi, I. Palmer Situated AI in Computer Games: Integrating NLP,
pathplanning and 3D animation., AAAI Spring Symposium on Al and Computer
Games, 1999.

7. M. Lozano, J. Molina. A neural approach to an attentive navigation for 8D Intelli-
gent Virtual Agents. IEEE System Man and Cybernetics October 2002, Tunisia.

8. M. Lozano, Mead, S.J., Cavazza, M. and Charles, F. Search Based Planning: A
Model for Character Behaviour. Proceedings of the 3rd on Intelligent Games and
Simulation, GameOn-2002, London, UK, November 2002.

9. Michael Young An Overview of the Mimesis Architecture: Integrating Intelligent
Narrative Control into an Ezisting Gaming Environment In The Working Notes of
the AAAI Spring Symposium on Artificial Intelligence and Interactive Entertain-
ment, Stanford, CA, March 2001.

10. Joseph O’Rourke.: Computational Geometry in C (Second Edition). Cambridge
University Press ISBN: 0521649765.

11. T.F. Rabie D. Terzopoulos. ” Active perception in virtual humans,”. Proc. of the
Vision Interface (VI'2000), Montral, Quebec, Canada .

12. X. Tu and D. Terzopoulos, ”Artificial Fishes: Physics, Locomotion, Perception,
Behavior”, Computer Graphics, SIGGRAPH 94 Conference Proceedings, pp. 43-50,
July, 1994

