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Abstract. This paper presents a neural design which is able to pro-
vide the necessary reactive navigation and attention skills for 3D em-
bodied agents (virtual humanoids or characters). Based on Grossberg’s
neural model of conditioning [6], as recently implemented by Chang
and Gaudiando [7], and according to the Adaptative Resonance The-
ory (ART) and the neuroscientific concepts associated, the neural design
introduced has been divided in two main phases. Firstly, an environment-
categorization phase, where an on-line pattern recognition and catego-
rization of the current agent sensory input data is carried out by a self
organizing neural network, which will finally provide the agent’s short
term memory layer(STM). Secondly, and based on the classical condi-
tioning paradigm, the model will associate the interesting STM states,
from the navigation or attention points of view, to finally simulate these
necessary skills for 3D characters or humanoids. Finally, we will show
some experimental navigational results, through the integration of the
model presented in 3D virtual environments.

1 Introduction

Intelligent Robotics and Intelligent Virtual Environments(IVE) share the lack of
designing agents capable of finding paths free of obstacles in order to satisfy their
high level goals. Furthermore, one of the main tasks of any mobil agent, including
humans, is navigation. In the majority of applications where 3D embodied agents
are required, such as games or real time graphic simulations, this navigation
problem is normally solved using any plausible global search technique, which is
normally applied under classical static environmental assumptions [9]. A more
reduced set of contributions in this field considers navigation as a local agent
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problem, simulating a realistic information flow from the environment to the
agent, and easily computed through the classical sense/think/act agent cycle.

From robotics, Latombe et al. have combined 2D path-planning techniques
with a rule-based system for modelling memory and synthetic vision/perception
in virtual human simulations[4].

Tu and Terzopoulos implemented a realistic simulation of autonomous arti-
ficial fish combining a raycasting vision system with physical-based locomotion
[5]. This system has been also applied to 3D virtual humans [12].

Noser et al. presented a synthetic vision system that uses object-false color-
ing and dynamic octrees to represent the visual memory of the character who
navigates combining global and local techniques[2].

As nowadays, the increasing graphic realism of 3D characters has generated
corresponding expectations in terms of character’s behaviour (including the low-
level ones), our main research interest is to provide for the adequated AI for-
malisms in order to reproduce and display the neccesary intelligence related to
the skills cited.

In 3D environments, agents can perfectly access to the complete visual data
base, so local sensorization is not really a requirement. However, local meth-
ods are clearly more appropriate for managing the necessary information flow
to simulate reactive behaviours, such as navigation in dynamic environments or
visual attention. For instance, the process of filtering visual sensory information
and selecting the most interest objects from the environment to attend, that
is, visual attention would be a globally untractable problem for complex envi-
ronments. Furthermore, global navigation techniques for 3D intelligent virtual
agents (IVAs) present the following problems:

– Reactivity: During navigation, the agent’s target could change, for instance
it could detect a virtual friend, or escape from a new enemy. Dynamic virtual
environment simulations, where obstacles or agents could appear anytime,
suggest the avoidance of global path calculations.

– Uncertainty: The agents could not have global information about their en-
vironment. This must be a requirement in virtual humans, which must only
remember the places previously visited, in order to perform realistic simula-
tions, such as in supermarkets, etc.

– Realism: Depending on the environment discretization (2D-grid, quadtrees,
octrees) the global path obtained will contain the set of cell-centroids, which
the agent must visit to finally achieve its position goal. The visualization of
this path will have a low realism degree and normally an extra path-smooth
phase will be also required.

Bearing this in mind, and although low-level navigation and attention be-
haviours for 3D characters depend on the specific application, we can identify
these essential requirements:

– Reachability: For any goal position, the agent must be able to reach it au-
tonomously.



– Collision Avoidance: Agents must reach their goal positions without colliding
with any obstacle or agent.

– Replanning: Goal position can change during navigation so flexible naviga-
tion will be also required.

– Lifelike paths: Optimization criteria considered typically in global naviga-
tion algorithms, (minimum distance/energy), must be blended with local
information in order to achieve lifelike paths instead of minimum ones.

– Lifelike attention: In every simulation cycle the agent must attend to in-
teresting objects/agents, according to their properties (ej.: type, size, color,
speed, direction, ...) .

The rest of this paper is organized as follows, firstly we will present the
sensory agent system and the feedforward scheme introduced as the basis of the
neural design proposed. Then we will explain this design focussing mainly on, the
on-line environment categorization performed by a FuzzyArt Neural Network,
and the conditioning machanisms introduced later. Finally we will also show the
experimental navigation results obtained during simulation time, which have
demonstrated a good potential for scaling the neural model up.

2 The sensory agent system

Intelligent robots or virtual characters with a set of sensors and memory skills
must be able to explore unknown environments, and incrementally build their
own internal model of the world. In this way, the main information channel
between the environment and the agent, should be provided by the sensory agent
system.Furthermore, 3D humanoids must take this into account, simulating a
realistic information flow from the environment to the agent, instead of creating
omniscient agents.

As we know, synthetic vision differs from vision computations for real robots,
since we can skip all of the problems of distance detection, pattern recognition,
and noisy images [4]. This allow us to implement a reasonable model of visual
information flow that operates in real time systems. We are considering virtual
vision sensors as a simple pyramidical culling volume from the agent point of
view. According to this, in each agent’s simulation cycle, every object or agent
accepted by its vision cull-test, that is, the visible objects and agents, will shape
an observation vector within semantic information relating to the object/agent
(direction, distance, size, color, ...). In order to introduce high level information
to be used by the planner system [11], we have also included relevant information
about its state, for instance door(open/closed)(Figure 1). This semantic-vector
approach is similar to Latombe’s perception-based navigation system, where
visual observations are simulated using an output vector provided by the vision
module as well [4]. As Figure 1 shows, each observation corresponds to a couple
of vectors, that is, the rays that cover completely the obstacle from the agent’s
point of view. This information will be useful for navigation tasks in two ways,
firstly as the necessary patterns to represent and categorize the environment,



in order to perceive and detect them in the future, and secondly to inform the
navigation system about the directions that will drive the agent to a collision
situation.
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Fig. 1. Basic agent loop

In the next section we will review the neural model we are using to categorize
the environment, as a generic machanism for the agent’s perception and situation
detection.

3 The Neural Design

The neural design proposed is based on a simple 3-layer feedforward model
presented in [10]. The first layer (goal following) will compute the alignment of
each neuron, as a vector of an angular map, to the goal. Then, in the correction
layer, and according to the sensory information provided, we can reprimand
the neurons which would locate the agent on a collision course. Finally both
contributions are taken into account in the motor layer, which will search for
the neuron with the maximum activation value. As we will see in the results
section, this reactive scheme can be adequate for 3D virtual humans, and let us
consider the possibility of parametrizing several important factors, such as, the
security distance to objects. However, it could fail in some situations (Figure 4),
local minima, etc, so we have complete the correction layer with the following
model.



3.1 Synthetic Perception and Short Term Memory

Human vision is a complex process where input data is taken from saccadic
eye movements and then processed in different areas of visual and prefrontal
cortex. During this process a high level classification occurs resulting in a number
of categories which will represent the state of the agent’s environment, from
its point of view. The Adaptative Resonance Theory (ART) has been used for
this task as a well known human cognitive information processing model and
according to this model, each agent will have a Fuzzy ART Neural Network for
managing this categorization, which will give the agent the possibility of learning
new categories, or situations to consider, without forgetting familiar ones [6].

Fig. 2. Neural design for agent attentive navigation

As Carpenter&Grossberg pointed out, the Fuzzy-ART system tries to allo-
cate the current sensory input sample in one of the familiar categories previously
learned. When agreeing with the vigilance parameter, typically included in ART
systems, this sample cannot be committed to any of the current categories, the
model will create a new one. In this first learning step, the observation vectors
(Figure 2) will be sent to the agent which will take a look at its environment for
ascertaining its variability. As a self organizing neural network, this learning step
can be carried out on-line, that is, in real time. Bearing this in mind, the agent
will learn the variability of objects from its environment to finally manage a
finite number of self developed categories which will represent several situations
that the agent is interested in controlling, such us, a new interesting objects/
agents to attend, or a plausible collision situation.

Typically, in ART systems a single input pattern is able to activate only
one category, however, a complete reasoning cycle for 3D IVA’s must imply
the sequential activation of different categories. According to this, the active
categories will be stored in a new layer (STM) which will finally represent the
agent’s short term memory in real time (Figure 2).



The next problem will consist in finding the right associations between spe-
cific STM states and the 3D agent motor layers, considered as normal angular
velocity vector maps. To achieve this, the model must learn when and how to
map its current STM state into the navigation and attention motor layers. This
process will be based on the classical conditioning paradigm and it will also be
neccesary to consider specific conditioning learning signals in both associations:
STM - navigation layer (CSn) and STM - attention layer(CSa) [7](Figure 2).

In a first mapping (STM-navigation association), the model will help the
correction layer of the basic feedforward scheme to finally control the angular
velocity vector of the agent’s body, so that, the training will be oriented to detect
and associate collision situations with the navigation output vector.

In parallel (currently under construction), a second mapping will simulate
visual human attention. Again, associating the right stimuli, the velocity vector
map considered for the attention layer will control the final character’s head ori-
entation in real time. For a further explanation about the neural model presented
see [10].

4 Experimental Results

The model described has been implmented in C++ and has been integrated with
two kinds of 3D environments, such as, SGI-IrisPerformer API and the Unreal
Tournament 3D virtual environment graphic engine. The first results presented
in [10] was concerned with the basic feedforward model, and no learning was
carried out. This system has been upgraded and tested in several situations, as
Figure 3 shows, where through classical parametrization, this basic model let’s
us consider the possibility to include internal agent variables, such as stress, or
a security factor, in order to help in avoiding any obstacle (Figure 3).

Fig. 3. Paths obtained in several test situations

Figure 4 in its first loop, shows the behaviour founded without considering
the security factor mentioned, in this situation, when the agent is to close to the



bounding box of the object represented and no categories has been learned, it
can loose its sensory information and go forward its goal, unfortunately, passing
over the obstacle. As the categorization performed in the STM layer is sensitive
to conflict situations, this let’s us implement the associative learning already
explained, in order to control them properly. This is shown in the second loop
of its 7-step plan when a similar collision situation is faced the second time,
the agent can now recognize it and correct it, avoiding the collision situation
previously learned.

Fig. 4. Learning on-line from past situations

In order to visualize the resultant character’s behaviours, the system has been
also integrated in the Unreal Tournament 3D graphics engine, where basically the
neural model should send via UDP sockets the current position and orientation to
the game engine. These data are managed by several UnrealScripts, the engine’s
scripting lenguage, to finally locate the 3D character in the virtual environment
(Figure 4).

Fig. 5. Paths follwed by the 3D agent in a UT based 3D virtual environment



5 Conclusions

Neural approaches have been previously introduced in 3D intelligent creatures,
mainly on solving dynamical systems for computer animations [5]. However, the
majority of 3D agent architectures are focused on low cost global techniques to
solve navigation problems and approaches from neuroscience are less frequent in
3D virtual worlds. A new neuromodel approach has been presented for covering
visual attention and navigation for 3D intelligent virtual agents, such us 3D
virtual humans but it could be also adapted to robotics.

According to the results obtained, we expect to undertake new experiments
focussing on navigation reactions, for example avoiding dynamic obstacles or
agents, and finally including the necessary machanisms for visual attention in
3D humanoids.
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