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Abstract

We give a modern proof of the Kulikov-Pinkham-Persson Theorem for a projective de-
generation. We do so by running the Minimal Program and studying the singularities
of the remaining log Calabi-Yau pair. The explicit description of these allow us to re-
solve them using Brieskorn’s simultaneous resolution of Du Val singularities and toric
resolutions.

Abstract

Wir geben einen modernen Beweis des Kulikov-Pinkham-Persson Satzes einer projekt-
ive Degeneration. Mithilfe der «Minimal Model Program» und der Beschreibung der
Singularitidtetn des verbleibenden log Calabi-Yau-Paares. Bekommt man eine explizite
Beschreibung, die lass uns die Singularitdten mit Brieskorns simultaner Auflésung der
Du Val Singularitdten und torischen Auflésungen aufzulosen.

Resum

Presentem una prova moderna del Teorema de Kulikov-Pinkham-Persson per a una de-
generaci6 projectiva. Mitjancant 1'iis del « Minimal Model Program» i la descripcié de les
seues singularitats del parell log Calabi-Yau resultat. Seguidament, aprofitem la descrip-
ci6 explicita obtinguda per resoldre-les aplicant la resolucié simultania de singularitats
Du Val de Brieskorn i les resolucions toriques.
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0 Introduction

Within the study of degenerations of varieties, a particular breakthrough was obtained
in the late 70’s by Kulikov. Given a semistable degeneration of K-trivial varieties the
objective was to find a nicer birational model that allows for its study. This led to the
following theorem.

Theorem 0.1 (Kulikov-Persson-Pinkham). Let f': X’ — B be a semistable degenera-
tion of K-trivial smooth surfaces, with all components of the central fiber X}, = f'~1(0)
algebraic. Then there is a semistable birational model f : X — B such that Kx ~; Ox.

The property of K-triviality turned out to be very useful thus motivating this defin-
ition.

Definition 0.2 (Kulikov model). Let f : X — B be a semistable degeneration of
varieties of dimension n with mKx, ~ Ox, over a smooth curve B. We say that
f: X — Bis a Kulikov model if mKx ~; Ox.

One of the best features of Kulikov models is that they allow for a very explicit
description of the degenerate fiber and also control over the monodromy action acting
on the H?(X;,Z). In particular for K3 surfaces (Def. 4.8) Kulikov provided the following.

Theorem 0.3. [Kul77, Theorem II] Let f : X — B be a Kulikov model of K3 surfaces.
Then the degenerate fiber Xog must be one of the following 3 types:

I. Xo= V1 is a non-singular K3 surface.

II. Xog=Vi+...+V,, where Vi and V,, are rational surfaces and Vs, ..., V,_1are elliptic
ruled surfaces so that q(V;) = 1,4 =2,....n— 1. The dual complex is a chanin and
the double curves C g, ...,Cp_1, are elliptic curves.

I Xog = Vi + ... + V,,, where all V; are rational surfaces,; the double curves Cjy, j
are rational and form a cycle on each of the surfaces V;. The dual complex is a
triangulation of the sphere.

These 3 types can be distinguwished by means of the monodromy T acting on H?(X;, 7).
If N =logT, then N = 0; N # 0 but N> =0 and N? # 0 but N? = 0, corresponding
respectively to Type I, II and III.

This result was deeply influential not only in the study of degenerations, in which
Kulikov models have been studied and applied extensively (see for example [FM83]). But
also prominently in birational geometry, as Kulikov described flops for the first time, one
simpler version of flips. These are a crucial ingredient that allowed for the grounding
and development of the Minimal Model Program.

The original proof of Theorem 0.1 was written by Kulikov in [Kul77], only for the
case of K3 surfaces.Nevertheless it was quite obscure and difficult to follow, to the point
that even at time of publishing some were left wondering whether it was valid (see the



review of his article in Mathematical Reviews 58, # 2208). Moreover the paper featured
big mistakes such as a false proof of Theorem 0.1 for Enriques surfaces.

The proof was made more clear and generalized in [PP81]. This cleared doubts about
its validity. Nevertheless, this latter proof is still quite technical and challenging, as well
as, written in a now slightly outdated language.

In more recent years, running the MMP in [KLSV18] Kollar, Sacca, Laza and Voisin
were able to give a weak generalization of this theorem for degenerations of hyper-Kéhlers
of arbitrary dimension.

Theorem 0.4. [KLSV18, Theorem 1.1] Let f : X — C be a projective morphism to a
smooth projective curve C. Assume that

i. the generic fiber Xgey is irreducible and birational to a K-trivial variety with canon-
ical singularities and

it. every fiber X. has at least one irreducible component X} that is not uniruled.

Then there is a finite, possibly ramified, cover m : B — C and a projective morphism
f':Y — B with the following properties:

1. Y is birational to B x¢ X,
2. the generic fiber Ygep is a K-trivial variety with terminal singularities, and

3. every fiber Yy, is a K-trivial variety with canonical singularities with (Y,Y}) being
a dlt pair.

Remark 0.5. The main interest of [KLSV18] is how Theorem 0.4 allows for a descrip-
tion of the degeneration of hyper-Kéahler varieties in terms of the dual complex of the
degenerate fiber and the finiteness of the monodromy action on the central fiber for
degeneration of hyper-Kéahler varieties, in a similar fashion as in Theorem 0.3. But this
is not relevant to this project, since the Hodge-theoretic part of Theorem 0.3 is quite
straight-forward.

Note that there are two main differences between Theorem 0.4 and Theorem 0.1 that
make it the first weaker in comparison are that

e every fiber needs to contain at least one irreducible component that is not uniruled.
This condition is not satisfied by Kulikov models of Type II and III for K3 surfaces
(cf. Theorem 0.3).

e The new fibers are not necessarily snc but simply dlt.

These hypothesis are needed to make the result work in a higher dimensional case, but
what happens if we took this methods back to dimension 2?7 Can we obtain Theorem
0.1 by applying the methods in [KLSV18]? This is the question this Master Thesis aims
to give an answer to.

The answer happens to be almost yes. Upon further examination of the resulting
minimal model one discovers that singularities are quite mild and one can resolve them
leading to a slightly more general version of Theorem 0.1.



Theorem 0.6. Let f: X — C' a projective flat morphism from a 3-dimensional complex
space to the complex disk. Assume that

1. X terminal, Q-factorial, (X, X;) dit for allt € C.

2. Xt is a smooth surface with Kx, ~ Ox, fort # 0.

Then there exists a finite surjective base change C' — C' and a birational map:

Such that X — C' is a Kulikov model.

The motivation of proving Theorem 0.1 with new methods is double. On the one
hand, writing it in more modern terms allows that anyone with familiar with the MMP
should be able to follow it much easier than the original proofs and old techniques. On
the other hand, the generality of the MMP tools allow the result to be extended to
more general settings, for example it extends to general algebraically closed fields of
characteristic 0. Moreover, we have reason to believe that similar arguments lead to a
generalizations to arbitrary fields of characteristic 0, but this belongs in future work.

The idea we use to prove Theorem 0.6 can be summed up in these steps.

1. Run the Minimal Model program to obtain a dlt minimal model. Similar proced-
ures were already performed in [Fujll] and [KLSV18]

2. Study the singularities of such models to conclude singularities are very mild, they
only occur away from the double loci of the central fiber. This result was proven
also in [NXY19], but we give a different proof based on properties of dimension 3.

3. Use simultaneous resolutions of Du Val singularities and toric resolutions to resolve
the mild singularities obtaining a Kulikov model.

Unfortunately, there is not much more room for using these arguments to generalize to
higher dimensions as it is highly dependent on the explicit description of 3-dimensional
varieties.

Moreover we give our own proof of Theorem 0.3 reformulating it in terms of log
Calabi-Yau pairs, with no Hodge theory and hopefully in a more comprehensive manner.
We also obtain a new counterexample that the MMP cannot be established for compact
complex manifolds (Remark 3.14)

Finally we give an outline of what the reader may find in each section.Section 1
provides a brief overview of the Minimal Model Program and explains in more detail the
singularities that come up in later sections; Section 2 contains a very brief introduction
to the toric geometry needed for Step 3; Section 3 consists of the proof of the Kulikov-
Persson-Pinkham theorem and in Section 4 we reprove the classification of the central
fiber from Theorem 0.3.



1 Young person’s guide to the Minimal Model Program.

we have heard the opinion expressed that at this particular
moment there is no special need to draw up a programme; |...]
that it would be better to postpone the elaboration of a
programme until such time as when the movement stands on
firmer ground; that a programme might, at the moment, turn
out to be unfounded.

A draft of our Party programme, V. 1. Lenin (or maybe
Kollar about the MMP)

This section serves as a very brief introduction to the needed knowledge of Minimal
Model Program and its singularities for this project. Firstly, we discuss basic definitions
of singularities of the MMP and describe more explicitly the singularities and properties
which are needed in later sections. After that to give the reader an idea we give a
sketch of how the MMP is supposed to run to solve the Minimal Model Conjecture (see
Conjecture 1.23).

For this section we use as main references [KM98] and [Kol13], we highly recommend
the first one for the unitiated reader.

Remark 1.1. Throughout this section we use the language of schemes but everything
also applies to complex analytic spaces.

Basic definitions and notation. Let X be a normal scheme.

o A (Weil) divisor is a finite formal Z-linear combination D = ), m;D; of integral
distinct subschemes of codimension 1. Similarly, define a Q-divisor by allowing a
Q-linear combination.

e A Weil divisor D is Q-Cartier iff mD is Cartier for some integer m # 0, the
minimal m > 0 with such property will be called the index of D.

e Linear equivalence is denoted by Di ~ Do. Two Q-divisors are Q-linearly equi-
valent, D1 ~gq Ds, if mDy and mDs are linearly equivalent Z-divisors for some
integer m # 0.

e Let f: X — Y be a morphism. Two Q-divisors are relatively Q-linearly equivalent
if there is a Q-Cartier Q-divisor B on Y such that Di ~g D2 + f*B.

o A scheme/complex analytic space is Q-factorial if every Weil divisor is Q-Cartier.
o We say that a Q-divisor is a boundary if 0 < coeffp, D < 1.

e Let f: X — S be a proper morphism and C a closed 1-dimensional subscheme of
a closed fiber of f. Let D be a Q-Cartier Q-divisor on X and m > 0 the index of
D, define the intersection number of D on C as

(D.C) = %degC(OX(mDﬂc).

4



We say that D is f-nef if (D.C) > 0 for every such curve C.

o A wariety is an integral separated k-scheme of finite type over k an algebraically
closed field which we always assume that char k = 0.

Definition 1.2 (Pairs). We consider pairs (X, A) over a smooth variety S satisfying
the following conditions.

1. X is normal proper variety normal that has a canonical sheaf wy,g, i.e. relatively
Cohen-Macaulay!.

2. A =>"a;D; is a Q-linear combination of distinct prime divisors, none of which is
contained in Sing(X).

Definition 1.3 (Simple normal crossings). Let X be a scheme and p € X a point
with ideal sheaf m, and residue field k(p). Then x1,...,x, € m, if their residue classes
T1,..., Ty form a k(p)-basis of m,/m?.

Let A = > a;D; a Weil divisor we say that (X,A) has simple normal crossing or
is snc if at p € X if X is regular at p and there is a neighborhood p € X, C X such
that X, N SuppA = V(x;, -+ -z, ), where {z;,,...,x; } is a possibly empty system of
parameters.

We say (X, A) is snc if it is snc at every point. Moreover, given (X, A) the largest
open set U C X such that (U, D|y) is snc is called the snc locus and it is denoted by
snc(X, A), its complement non-snc(X, A).

Let f : X — S be a morphism, we will say it is semistable if for all closed points
te S, (X, f1(t)) is snc.

Definition 1.4 (Log resolution). Let X be a reduced scheme and A a Weil divisor on
X. A log resolution of (X, A) is a proper birational morphism f : X’ — X such that X’
is regular, Ex(f) has pure codimension 1 and (X', A’ := Supp(f~*(A) + Ez(f))) is snc.

Theorem 1.5. [Hir64] Let X be an algebraic variety and D a Weil divisor on X. Then
(X, D) has a log resolution.

1.1 Singularities of the MMP.

Remark 1.6. In the following discussions the role of the base scheme is not very im-
portant for this reason we supress it. Consequently, in the notation wy,g and Ky,g we
supress the reference to the base but it is implicit.

Let (Y, A) be a pair as defined in 1.2 such that Ky +A is Q-Cartier andlet g : Y/ — Y
be a birational morphism from a normal variety Y.

Do not worry too much about this condition, it is very technical but it is just ensuring that we can
work with the canonical divisor



Let m be the index of Ky + A and let E; be the irreducible exceptional divisors.
Then one can find rational numbers a(Y, A, E;) and a natural isomorphism of sheaves:

W (mgr ' A) = g* (Wi (mA)) (Zm “a(Y, A, E)E) 2

)

where g, 'A = > djg:'Dj, having A = >_;d;Dj. This can be written in terms of
divisors as

m(Kyr +g,'A) ~ g*(m(Ey +A)+ Y. m-a(Y,A,E)E;
E; exceptional
By formally dividing by m one may rewrite the previous expression in terms of Q-
equivalence as
Ky +g,'A~gg'(Ky +A)+ Y a(V,AE)E;. (1)
FE; exceptional

We call the a(Y, E;, A) the discrepancy of E;. For an exceptional divisor E one writes
centery (E) := g(F) for the scheme-theoretical closure of the image. Moreover, if we set
a(Y,A, D) = — coeff p A for non-exceptional divisors D C Y. Then one can also rewrite
the previous formula for arbitrary divisors as

Ky + g, 'A ~q g*(Ky + A) + Z a(Y, A, Ej)E;.

E; arbitrary

Based on the discrepancies one can define the different types of singularities of the
MMP. Let (Y, A) be a pair as before, for any birational morphism f : X — Y and any
irreducible divisor E on X

terminal > 0 for all E¥ exceptional,
canonical > 0 for all £/ exceptional,

(Y,A)is < (purely) log terminal  if a(Y, A, E) < > —1 for all E exceptional,
dlt > —1 if centery £ C nonsnc(Y, A),
log canonical > —1 for all E.

Here dlt stands for divisorial log terminal. If A = 0, then we will say that Y is
terminal, resp. canonical, etc. if (Y,0) is terminal, resp. canonical, etc.

Remark 1.7. This condition must be checked a priori for all & C X possible irreducible
exceptional divisors for all possible birational proper morphisms f : X — Y and for
all irreducible divisors on X. Nevertheless, by [KM98, Remark 2.23] the discrepancy
a(Y,A, E) does not depend on X or f, but on v(E,X), where v(—,—) denotes the
valuation in k(Y") corresponding to the DVR Og x. If v(E,Y) = v(E’, X’) for some
other f’: X’ — Y, then the induced birational map X — Y --+ X’ is an isomorphism
over the generic point of E and E’, hence a(Y, A, E) = a(Y, A, E’).

2plml for a Q-Cartier divisor is defined as (D®™)*%, where (—)* denotes the dual. This will not be
relevant in the project, hence we do not give it more attention, see [Kol13] for subtleties.



As a consequence in most cases of interest it suffices to check a single log resolution.
Now we give some examples for which it is easy to compute.

Example 1.8. There are some cases in which it is enough to check one single resolution
(cf. [KM98, Cor. 2.32])

o Let f: X — Y be any resolution with {E;}; its irreducible exceptional divisors.
Assume 1 > min;{a(Y, E;)} > 0. Then

min{a(Y, E;)} = inf{a(Y, E;) : E; exceptional divisor for any proper bir. g: Z — Y}
i J

o Let A = Zj a;D; be a boundary on Y. There exists a log resolution f : X —
Y, such that >, f ID; is smooth. Let f be any such resolution and {E;}; its
irreducible exceptional divisors. Assume a(Y, A, E;) > —1, then

iréf{a(Y, Ei,A) : Ej, exceptional divisor } = min{min{a(Y, A, E;)}, min{l1—a;},1}.
i j

On the left hand side we mean any divisor coming from any resolution.

Example 1.9. Let Y be a smooth variety and consider the blow-up a smooth closed
subscheme Z with codim(Y,Z) =c¢> 1, 7 : BlzX — X. Then one writes

KBIZY ~ 1 Ky + (C— 1)E

where FE is the exceptional divisor. By the Weak Factorization Theorem any birational
morphism factors as a sequence of blow-ups one deduces that a smooth variety is ter-
minal, as (¢ — 1) > 1.

Example 1.10. Let Y be a smooth variety and A = ), ¢;C; a boundary such that
>; Ci is an snc divisor. Then [KM98, Cor. 2.31] gives an explicit formula to check the
type of singularity

inf{a(Y,A,E): E Y:'{ i 1—4—4,‘1—.,1}
in {a(Y, ) excep. div. over Y} min i#j;gilénDj#@{ a; —a;} miln{ a;}

In particular observe that if X is a smooth surface
o if A =0, then (Y,0) is terminal;
o if A = C is an integral smooth curve then (Y, C) is canonical but not terminal and

o if A = (1 + Cy two smooth integral curves intersecting transversally then (Y, A)
is log canonical but not log terminal. Moreover it is trivially dlt.

Remark 1.11. The definition of the singularities based on the discrepancies is very
subtle. The condition is placed on exceptional divisors, not on log resolutions or bira-
tional morphisms! Not always it can be checked on any single log resolution morphism.



We saw in the previous example that the pair (Y, D) with Y smooth and D an
integral smooth divisor is canonical. Omne could think that if one takes the identity
id : (X,D) — (X, D), then as there is no exceptional divisors then the condition to
check for terminal is empty. Quite the contrary, the fact that there are no exceptional
divisors means that we cannot infer anything from this morphism, as the condition is on
exceptional divisors.

Note that by definition every class of singularities contains the later ones. For the
first few it is obvious. Now observe that for log terminal, every exceptional divisor has
discrepancy > —1, then in particular so does every exceptional divisor with centery E C
nonsnc(Y,A). Finally for a dlt pair (X, A), either one divisor lies over nonsnc(Y, A)
or it does not and then as in the previous example [KM98, Cor. 2.31] implies that
discrepancy is at least —1.

Remark 1.12. Observe that while (X, 0) is terminal for a smooth variety, we saw that
even for very simple cases of a pair with A # 0, (X, A) is not terminal. Intuitively one
may think of (X, 0) measuring the singularities of the scheme while a pair (X, A) with
X smooth would measure the singularities of A.

The motivation behind this definition and whether definitions can be checked more
or less easily remains quite unclear at the moment. It is difficult to do so without talking
about the MMP so the reader will have to wait until Section 1.2.1 to get a better picture.

Remark 1.13 (Local version). Although these definitions are used more naturally glob-
ally, one can define them locally the following way. Say x € X is a point then (z € X, A)
is terminal, resp. canonical, etc. if there is a Zariski open subset x € U C X, such that
(U, Aly) is terminal, resp. canonical, etc.

With this small introduction in mind we now give a brief overview on the type of
singularities that will appear throughout this project and the important properties that
will be needed along the way: Surface singularities, in particular canonical singular-
ities; 3-fold singularities, mostly terminal singularities and dlt singularities and their
properties.

1.1.1 Canonical surface singularities.

Let X be a surface and consider the pair (X,0). Any connected configuration of excep-
tional curves over it has as intersection matrix which is negative definite. From this one
easily deduces that on the canonical bundle formula (1) for non-smooth = € X either

all a(E;, X) <0orall a(E;, X)=0

In particular by definition one finds that terminal singularities of (X,0) are smooth.
On the other hand, one considers what happens when (X,0) is canonical, in this
case this will mean that all a(E;, X) = 0. Over C these are very well known as Du Val



singularities. Classified originally in [dV34], under a suitable choice of coordinates they
can be locally analytically described by the equations:

Ay 2?4y 2" =0
D, 2?24+y*2+2""1=0
Es 22+y3+24=0
Er 2?4y +yz*=0
Ey 22 +y3+25=

This very explicit description has allowed for extensive study of these. In particular
we will make use of the possibility of resolving them in a parametrised family. This is
known as simultaneous resolution of Du Val singularities.

Theorem 1.14. [Bri70] Let f : (x € X) — (0 € S) be a flat morphism of pointed
analytic space germs such that X is a surface with a Du Val singularity ot x. Then
there exists a finite and surjective ramified covering g : S’ — S such that f' : X' =
X xg 8" = 8 has a simultaneous resolution

X 2, x

1l

S/T>S/

One has that Y; is the minimal resolution of X!, of X!, for every s € S'.

Remark 1.15. The simultaneous resolution of rational double points (i.e. Du Val
singularities) does not exist in general in the category of schemes, see [Art74] for a
counterexample. For a simultaneous resolution of rational double points in the algebraic
case one needs to work in the category of algebraic spaces, this was described also in
[Art74].

For now we assumed that the divisor is A = 0. Now one may wonder what happens
if we now assume that A is a boundary. This is described by the following theorem.

Theorem 1.16. [Kol13, Theorem 2.29] Let X be a normal variety, v € X a closed point
and A =Y ¢;C; a boundary. Then (x € X, A) is canonical if and only if

1. either x € X is regular and mult, A <1,

2. or x ¢ SuppA, Kx is Cartier and there is a resolution f :' Y — X such that
Ky ~ f*Kx.

In particular if A # 0 is reduced then if (x € X, A) is canonical it is only non-regular
away from Supp A, given that A # 0.

Further one can describe and classify more explicitly log terminal surface and log
canonical singularities, this will not be needed for this project so the interested reader
may take a look at [Koll3, Section 2.2] and [KM98, Ch. 4].



1.1.2 3-dimensional terminal singularities.

Terminal singularities are the reason the MMP was developed originally to be able to
classify 3-dimensional varieties (see Section 1.2). For now it is enough to say that they
are the closest class to smooth that is useful within the context of the MMP.

Their theory has also been studied extensively, in particular, terminal singularities
over C were classified by Reid in [Rei85]. Essentially if z € X is terminal and Gorenstein
then it is an isolated compound Du Val (cDV) singularity i.e. for a general hyperplane
section x € H C X, one has that x € H is a Du Val singularity. If it is not Gorenstein
then it is a quotient of a ¢cDV and an explicit list of all possibilities was given in Reid’s
paper.

Later, [Kol97, 3.4.5] gave a classification of terminal non-hypersurface singularities
over non-closed fields, building upon Reid’s classification. We will end up not having
to actually use either of these descriptions but it helps to have an idea on really how
well-behaved and understood this singularities are.

Note that although one thinks of X being terminal as almost smooth, if one takes
a smooth scheme and an integral smooth divisor E C X, then (X, E) is not terminal,
but actually canonical as we saw in Example 1.10. This is what we already observed in
Remark 1.12, that a pair does not in general measure the singularities of X.

1.1.3 DIt pairs and adjunction.

Just like terminal is the closest notion to smooth that one can comfortably work with
when running the MMP, divisorial log terminal is the closest one can get to snc to be
able to comfortably work with MMP tools.

Definition 1.17 (DIt pair). Let (X,A) be a pair with A a boundary. Assume that
(Kx + A) is Q-Cartier. We say that (X, A) is dlt or divisorial log terminal iff there is
a closed subset Z C X such that

1. X\Z is smooth and Alx\z is an snc divisor.

2. If f :' Y — X is birational and £ C Y is an irreducible divisor such that
centerx £ C Z then a(E, X,A) > —1.

By taking Z the minimal set with this property, one deduces that Z = non-snc(X, A).
So then it is clear the equivalence with the defintion at the beginning of section 1.1.

In other words (X, A) outside of the snc locus the pair is allowed to be at most log
terminal. To understand what lies away from the snc locus it is useful to understand
the geometry of A for this it will come in handy to define the lc centers and how they
behave with dlt singularities.

Definition 1.18 (Log canonical center). Let (X, A) be a pair with A. We say that an
irreducible subvariety Z C X is a log canonical center or lc center of (X, A) if (X, A) is
lc at the generic point of Z and there is a divisor E over X such that a(F, X, A) = —1
and centerx F = Z.

10



Theorem 1.19. [Fuj07, Section 3.9] Let (X, A) be a dit pair and Vi, ..., V,. the irreducible
divisors that appear in A with coefficient 1.

1. The k-codimensional lc-centers of (X, A) are exactly the irreducible components of
the various V;; N...NV;, .

2. Every irreducible component of V;; N...NV;, is normal of pure codimension k.

3. Let Z C X be any lc center. Assume that V; is (Q-)Cartier for some i and Z C V;.
Then every irreducible component of Vi|z is also (Q-)Cartier.

That is to say, only the reduced components of A and their intersections define the
stricly log canonical singularities of the dlt pair.

Working with divisors it is always very handy to have some type of adjunction for-
mula. But singularities may pose obstructions to the usual adjunction. Luckily dlt pairs
allow for a "fix" of adjunction by adding a correcting term.

Def./Prop. 1.20. [Fuj07, Rmk. 8.2] Let (X,A) be a dit pair and W an irreducible
component appearing with coefficient 1 in A. Then there exists a unique Q-divisor on
W, defined by the equation

(Kx + A)|lw = Kw + Diffy (A).
Moreover (W, Diffy (A)) is a dit pair.

So this fix of adjunction inherits the property of being dlt, note moreover that as the
pair is dlt, W is normal by Theorem 1.19 and if A is effective then so is Diffy (A) (cf.
[KM98, Prop. 4.5]). Computing this correction term is in general not trivial but under
good hypotheses it is possible.

Corollary 1.21. Let (X,A) be a dlt pair such that A = Y. V; is a sum of integral
distinct divisors with Kx + A Cartier. Then

Diffy,(A) = Y (V;NV;) =: D;
i#]
and D; is Cartier. In other words, the pair (Vi, D;) is dit and satisfies the adjunction

formula
(KX +A)|Vi =Ky, + D;

This property was previously observed in [KX15, Paragraphs 6 and 15]. We deduce
from this corollary from Theorem 1.19 and the following proposition.

Proposition 1.22. [Fuj07, Prop. 9.2] Let (X, A) be a dlt pair, with A =), D; a sum
of distinct irreducible divisors. Let W := D;, N ...N D;, be a log canonical center, by
adjunction, we obtain

and (D;,, Diffp, (D)) is dlt. Note that
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D, is normal, W is a lc center for the pair (D;,, Diff p, (D)),
 Di|p,, is an irreducible component of Diff p, (D)) for 2 < j <k, and
o W is an irreducible component of (Di,|p,; ) N (Dis|p; ) M-+ N (Diylp;,)
By applying adjunction k times repeatedly, we obtain a Q-divisor B on W such that
(Kx + D)lw = Kw + B

and (W, B) is dlt.

1.2 Finding minimal models.

Now that we have good knowledge of the singularities occuring in the Minimal Model
Program it is time to talk about the program itself.

Classically the classification of algebraic surfaces over C was completed by Castel-
nuovo and Enriques around 1900’s. In short they proved that every algebraic surface
Y was birational to a smooth surface X known as minimal model satisfying one of the
following

1. either Kx is not nef and X admits a fibration X — C structure or
2. Kx is nef, in this case the model is unique.

These properties, in particular nefness of Kx, allow for a very explicit description of the
surfaces, the interested reader may see [Bea96].

Question. Is it true that any variety Y of arbitrary dimension is birational to a smooth
variety with

1. either Kx is not nef and X admits a fibration X — C structure or
2. Kx is nef?

Even for dimension 3 the answer to this question remained unsolved for quite some
time. The breakthrough was realised by Shigefumi Mori who saw that the obstruction
for finding a minimal model was asking for smoothness, which lead him to the define
terminal singularities. As we saw in the previous section, these are very mild and close
to smooth.

Changing smooth to terminal allowed for a positive answer of the previous question.
Proving this and constructing the minimal models in dimension 3 was done by running
the Minimal Model Program. Defining it, proving its existence and termination in
dimension 3 was only possible thanks to the contributions of many mathematicians:
Mori, Kawamata, Kollar, Reid...

This is the motivation behind the singularities defined in the previous section. In-
tuitively one starts with a pair in a class of singularities and running the MMP will
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either eliminate all obstructions to nefness of the canonical divisor or find some fibered
structure while staying in the initial class of singularities.

The MMP is still very much a work in progress, now the objective is being able to
extend this result to higher dimensions and more general settings. In a very general and
slightly technical way the conjecture that is waiting to be solved is:

Conjecture 1.23 (Minimal model conjecture). Let f : X — S be a proper, dominant
morphism between normal, irreducible schemes with generic fiber Xgen. Let A be an

effective R-divisor on X such that (X,A) is le. Then

e (X,A) has a minimal model (X™™, A™™) if and only if the restriction of Kx + A
to the generic fiber X gen is pseudo-effective (that is, it is numerically equivalent to
a limit of effective Q-divisors).

o If (X,A) is dlt (resp. Q-factorial) then one can choose (X™™ A™m) to be dit
(resp. Q-factorial).

To understand this conjecture we need to be less vague about the definition of a
minimal model. We will be satisfied with just saying it is a pair (X™in, A™in) such
that Kxmg, + A™in is f-nef, i.e. intersects non-negatively with any curve contained in
a closed fiber. For the technical definition see [Koll3].

The research to solve this conjecture is very active and the range of applications is
very wide. This project is just one of these applications. But we won’t need that much
generality for us it will be enough with this part of the already established MMP.

Theorem 1.24 (3-dimensional MMP). The Minimal Model conjecture holds if dim X <
3 for schemes and for complex analytic spaces if f is projective and 3-dimensional.

This result is obtained by running the MMP as in 1.2.2. For a complete proof see
[KM98] or [KA92].

Remark 1.25. The hypothesis of projective is necessary for complex analytic spaces.
An example by Hironaka reproduced in [Harl3, p.443] shows that the behaviour needed
for cone contractions does not hold for compact complex manifolds in general. A bit
more about this assumption is to be said in Remark 3.5.

1.2.1 Contractions of the Mori cone.

We now give a very short overview of how one actually obtains a minimal model for
f:(X,A) = S, for a more detailed account see [KM98]. The idea as we did before is
to deal progressively obstructions to f-nef-ness of Kx + A until obtaining that Kx + A
"becomes" f-nef or running into a Fano contraction.

Definition 1.26 (Extremal rays and faces). Given V a K-vector space (K = Q or R).
A subset N C M is called a cone if 0 € N and N is closed under multiplication by
positive scalars.
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A subcone M C N is called extremal or an extremal face of N if it satisfies that
u,v € N and u+v € M imply u,v € M. A 1-dimensional extremal subcone is called an
extremal Tay.

Definition 1.27 (Mori Cone). Let X be a proper variety. A 1-cycle is a formal linear
combination of integral and proper curves C' = ). a;C;. 1l-cycles with real coefficients
modulo numerical equivalence form an R-vector space, denoted N1(X). Denote the class
of a 1-cycle C as [C].

Set
NE(X) = {Za,[C,] CcX,0<q; € R} C Nl(X), and

NE(X) = the closure of NE(X) in Ny (X).

NE(X) is known as the Mori cone.
For any divisor D, set

DZO = {IE S Nl(X) : ({BD) > O} and W(X)DZO = W(X) N DZU

Analogously one can define relative versions. Let f : X — Y be a projective morphism
then define Nj(X/Y') as the R-vector space generated by irreducible curves C C X
contained in some closed fiber modulo numerical equivalence on X. From this one
defines just the same NE(X/Y) and NE(X/Y)p>o, it is known as the relative Mori
Cone.

Now we are ready to give a formulation of the Cone and Contraction theorems.

Theorem 1.28 (Cone and contraction Theorem). [KM98, Theorem 3.35] Let f : (X, A) —
Y be a projective morphism where (X, A) is a dlt pair. Then,

1. There are (countably many) rational curves C; C X contained in closed fibers of
f and

NE(X/Y) = NE(X/Y)(xy+a)20 + > Rx0[C}]

2. Let F C NE(X/Y) be a (Kx + A)-negative extremal face. Then there is a
unique morphism contrp : X — Z over Y, called the contraction of F, such that

(contp).Ox = Oz and an irreducible curve C' C X is mapped to a point by contp
iff [C] € F.

This effectively means that the curves that obstruct the nefness of (Kx + A) are a
linear combination of countable rational curves and that any of these (Kx + A)-negative
face can be effectively be contracted without contracting anything else of the Mori cone.
We wish to contract all extremal rays obstructing nef-ness to obtain a minimal model.
But we first have to know a bit more about contractions.

Proposition 1.29. [KM98, Prop. 2.5] Let f : X — S be a proper morphism. Assume
that X is Q-factorial and let g : X — Y be the contraction of an extremal ray R C
NE(X/S). Then we have one of the following cases:
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1. (Fano contraction) dim X < dimY".
2. (Divisorial contraction) g is birational and Ex(g) is an irreducible divisor.

3. (Small contraction) g is birational and Ex(g) has codimension > 2.

When a small contraction occurs a simple argument one shows that Ky cannot be Q-
Cartier, which is a big problem if we want to keep this process. For this reason we do not
contract Ex(g) but rather remove it and compactify it by adding another comdimension
> 2 subvariety ET, this will be called flip.

Definition 1.30 (Flip). Let X be a normal scheme and A a Q-divisor on X such that
Kx + A is Q-Cartier.

A (K + A)-flipping contraction is a proper birational morphism g : X — Y to a
normal scheme Y such that Ex(g) has codimension at least two in X and —(Kx + A) is
g-ample.

A normal scheme X together with a normal proper birational morphism g+ : X+ —
Y is called a (K + A)-flip of g if

1. Ky+ + AT is Q-Cartier, with AT := ¢, A,
2. Kx+ + AT is gT-ample, and

3. Ex(g") has codimension at least 2 in X*. By abuse of terminology the induced
rational map ¢ : X --» X is also called a (K + A)-flip. A (K + A)-flip gives a
commutative diagram:

X e e Xt
—(Kx+D) is g—amm AX-&D) is gt-ample
Y

Remark 1.31. It is not clear that flips exist in general, it has only been proven in some
special cases. It has been established for the case of interest, i.e. dimension 3.

Example 1.32. The simpler version of a flip is a flop. A flop is defined similarly but
assuming that Kx is numerically trivial. It can be shown that flops do not depend on
D. Flops were described by Kulikov [Kul77] for the first times and examples of them
are given by the so called Type I and II modifications that relate Kulikov models and
are an essential part of the original proofs of Theorem 0.1.

A Type I modification is constructed as: Given by E be an exceptional curve, but
not a double curve, intersecting as in figure 1. Then it can be moved to the adjacent
component as in Figure 1.

A Type II modification now is given by: E be an exceptional curve which is a double
curve as in Figure 2. Then it can be moved to the to the adjacent component as in 2.

In both cases the procedure is done between two Kulikov models, hence Kx is nu-
merically trivial X T is the resulting variety and clearly the birational map ¢ : X --» X
induced by this modification has codim(Ex(¢)) = 2.
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blow up E blow down resulting
P! x P! in the other
direction
FIGURE 7.

Figure 1: Example of a Type I modification [PP81, Figure 7]

E
blow up E blow down the resulting
P! X P! in the other di-
rection

Figure 2: Example of a Type II modification [PP81, Figure 8]

1.2.2 Running the MMP.

We now have all the ingredients to explain how the MMP is expected to run. We describe
it for dlt pairs, for a more detailed account see [KM98, 3.31].

Start with a pair (X, A) = (X, Ag) a dlt pair where X is a normal Q-factorial scheme
over a field (or complex analytic space). Let fo: X — S be a projective morphism.

The aim would be to set up a recursive procedure which creates intermediate dlt
pairs (X;, A;) and projective morphisms f; : X; — S. This should end at some point a
final pair (X*,A*) and f*: X* — S.

Recall that the objective is to find a minimal model or find a some kind of fibered
structure for the variety, this will be our criteria to stop.

1. If Kx, + Ag is already fo-nef then we are done.

2. Else, by Theorem 1.28, there is a (Kx, + Ag)-negative extremal ray which can be
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contracted. Let cont : Xg — Z be its contraction.

XO cont A

N A

Then by Proposition 1.29 it is either

(a) A Fano Contraction, in this case we are done as we obtained a fibered structure
for (Xo,Ag) and so this will be our final model.

(b) A divisorial contraction, in which case we just take (X1) := (Z, cont.Ag) and
fi=g
(c¢) A flipping contraction, then set (X1,A;) := (XO+, Aar) and f1:=go fgr.

3. Repeat this procedure recursively until it terminates. For this one needs to ensure
that the theorems cited can be used, for this we note that cone contractions of the
Mori cone preserve

o (Q-factoriality,
 minimal discrepancy?, being dlt and

e fit+1 as defined above is once again projective.

A priori it is not clear that this algorithm should have finite steps. If X;1 is obtained
by a divisorial contraction then the Picard rank drops by one, i.e. p(X;11) = p(X;) — 1.
But flips are isomorphisms in codimension 2 so p(X;11) = p(X;). Hence the number
of divisorial contractions is bounded by p(Xy) — 1, but flips could theoretically occur
infintely. The question of whether this procedure is finite becomes a question of whether
infinite sequences of flips exist or not (this is true for dimension 3). In fact, jointly with
the existence of flips, termination of flips is the biggest obstruction to establishing the
MMP in generality.

Remark 1.33. Here we assumed that the pair is dlt. But one can also assume it is
terminal, canonical, log canonical... The MMP runs just the same while staying in the
initial class of singularities.

Example 1.34 (MMP for surfaces). Suppose we have a smooth surface X with x(X) >
0, it is well known that the procedure to obtain a minimal model with nef canonical
divisor is contracting the (—1)-curves it contains.

One can do so running the MMP. Let C be a (—1)-curve, then by adjuction Kx.C =
—1, hence C belongs to a negative extremal ray of the Mori cone. Applying Theorems
1.28 and 1.29 one obtains a morphism cont : X — X7 and it’s one of the following:

1. A Fano contraction, if this happened as C' is rational it would mean that X admits
a ruling but this is not true for x(X) > 0, hence does not occur.

3More specifically, the minimal discrepancy may only stay or get bigger.
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2. A flipping contraction is an isomorphism in codimension 2, hence would be an
isomorphism but cont(C) is a point, hence also does not occur.

3. A divisorial contraction is then the only option.

As divisorial contractions are finite one obtains a finite sequence of birational morphisms
X — X; — ... — X", with X* is a terminal (smooth as dim X = 2) surface with Kx
nef.

We give one last, easy application of the MMP which is basically a baby version of
the proof we give of Theorem 0.1

Corollary 1.35 (KPP for elliptic curves). Let Y — S be a flat projective morphism
to a smooth projective curve, such that the generic fiber Yye, is a smooth elliptic curve.
Then there exists a finite surjective base change S’ — S andp: (X' :=Y xgS8') — X a
birational morphism over S’

X’ z X
\ . /
such that f : X — S’ is a Kulikov model (Def. 0.2)

Proof. After applying Mumford’s semistable reduction theorem (cf. [KKMSD73]) there
exists a finite surjective base change S’ — S, so that Y xg S’ — S’ is a semistable
degeneration we may assume that the degeneration is semistable.

Apply the MMP as described above, flips do not occur because of dimension and
there is no Fano contraction. The reason for this is that outside the special fibers X} is
K-trivial and so by adjunction an arbitrary divisor in |K /| induces a principal divisor
on X/, so Ky is a linear combination of irreducible components of the special fibers.
But by Theorem 1.28 only K-negative curves may be contracted.

This process terminates with a terminal, hence smooth, surface X and f: X — §
a projective morphism. Moreover, a fiber is numerically trivial to curves contained in
a closed fiber. So running the MMP for Ky is the same as running it for Ky + X].
Hence (X, X;) is a dlt pair.

Let X; = ), C; its decomposition into irreducible components, by Theorem 1.19 C;
are normal, hence smooth curves and the double points are lc centers hence part of the
snc-locus. So (X, X;) is snc for all t € 5.

Finally, observe that since Kx is nef, but a linear combination of components of the
fibers (so 0 < K%). Then K% = 0 and by Zariski’s lemma it must be a linear combination
of fibers hence f-trivial. Thus f: X — S is a K-trivial semistable degeneration, i.e. a
Kulikov model. O
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2 Brief introduction to toric geometry.

Animal de records, lent i trist animal,
ja no vius, sols recordes.

Llibre de meravelles,
Vicent Andrés Estellés.

In this section we give a very basic and brief introduction to toric geometry intended
to cover the minimal theory needed for the techniques later used in Section 3.3 for the
proof of Theorem 0.6. The reader will be redirected to [Ful93] for real introduction,
which is the main source of this section.

Firstly we will explore the equivalence between lattices and toric varieties and later
give a small introduction to toric resolutions via refinement of fans.

2.1 Cones and toric varieties.

Definition 2.1. A semigroup (S, +) is called
e integral if there is an embedding S — Z,
e affine if it is an integral finitely generated semigroup.

Given a semigroup (S, +) one constructs an associated semigroup algebra C[S]. It
is generated by elements y* indexed by elements v € S. The semigroup operation +
induces the multiplication of the x* in C[S], thus x“ - x¥ = x“*.

Example 2.2. To N” one can associate C[ty, ..., t,], where we denote t; = x®. To Z"
we associate C[t, tfl, <oy tn, t1], the ring of Laurent polynomials.

If S is an affine semigroup, then C[S] is a finitely generated domain, the embedding
S < Z™ induces an injective homomorphism C[S] < C[t{?, ..., #1] and this is a domain.
Hence for an affine semigroup we can take the spectrum Spec(C[S]) to get an affine
variety.

A point of Spec(C[S]) is given by a C-algebra homomorphism f : C[S] — C. This
corresponds naturally to a semigroup morphism v : S — (C*,-) satisfying u — f(x*).

Definition 2.3. A linear algebraic group 7' is a torus if it is isomorphic to some (C*)".
The torus inherits the action of (C*)™ on itself given by multiplication.
A toric variety X is a normal variety that contains a torus T as a Zariski open subset
together with an T-action on X
T'xX—=+X

that extends the natural action of T on itself.

Example 2.4. Take T' = C* x.... x C* as a torus, then P¢ is a toric variety with subtorus
T.
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Definition 2.5. Given a lattice N, we define a vector space Ng := N ®z R ~ R". A
finite set of points S in the lattice defines a cone in the corresponding vector space.

o = Cone(S) = {Z)\xx: )\xZO} C Ngr

€S

Let M := NV the dual lattice of N, then the dual cone of ¢ is defined as
oV ={meMg: (x,m)>0Vr € o} C M.

Where (—, —) denotes the natural pairing N x M — Z.

Given a cone o C Ng one has that S, = 0 N M is a finitely generated and hence
affine semigroup (cf. [Ful93, Prop. 1]) one can define an affine variety from a cone by
setting

U, = Spec(C[S,]).

This is in fact a toric variety, if n is the rank of S,Z then there is a torus 7" ~ (C*)"
acting on U,. For a lattice N ~ Z™ one obtains a torus T ~ (C*)" defined as

Ty = N ®zC* ~ homZ(N,C*)

For a cone 0 C Ng the variety U, contains the torus T as an open subset. The action
on U, is defined as

Ty x U, — Us
t,7: 5 = C) r— (m = x"(t)y(m))

Example 2.6. Consider the cone 0 = Cone(eg,2e; — e3), one easily sees that S, is
generated by (1,0), (1,1) and (1,2).

Figure 3: The cone 0 = Cone(ez, 2¢1 — e2) and its dual cone [Ful93, p.5]
Hence we obtain a toric variety with coordinate ring
C[S,] = Clx, zy, xy*] = Clu, v, w]/(v? — uw).

So
U, = Spec(Clu, v, w]/(v? — uw))
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2.2 Smoothness and toric resolutions.

Definition 2.7. A cone o C Ny is called smooth if it is generated by part of a lattice
basis.

Theorem 2.8. [Ful93, p. 29] A cone o is smooth iff the variety U, is smooth.

Example 2.9. Consider the variety
Y = Spec Clz, y, 2, 1]/ (zyz — £°)

This variety is clearly non-smooth at the origin. Observe that this variety is toric as it
contains the subtorus

T ={(z,y,21t) € (C*)*/ayz = t"} C (C)*
Let o be the cone spanned by (1,0,0), (0,1,0) and (—1,—1,n). This defines an inclusion
Clz,y,t,z 'y 1" < Clz,z 1y, y 1, t 7

clearly U, =Y.
The dual cone is spanned by (0,0,1),(n,0,1) and (0,n,1). This is not a Z basis of
73, hence o is not smooth and also Y is not smooth as expected from the theorem.

One knows by Theorem 1.5 that for a singular variety there is a resolution via blow
ups. If we have a toric variety how will this look like? For this we need the concept of
fans and subdivision.

Definition 2.10. A fan A in Ny is a collection of cones in Ng such that
1. a face* of cone in A is itself a cone in A
2. the intersection of two cones in A is a face of each.

We already saw that from a cone o C Ng one obtains a variety U,, then for a fan A
one has a family of affine varieties which all contain T. These can be glued together to
obtain a variety Ua, the toric variety of a fan.

Example 2.11. Consider the fan A given by 01,09 C R2. Where o is the cone spanned
by (1,0) and (1,1) and o9 is spanned by (0,1) and (1,1). These meet along the ray p
generated by (1,1). In terms of varieties we have

Uy, ~ Spec(Clz,y,z~'y]) and U,, ~ Spec(Clz,y, zy )

These patches are then glued along the Zariski open U, = Spec(Clz, y, zy~ 1, 27 1y]),
corresponding to the ray p. The resulting variety from the glueing Ua is the variety

associated to A.

4A face is defined in the obvious way.
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Def./Prop. 2.12. A fan A is called smooth if all cones in A are smooth. Moreover,the
associated variety Ua is nonsingular if and only if A is a smooth fan.

Proof. Trivial since smooth is a local property. O

From this we deduce that given a toric variety U defined by a fan A which has
a singular point p € Ua, then there is a non-smooth cone ¢ such that p € U, C Ua.
Intuitively one then would like to replace the non-smooth cone by a collection of smooth
cones. One can do precisely this by subdividing the cone.

Definition 2.13 (Refinement). One says that a fan A’ refines the fan A if

1. every cone in A is a union of cones in A’ and

2. the fans have the same support, i.e. Uyea Supp(o) = Uyrea Supp(c’).

Proposition 2.14. [Ful93, 2.6] Suppose A’ is a refinement of A, then the morphism
f:Upn — Ua induced by the identity map of Nr is birational and proper. Moreover it
is an isomorphism on the open torus Ty.

Effectively this means that if we find a way to subdivide the non-smooth cone cor-
rectly into a smooth fan then we get exactly a resolution of singularities and it leaves
the embedded open torus untouched.

Example 2.15. Let
X = Spec(C[:U, Y, =, t]/(xy - tn)

As in Example 2.9 this is a singular toric variety containing the subtorus
T ={(z,y,21t) € (CY/zy ="} C (C*)*

Similarly to that example the cone o corresponding to this toric variety is spanned by
(0,1,0) and (—1,—n,0) and (0,0,1). And so the dual cone ¢ has as basis by (0, 1,0)
and (n,1,0).

To desingularise this variety one wishes to find a smooth refinement of this cone. For
this add all rays of the form R*(a, 1) with a € Z, 0 < a < n and define the cones

0o = convex hull of R (a,1) and R (a + 1,1)

Clearly this is a smooth refinement. Let X := Ux where A is the fan of {o,}. Then by
Proposition 2.14 X — X is a birational proper map which is a resolution of singularities
and it an isomorphism on 7.

Locally for one of the cones o, spanned by (a,1) and (a + 1,1), the dual cone oV is
spanned by (—1,a+ 1) and (1, —a) hence X is obtained by gluing the affine pieces

U, = Spec(Clzt™, z,z1t9TY))

Set 1y = 2t~ and v, = 71t then uqvy = t, so t = 0 defines an snc divisor.
We note that after a coordinate change, zy —t" = 0 turns into (z')2+ (y/)? = t". For
t = 0 this is an A,,_; singularity, so essentially we resolved a curve of A, _; singularities.
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3 Kulikov-Persson-Pinkham Theorem a new proof.

Bullira el mar com la cassola en forn,
mudant color e I'estat natural,

e mostrara voler tota res mal

que sobre si atur un punt al jorn.

Veles e vents, Ausias March

The objective of this section is to give a new proof of Theorem 0.1, assuming the
morphism is projective. For this we follow a strategy laid out in 3 steps.

Step 1: Running the MMP

1. Start with a dlt pair (Y,Y;) with Y terminal for a degeneration f : ¥ — C of
K-trivial surfaces or apply semistable reduction to obtain this set up.

2. Run the semistable MMP program to obtain a new pair (X, Xy), this pair will be
dlt, X being terminal and factorial with Kx ~ Ox.

Step 2: Analysis of the central fiber

1. Exploit K-triviality and the dlt assumption, to see that Xy has irreducible com-
ponents intersecting transversally and it is smooth around the 1 dimensional lc
centers. Away from these there are at most a finite amount of isolated canonical
singularities.

2. Argue that any singularities from X lie above the Du Val singularities of X,
concluding it is snc around the 1 Ic centers.

Step 3: Resolution of Du Val singularities.

1. After a base change there exists a simultaneous resolution of Du Val singularit-
ies, this allows us to deal with the canonical singularities left. At the price of
introducing new singularities along the lc centers.

2. These new singularities may be resolved crepantly via toric resolutions. Doing this
a finite amount of times gives the desired result.

Remark 3.1. Step 3 is valid only for complex analytic spaces®. To perform it for

schemes one has to go to the category of algebraic spaces.

®Both in [Kul77] and in [PP81] the proof is done for complex analytic spaces.
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3.1 Step 1: Semistable reduction and running the MMP.
Everything in this step applies to complex analytic spaces with the same arguments.
Proposition 3.2. Let fo: Y — C be a flat projective surjective morphism, with

i. Y be a 8 dimensional terminal Q-factorial variety and C' o quasi-projective smooth
curve,

i. (Y,Yy;) dit for all t € C, where Y; := fy *(t) and
i, Yy = fo_l(c) a smooth K-trivial surface for t # 0.
Then there exists a birational morphism

y ————— X

N AT

such that
1. m:Y — X is an isomorphism over f;1(C\{0}),

2. X s terminal, Gorenstein and factorial and Sing(X) C U; Sing(V;) where V; are
the irreducible components of Xo;

3. Kx is f-trivial and every fiber Xy is K-trivial;
4. (X, Xp) is a dlt pair for allt € C.

Proof. Similarly to Corollary 1.35, we run the MMP to fy : Y — C, applying Theorem
1.24 the MMP terminates. Observe that a Fano contraction does not occur. Outside
the special fibers Y} is K-trivial and so by the adjunction formula an arbitrary divisor
from |Ky| induces a principal divisor on Y;. Hence a general element of |Ky| consists a
linear combination of components of the special fiber:

Ky = 7”1V1,Y + ...+ Tnvmy

Note that the contractions of the relative Mori cone (Def. 1.27) only consider curves
contained in closed fibers. Hence Ky intersects trivially with any curve of the relative
Mori cone outside of Yy and so by Theorem 1.28, no curves outside of the special fiber
can be contracted during the MMP, thus a Fano contraction cannot occur.
Thus a composition of flips and divisorial contractions we obtain a birational morph-
ism
y —————— X

N

with f: X — B flat surjective projective morphism such that
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e (X,0) is terminal, normal and Q-factorial.
o Kx is f-nef,

e 7:Y — X is an isomorphism over f; '(C\0) as no contractions occur outside of
the special fiber.

As we noted before the relative Mori cone only contains curves contained in a closed
fiber. Since all fibers are numerically equivalent, the intersection of any fiber with a
curve in the relative Mori cone is trivial. Hence every step of the MMP for Ky is a step
of the MMP for Ky + Y}, hence (X, X;) is dlt for all ¢.

Notice that the isomorphism on a general fiber gives that in particular Kx, ~ Oyx,.
Thus by the same argument as before Kx is f-equivalent to a linear combination of
components of the special fiber. By this condition K% < 0 but nefness gives that
K)Q( > 0%. Hence by Zariski’s lemma it is nef iff it is a linear combination of the fibers
and thus Kx ~ Ox.

Since X is relatively K-trivial, then it is Gorenstein. A lemma from Kawamata (cf.
[Kaw88, Lemma 5.1]) states that for 3-dimensional terminal and Gorenstein variety every
Q-Cartier divisor is Cartier. In particular, since X is Q-factorial then it is also factorial.
Furthermore, the dIt assumption ensures we can apply adjunction, which shows that the
special fiber is also K-trivial

Ox, ~5 (Kx + Xo)lx, = Kx,

Finally we show that Sing(X) C U;Sing(V;). Take a closed point p € X\Xjy, then
x € Supp(Xy) for some t # 0. But X; is a smooth Cartier so divisor, so if p was singular
in the total space it should also be on the fiber. Hence p € X\ X is always smooth. Now
take a closed point p € X N Supp Xy, then it lies in some component V; C Xy. Since V;
is a Cartier divisor by the same argument it is a necessary condition that p is singular
in V; to be singular on the total space. Hence Sing(X) C U; Sing(V;) O

Remark 3.3. By Mumford’s semistable reduction theorem (cf. [KKMSD73]) for a
projective morphism Z — C' there is a finite possibly ramified cover 7w : B — C such
that fp : (B X¢ Z) — B is birational to a projective morphism ¢ : Y — B, with fibers
either smooth or snc.

That means that instead of starting with a dlt terminal model one could start with
a more general degeneration and perform this operation to start with an snc. But we do
not do this because the main objective is just to prove Theorem 0.1 and it makes things
simpler.

Remark 3.4. Assuming that only the generic fiber is smooth or with canonical sin-
gularities and taking a compact base instead of quasi-projective one can use the same
arguments to obtain a similar result. The main difference is mostly presentation-wise

5Remark that K% is well defined as it is compactly supported, since f is proper and a point is
compact.
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and that the property of MMP being an isomorphism outside of the central fiber is lost.
In [KLSV18] it is done in such a way for the interested reader and we also did this in
Corollary 1.35.

Remark 3.5 (Projective assumption). In the original statement by Kulikov [Kul77] the
morphism is not assumed to be projective just that the fibers are Kéhler, this was later
improved in [PP81] from Kahler to algebraic. The statement we present is in this sense
weaker, nevertheless it is a necessary condition to actually run the MMP.

For complex analytic spaces the assumption that the morphism is projective is ne-
cessary as the MMP cannot be stablished for compact complex manifolds in general (cf.
[KMO98, 2.17]). We later give another example in this direction (see Remark 3.14).

Note that in dimension 3 if X is compact Kéhler, normal, Q-factorial with at most
terminal singularities the Minimal Model conjecture holds (cf.[HP16]). Hence one could
replace the hypothesis of f being projective with f being proper and X compact Kéhler
in Proposition 3.2.

For schemes by [Kol13, 1.30] it works with only the morphism being proper and sur-
jective. Nevertheless as in the algebraic case the difference between proper and projective
is not big we just assume the latter.

3.2 Step 2: Analysis of the central fiber.

As before the same arguments hold for complex analytic spaces.

Once that we have a semistable minimal model, the idea now is to really understand
what singularities one finds which will then allow us to reasses the problem of turning
this model into a minimal snc model. For this our objective is to prove the following
theorem.

Theorem 3.6. Let X be a 3-dimensional normal variety and (X, A) a dlt pair satisfying
such that A =, V; with V; irreducible, distinct and Cartier. Suppose K x +A is Cartier
and Sing(X) C Supp A.
Then
Sing(X) C U; Sing(V;)

where Sing(V;) consists only of isolated canonical singularities. Moreover let

D:= Y Viny
i<, ViNV;#0

the double curves on A, then around Supp D the pair (X, A) is snc.

In particular theorem 3.6 holds for the pair (X, X) we obtained in Proposition 3.2.
Hence we deduce the following theorem

Theorem 3.7 (Weak Kulikov Models for varieties). Let fo: Y — C be a flat projective
surjective morphism, with
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i. Y be a 3 dimensional terminal Q-factorial variety and C' a quasi-projective smooth
curve,

i. (Y,Y;) dit for allt € C, where Yy := f5'(t) and
iii. Yy := fy'(c) a smooth K-trivial surface for t # 0.
Then there exists a birational morphism

y ————— X

N

such that
1. m:Y — X is an isomorphism over fy ' (C\{0}),

2. X is terminal, Gorenstein and factorial and Sing(X) C U; Sing(V;) where V; are
the irreducible components of Xo;

3. each V; has at most isolated canonical singularities and is smooth around the double
curves,

4. Kx is f-trivial and every fiber Xy is K-trivial;
5. (X, Xo) is snc outside of USing(V;)

A dlt model satisfying (2-5) will be called a weak Kulikov model.
Moreover if we assume that Xy is an Abelian surface (Def. 4.4) then U; Sing(V;) = ()
(see Remark 3.15).

Remark 3.8. A similar higher dimensional version of this statement was proved in
[NXY19, Theorem 4.5]. The proof follows similar logical steps, ours is much quicker and
simplified since we take advantage of working in lower dimensions by using Kawamata’s
result ([Kaw88, Lemma 5.1]), allowing to conclude the irreducible components of the
central fiber are Cartier. This lemma does not hold in higher dimensions, the step
described is in fact one of the main difficulties in the proof of the aforementioned result.

Let us now explain the proof of Theorem 3.6. First consider the following.

Lemma 3.9. Let X be a normal 3-dimensional variety and (X, A) be a dlt pair (as in
1.2) such that A =", V; with V; distinct and irreducible and Kx + A Cartier. Then V;

have isolated canonical singularities and if

Di:= Y  Viny
i35, VinV; #0

one has that Supp D; is contained in the smooth locus of V.
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Proof. First of all we remark that by Theorem 1.19, all V; are normal and so are the
irreducible components of D;. This means in particular that V; have isolated surface
singularities and that the irreducible components of D; are smooth curves.

Moreover, apply Corollary 1.21 to obtain that (V;, D;) are dlt and that Ky, + D; is
Cartier.

By definition of dlt pair there exists a closed subset Z = non-snc(V;, D;) C V; such
that any divisor over Z has discrepancy > —1 and that V;\Z is smooth and Di‘Vi\Z is
an snc pair. Note that as Ky, 4+ D; is Cartier and thus discrepancies are integers.

If Z contains a curve it will be contained in some curve of D;, but then it is some
curve of D;, this is not possible as these are log canonical centers by 1.19. Suppose there
is a canonical closed point p € Supp D; then it is regular by Proposition 1.16. Hence
Supp D; is in the smooth locus of V. ]

We are now ready to prove the main theorem of the section.

Proof of theorem 3.6. By Lemma 3.9, the hypothesis that Sing(X) C Supp A and the
fact that V; are Cartier, we deduce that Sing(X) C U; Sing(V;) and U;Sing(V;) consists
of isolated canonical singularities away from the intersection curves.

Let Z = non-snc(X, A). First observe that V;, the intersection curves and the triple
points are lc centers by Theorem 1.19. As before since V; are lc centers by Theorem 1.19,
so Z does not contain a codimension 1 subset. Moreover, there is no curve in Z as there
are no singular curves on V; and the intersection curves are lc centers. Hence Z contains
just points, not the triple points as they are also lc centers, hence non-snc(X,A) =
U; Sing(V;) D

3.3 Step 3: A careful simultaneous resolutions of Du Val singularities.

From the work we have already done we obtained a weak Kulikov model. The only
obstruction to obtain an honest Kulikov model is the remaining canonical singularities
lying on the irreducible components of the special fiber. Recall that canonical surface
singularities are Du Val singularities (see 1.1.1). These admit a simultaneous resolution
after a base change after by Theorem 1.14. We do that exactly.

Around the 1 and 0 dimensional lc centers worse singularities are created by the
base change. Nevertheless, this can be fixed via toric resolutions without affecting the
canonical divisor so that it is once again snc. Thus we have one Du Val singularity less
and retain all other hypothesis, doing this a finite amount of times yields the result.

Remark 3.10. As we noted in Remark 1.15 this resolution might not exist in the
category of schemes hence in this section we only work complex analytic spaces.

One could however also perform it for algebraic spaces. In fact, in the category of
algebraic spaces steps hold so one also obtains Theorem 3.12 for algebraic spaces.

Definition 3.11. A birational map f : (X,Ax) --» (Y, Ay) will be called crepant if
Kx +Ax ~ f*(Ky + Ay) and Ay = f.Ax.
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We finally have all the ingredients to complete the proof of Theorem 0.6, which we
state again now.

Theorem 3.12. Let fy : Y — C be a projective, flat, surjective morphism of complex
analytic spaces. Such that

1. 'Y is a 3-dimensional terminal Q-factorial variety and C' a quasi-projective smooth
curve,

2. (YY) dit for allt € C, where Y; := f(;l(t) and
3. Y = f&l(c) a smooth K -trivial surface for t # 0.

Then there exists a finite surjective base change m : C' — C andp: X - Y xcC' a
birational morphism over C’

X P Y xo ¢
X‘ /
C/
such that f : X — C" is a Kulikov model (Def. 0.2).

Proof. By Theorem 3.2 and Theorem 3.6 it suffices to show we can solve all the isolated
Du Val singularities, while retaining the snc locus snc.

Pick a Du Val singularity = there is a neighbourhood z € U C Y for which the
hypothesis of Theorem 1.14 are satisfied. Hence there exists a finite and surjective base
change 7 : C — C giving a Cartesian square:

795y

hl ’ lfo
C ——C

Notice that Z is h-trivial as the relative canonical divisor does not change for a finite
surjective base change. Locally one finds a simultaneous resolution

74t vecz-2LsreWcy
FLJ/ hi ’ lfo
= > C

™

q gives a minimal resolution fiberwise, therefore ¢ is a birational morphism and an
isomorphism in codimension 1, thus ¢*Kz ~ K ;. Globally we obtain

z % Yy
ﬂ b
C —

: lf 0
C

™

N

.(7

(@Y
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Now it is well known that Z may have singularities arising from the effect of the base
change in the lc locus. This is where the toric geometry will help us.

Claim. There exists a crepant birational morphism

such that it is an isomorphism outside of a meighborhood Vi of the intersection locus
of Zy; its a log resolution of singularities over Vo and h' : Z' — C is a flat, proper
morphism.

Proof of Claim. The proof of this Claim is originally from [Fri83, Proposition 1.2].
Around a triple point call it 0 the base change is analytically isomorphic to

U= SpeC(C[LE, Y, z,t]/(xyz - tn) -
Recall that we saw in Example 2.9 exactly this toric variety. With embedded torus
T ={(z,y,2,1) € (C*)/ayz ="} C (C*)!

The dual polyhedron of the cone corresponding to U is spanned by (0,0, 1), (n,0,1) and
(0,n,1). To resolve its singularities we proceed like in Example 2.15. Subdivide o as
follows: add all rays of the form R*(a,b,1) with a,b € Z, 0 < a,b < n, and all planes
spanned by such two of the form

(a,b,1) and (a,b+1,1); or (a,b,1) and (a+ 1,b,1); or (a,b+1,1) and (a + 1,b,1)
Hence each o is the convex hull of the rays generated by one of the following sets:
0o = convex hull of R"(a,b,1) + R (a +1,b,1) + R (a,b+1,1)

or
0o = convex hull of R"(a,b+1,1) + R¥(a+ 1,b,1) + R (a + 1,b+ 1,1).

Let U = Ua where A is the fan corresponding to {4 }. Then by Proposition 2.14

1. the induced morphism U — U is a refinement hence it is a proper birational
morphism,

2. each o, is spanned by a Z-basis of n which implies U is smooth,

3. finally it is an isomorphism over

T= {(w,y,z,t) € ((C*)4\ LYz = tn}
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For example let 0, be as in the first possibility, then the dual polyhedron o) C My is
generated by (1,0, —a), (0,1,—b) and (—1,1,a + b+ 1). Thus U is obtained by gluing
together the affine pieces:

U,, = Spec Clat™2, yt 0, o~ 1y~ LetoH]

Set ug := 2%, vy =yt~ and wy = xly 1ttt Then uyvawa = t, so that t = 0
defines a snc divisor. 3
Away from the triple points, Z has double curves which are locally defined by

Spec(C[x, Y, =, t]/(xy - tn)

We already gave a toric resolution of these singularities in Example 2.15. Clearly it is
compatible with the resolution we just defined on triple points. Thus all local resolutions
along the intersection loci can be patched up together.

Hence we constructed a proper birational morphism Z’ — Z such that it is a log
resolution along the intersection loci and it’s an isomorphism away from them.

The smooth locus stays smooth and the remaining Du Val singularities stay canonical
since the base change does not change the relative canonical divisor.

There is only one thing left to check and that is that the morphism is crepant. For
this observe as in [Fri83] that all the newly created components of Zé are rational ruled
surfaces and all cycles of double curves on them have anticanonical divisors it follows
that the morphism is crepant. O

In conclusion, (Z', (Z]) satisfies being snc away from the Du Val singularities, has one
Du Val singularity less than (Y,Y)) and maintains K-triviality. Repeating this process
to (Z', Z|), leads inductively to a finite surjective morphism €’ — C and a birational
morphism

X P » Y xo O
~
C/
and a flat proper morphism f : X — C’. Now any terminal singularity of (z € X')
must lie in the central fiber over the interior of the irreducible components V; but as X

is a Cartier divisor. This does not occur since we resolved all singularities hence X is
smooth, f-trivial and Xy is an snc divisor thus we obtained a Kulikov model. O

As a corollary we obtain Theorem 0.1.

Corollary 3.13 (Kulikov-Persson-Pinkham Theorem). Let f : X — C be a projective
1-parameter degeneration of smooth K-trivial surfaces over the complex disk. Then
there is a finite and surjective base change C' — C and X' a smooth manifold fitting a
commutative diagram

X/ P X xo '

N

Cl
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Where p is a birational morphism which is an isomorphism outside the central fiber and
[ X' — Al is a semistable degeneration with Kx+ ~p Oxr.

Remark 3.14 (Limits of the MMP on complex analytic spaces). A degeneration of K3
that does not admit a Kulikov model is known ([Nis88]). This degeneration satisfies
that the central fiber contains non-algebraic complex analytic surfaces as irreducible
component (so called Kodaira class VII surfaces).

One notices that in the proof of the theorem the hypothesis that the morphism is
projective has only been used to run the MMP (Theorem 1.24). Hence this provides
a new counterexample that the MMP cannot be established in general for compact
complex manifolds. As if it did applying this method would give a contradiction.

Remark 3.15 (Canonical singularities for Kulikov models of Abelian surfaces.). For a
Kulikov model of Abelian surfaces, each irreducible component of the central fiber is
a torus embedding (cf. [FMS83, p. 22]). The interior of a toric variety is smooth (cf.
[Ful93, Ch. 2]). This shows that Step 3 of the proof was unnecessary and that the weak
Kulikov model from Theorem 3.7 was an honest Kulikov model.
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4 Classification of the central fiber.

mais on ne peut les y reconnaitre individuellement que par
le raisonnement, en laissant le champ libre a toutes les
transformations possibles pendant la jeunesse jusqua la
limite ou ces formes reconstituées empiéteraient sur une
autre individualité quil faut identifier aussi

A la recherche du temps perdu, Marcel Proust

We now move on to prove the Theorem 0.3 both for degenerations of K3 surfaces
and Abelian varieties. This is nothing new and was already carried out in [Kul77] and
[Per77]. Nevertheless we give our own version of the proof which is more fleshed out,
also partly rephrased in terms of log Calabi-Yau pairs. Furthermore for K3 surfaces the
proof does not use Hodge theory at all.

For this section some basic knowledge about the classification of algebraic surfaces
is assumed, the uninitiated reader might find useful either [Bea96] or [Bad01].

To begin our proof we first begin with a small introduction to log Calabi-Yau pairs.

Definition 4.1 (log Calabi-Yau). Let (X, A) be a pair as in 1.2, we say that (X, A)
is Calabi-Yau if Kx + A ~g Ox. Moreover, one says that (X, A) is log Calabi-Yau or
logCY if it is log canonical and Calabi-Yau.

Lemma 4.2. Let (X,A) be a dit log Calabi-Yau pair, and suppose A =Y. V; with V;
distinct integral divisors. Let D; := Zi#j D; N Dj, then (V;, D;) is dit and logCY.

Proof. By Corollary 1.19, one has that D; = Diffy,(A). Hence (V;, D;) is dlt and fur-
thermore we have equation

(Kx +A)ly; = Ky, + D;
but as (X, A) is logCY one deduces that Oy, ~q Ky, + D; O

Lemma 4.3. Let (V,D) be a dit logCY surface pair, D = ) . C; with C; irreducible
curves. Assume Ky + D is Cartier. Then either

1. V is an elliptically ruled surface with q(V) =1
2. or'V is rational surface.

Proof. First notice that as in Example 1.35 that dlt surface pair with Ky + D Cartier
is snc in a neighborhood of Supp D and has at most canonical singularities away from
these. Assume V' is smooth with no (—1)-curves, if not by Theorem 1.16 one can replace
V with its minimal resolution and contract the (—1)-curves and all arguments apply, as
the canonical divisor does not change.

There are two options either ¢(V) = 0 or ¢(V) > 0. In the first case Castelnuovos
rationality criterion (cf. [Bea96, Theorem V.1]) implies that V' is rational. In the second
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case the Albanese morphism defines a genus 0 fibration and so it is birational to a P! x C,
for C' a smooth curve. Take the projection onto the first coordinate. A generic fiber
would be isomorphic to C' and so adjunction gives

0<—Ky.F—F?>=2-2¢(C).

since F' and —Ky are effective and F? = 0, we deduce that g(C) = 0,1. But as
0 < q(V) = ¢g(C) the only possibility is g(C') = 1 and thus V is an elliptically ruled
surface.

O]

Definition 4.4 (Abelian variety). An abelian variety X is a proper smooth integral
group scheme over a base field k. If dim(X) = 2, it will be called Abelian surface.
One can prove that an Abelian surface satisfies that y(X) =0 and wx ~ Ox.

Lemma 4.5. [Bad01, Prop. 13.5] Let X be a smooth projective surface and let D =
> E; be a boundary such that |D + Kx| = 0. Suppose that E; are smooth intersecting
transversally.” Then,

1. q(X) > >, pa(E;), where the p, is the arithmetic genus.
2. The dual graph of D is a disjoint union of trees.

Proof. Consider the exact sequence
0—Ox(—D)—Ox - 0Op—0
Now take the corresponding LES
HY(X,0x) — HY(D,Op) = H*(X,0x(-D))

By Serre duality, |D + Kx| = §) implies that h?(X,Ox(—D)) = 0, hence H'(X,Ox) —
HY(D,Op) is surjective.
On the other hand, one has the exact sequence

0—Op ER HOEi — coker(j) — 0

From this one deduces that h'(Op) > >k (Og,) = >, pa(E;) because coker(j) is
supported in dimension 0.

As for (2). Recall that H'(X,Ox) = T, Picx = T, Pic%, where Pic% denotes the
connected component containing the identity in the group scheme Picyx. Likewise for
D. From the LES above one obtains a surjective morphism

Pic} — Pic)

hence Pic% is an Abelian variety. If D contains a loop, then Pic(D) contains a subgroup
which is isomorphic to G,,. This is not possible as Pic% is a smooth Abelian variety. O

"This can actually be deduced from the previous hypothesis, but it is not important for us.
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Lemma 4.6. Let (V, D) be a dlt log Calabi-Yau surface pair, D =", C; with C; distinct
and irreducible. Assume Ky + D is Cartier. Then either

1. V is an elliptically ruled surface with q(V) =1

e D consists of a single elliptic curve, or

e D consists of two disjoint elliptic curves;
2. or'V is rational surface and either

e D consists of a single elliptic curve, or

e D=73".C;is a cycle of rational curves.

Proof. By Lemma 4.3 one only needs to see check the specifics of case 1. and 2.

Suppose V' is rational, if D = C then by Lemma 4.2, Ko ~ O¢, hence C is an
elliptic curve. If D consists of more than one curve one defines Dj, = >, ,; C; then
D;, + Ky = —C};,. Hence by Lemma 4.5.(1) we deduce that g(C;) = 0 for i # i, since
one can choose any other curve conclude that C; = P! for all i. Furthermore, Lemma,
4.5(2) implies that there is just 1 cycle of rational curves, because otherwise we would
find non-trees when choosing Cj, from another cycle.

Suppose V' is elliptically ruled. If D = C an integral curve the same arguments
conclude that it is elliptic. Else we define again D;, = >, ,; Ci. By Lemma 4.5(1) D;,
contains at most one elliptic curve and the rest must be rational curves, so D, contains
at most 2 elliptic curves and the rest are rational.

Let C' be an elliptic curve then by the adjunction formula

0=29(C")—2=Ky.C'+(C')?=—(D-C).C"=- ) C.C'
Ci#C’

But the number on the right is minus the number of points intersecting with C’. Hence
(' is disjoint to other curves.

We show now that no rational curves can occur in D and consequently D consists of 2
elliptic curves. There cannot be an isolated rational curve since adjunction would prove
it’s K-trivial. Suppose then that there is a cycle of rational curves. As kK(V) = —oc0 V
admits a ruling V — E. Adjunction formula gives

—Ky.F=2

But a fiber along a ruling is rational and the base is an elliptic curve. This would imply
that for some rational curve C;.F > 0, so it would define a section which dominates E
a curve with higher genus. A contradiction. O

Now we have a good idea of what surface dlt logCY pairs look like. The only
ingredient left for the classification of Kulikov models is to be able to relate the geometry
of a smooth fiber to the geometry of the special fiber.
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Lemma 4.7. Let f : X — C be a flat proper morphism, with X a 8 dimensional variety
such that Xog = f~1(0) is an snc divisor with irreducible components V;, double curves
Cij and triple points Ty, then

X(X1) = x(X0) =D x(Vi) = > x(Cip) + > x(Tigw)-
7 1<j i<j<k
Proof. Now as X is flat over the base we have constancy of the Hilbert polynomials and
thus

X(X¢) = x(Xo) = x(Xo)-

On the other hand, as X is an snc divisor the Mayer-Vietoris spectral sequence gives

that
X(X0) =D x(Vi) =Y _x(Cij) + Y x(Tyjn)-
) 1<j i<j<k
O

We are now ready to give the classification of the central fiber of a Kulikov model.
We note that the only K-trivial smooth projective surfaces are K3 surfaces and Abelian
surfaces (cf.[Bea96]), hence we only classify those degenerations.

Definition 4.8 (K3 surface). A K3 surface X over k is a smooth variety of dimension
2 such that
wx ~ Ox and HI(X7 Ox).

One easily deduces from this definition that x(X) = 2.

Theorem 4.9. Let X — C be a weak Kulikov model as in Theorem 3.7. Then if the
generic fiber is a K3 surface (resp. an Abelian surface). Then the degenerate fiber X
must be one of the following 3 types:

I Xy =V is a K3 surface (resp. Abelian surface) with canonical singularities .

1. Xg=Vi+...4V,, where V1 and V,, are rational surfaces and Vs, ..., V,,_1 are elliptic
ruled surfaces so that q(V;) = 1,1 = 2,....n— 1 (resp. all V; are elliptically ruled
surfaces, q(V;) = 1). The dual complex is a chain (resp. a cycle) and the double
curves C 2, ..., Cp—1,n are elliptic curves (resp. Chpa,...,Cp1 are elliptic curves).

III. Xog = Vi + ... +V,, where all V; are rational surfaces; the double curves C;; are
rational and form a cycle on each of the surfaces V;. The topological realisation of
the dual complex is homeomorphic to the triangulation of S? (resp. of S* x S1).

Proof. Note that as the generic fiber is K-trivial it contains no (—1)-curves and as
(—1)-curves are deformation invariant the special fibers cannot contain them either.
Assume that all components of Xg are smooth. In another case they have at most
canonical singularities away from the intersection curves. Hence one would take a min-
imal resolution of the canonical singularities p : Xo — X with K o ™ w*Kx, as in
Theorem 1.16. Hence,
Ky, = 1 Kxo = 17 0x, = O,
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moreover canonical singularities are rational (cf. [KM98]) , i.e. R’p*OXO = Ox,. Con-
sider the Leray spectral sequence

EP? = HP(X, ROy ) = HPT (X, 05 )

hence H?(Xy, Oyx,) = H?(Xo, Ox,) for all p. In particular x(Xo) = x(Xo).
Thus we may assume that all components of X are smooth. Let C;; and Tjj;, the
double intersection curves and triple intersection points. By Lemma 4.7 we have

X(X1) = x(Xo) = Zx(Vi) = x(Ci)+ > x(Tiw).

1<J 1<j<k

There are now two options either X contains one irreducible component or it contains
more than one. In the second case, notice that (X, Xy) is an snc Calabi-Yau pair, hence
by Lemma 4.2, (V;, D; := Zj;éi;\/mvj;é@ ViNVj) is also snc Calabi-Yau. Then Lemma 4.6
gives all the possibilities for each pair (V;, D;). We can now give a classification.

Type I. If the central fiber consists of a single irreducible component then by the
classification of algebraic surfaces K-triviality and the Euler characteristic uniquely de-
termine the surface. Hence it is a K3 surface (resp. Abelian surface) if the general fiber
is a K3 surface (resp. Abelian surface).

Type II If no rational cycles occur in any components then there are no triple points.
The double curves are elliptic and components are elliptically ruled with ¢(V') = 1, both
with trivial x(—), so they do not contribute to the Euler characteristic.

1. If X; is a K3 surface then x(X;) = 2 there are exactly two rational surfaces that
admit just one elliptic curve, so we get a chain of surfaces Vi,...,V,,, with V;,V,
rational and V5, ..., V},_ elliptically ruled n > 2.

2. If X, is an abelian surface then y(X;) = 0, we get a chain or a cycle of elliptically
ruled surfaces. The first possibility is ruled out using Hodge theory (cf.[Per77]).

Type III If there is a cycle of rational curves in the central fiber then all components
are rational with double curves being rational curves forming a cycle. From this we see
that II(Xj) is a triangulation of a compact surface without border.

1. If X, is a K3 surface then x(X;) = 2, thus we conclude that II(Xy) gives a trian-
gulation of S2.

2. If X; is an abelian surface then x(X;) = 0, thus we conclude that II(Xy) gives a
triangulation of either to S x S or RP?#RP?. The second possibility is ruled
out using Hodge Theory (cf.[Per77]).

O]
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