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We prove that a nonlinear evolution equation which comes from a model of an age-structured cell population endowed
with general reproduction laws is well-posed. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Many models of structured population dynamics with inherited properties have been proposed especially in cell biology. Many cell
biologists believe that the inheritance of generation time is important for modeling proliferating cell populations.

In this paper we are concerned with the following nonlinear model:⎧⎪⎨
⎪⎩

�
�t

f (t, a, l)=− �
�a

f (t, a, l)+�(a, l, f (t, a, l)),

f (t, 0, l)=K(f (t, l, l)),

(1)

where l ∈ (l1, l2), 0�l1<l2<∞ and a∈ [0, l] and where K denotes a nonlinear operator defined between two suitable function spaces.
Equations of type (1) were introduced in 1974 by Lebowitz and Rubinow [1] for modeling microbial populations by an age and

cycle length formalism. The variable a represents age, while l is the cycle length of cells and represents the time between cell birth
and cell division. The function f (t, a, l) is the density of the population with respect to the age a and the cell cycle length l at time t.
The cell cycle length l of individual cells is an inherent characteristic determined at birth, i.e. the duration of the cycle from cell
birth to cell division is determined at birth. The constant l1(resp. l2) denotes the minimum cycle length (resp. the maximum cycle
length). The function �(·, ·, ·) is the rate of cell mortality or loss due to causes other than division. All biological laws of the transition
for distribution of mothers cycle length to daughters cycle length are mathematically described by the following general boundary
conditions:

f (t, 0, l)= [K(f (t, ·, ·))](l), (2)

where K is an operator on suitable trace spaces called the transition operator. The case when K is a linear operator was studied
for instance in [2--4]. The nonlinear case has been studied in [5] although for the stationary equation. In fact, it was observed
by Rotenberg [6] that the linear model seems not adequate. Indeed, the cells are in contact with a nutrient environment and
fluctuations in nutrient concentration and other density-dependent effects such as contact inhibition of growth make the transition
rate functions of population density, thus creating a nonlinear problem. On the other hand, the biological boundaries l1 and l2 are
fixed and tightly coupled throughout mitosis. The conditions present at the boundary are left throughout the system and cannot
be omitted. This fact suggests that at mitosis the daughter cells and mother cells are related by nonlinear reproduction rule. (A
mathematical model for age-dependent dynamics with nonlinear boundary conditions was considered in [7]). Examples of transition
operators were exploited in [8--10]. Here, we prove that this model for the parabolic case is well-posed in the natural framework like
L1-space, since f (t, a, l) has the meaning of a density of the population with respect to time t, to the age a and the cell cycle length
l i.e. the purpose of this note is to obtain an existence and uniqueness result for Equation (1) although K becomes nonlinear.
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2. Preliminaries

We start this section by supposing that 0<l1<l2<∞ and that � is the set � :={(a, l) such that 0<a<l, l1<l<l2}. We consider the
Banach space X :=L1(�) with its natural norm, which is given by

‖�‖1 =
∫

�
|�(a, l)|da dl =

∫ l2

l1

(∫ l

0
|�(a, l)|da

)
dl.

We introduce the partial Sobolev space W1(�) :={�∈L1(�) : �
�a

�∈L1(�)}, which is a Banach space with the norm:

‖�‖W1(�) =‖�‖1 +
∥∥∥∥��

�a

∥∥∥∥
1

.

Now we define the following boundary spaces: X1 =L1(�1, dl) and X2 =L1(�2, dl) where �1 :={(0, l) : l ∈ (l1, l2)} and �2 :={(l, l) : l ∈
(l1, l2)}.

It is well known (see Theorem 3.3 of [2]) that every function �∈W1(�) has traces on both spaces X1 and X2. Moreover, the trace
mappings �0 and �1 are linear continuous mappings and they are given by

�0(�)(l) :=�(x, l)−
∫ x

0

��(s, l)

�a
ds,

and

�1(�)(l) :=�(x, l)+
∫ l

x

��(s, l)

�a
ds.

Let (X,‖·‖) be a real Banach space. A mapping A : D(A)⊆X →X is said to be accretive if the inequality ‖x−y+�(A(x)−A(y))‖�‖x−y‖
holds for all ��0, x, y ∈D(A). If, in addition, R(I+�A) (i.e. the range of the operator I+�A), is for one, hence for all, �>0, precisely X ,
then A is called m-accretive. Accretive operators were introduced by Browder [11] and Kato [12] independently.

Finally, A is said to be w-accretive (w-m-accretive), where w ∈R, if A+wI is accretive (respectively m-accretive). Notice that A is
accretive if and only if A is w-accretive with w =0.

Those operators which are w-m-accretive play an important role in the study of nonlinear partial differential equations.
Consider the Cauchy problem {

u′(t)+A(u(t))= f (t), t ∈ (0, T),

u(0)=x0 ∈D(A),
(3)

where A is w-m-accretive on X and f ∈L1(0, T, X).
Given �>0. An �-discretization on [0, T] of the equation u′(t)+A(u(t))= f (t) consists of a partition 0= t0�t1�t2� · · ·�tN of the

interval [0, tN] and a finite sequence (fi)
N
i=1 ⊆X such that

ti −ti−1<� for i=1,. . . , N, T −�<tN�T,

N∑
i=1

∫ ti

ti−1

‖f (s)−fi‖ds<�.

A D�
A(0= t0�t1�t2� · · ·�tN ; f1,. . . , fN) solution to (3) is a piecewise constant function z : [0, tN]→X whose values zi on (ti−1, ti] satisfy

the finite difference equation

zi −zi−1

ti −ti−1
+A(zi)= fi , i=1, 2,. . . , N. (4)

Such a function z = (zi)
N
i=1 is called an �-approximate solution to the Cauchy problem (3) if it further satisfies

‖z(0)−x0‖��.

It is well known (see Corollary 4.1 of [13]) that (3) has a unique mild solution in the sense that there exists a unique continuous
function u : [0, T]→D(A) such that u(0)=x0, and moreover, for each �>0 there is an �-approximate solution z of u′+A(u)= f on [0, T]
such that ‖u(t)−z(t)‖�� for all t ∈ [0, T].

If u is the mild solution of Problem (3), then for each (x, y)∈A and 0�s�t�T , we have

‖u(t)−x‖�ew(t−s)‖u(s)−x‖+
∫ t

s
ew(t−�)[f (�)−y, u(�)−x]s d�. (5)

Here the function [·, ·]s : X ×X →R is defined by [y, x]s =sup{x∗(y) : x∗ ∈ J(x)}, where J : X →2X∗
is the duality mapping on X , i.e.

J(x)={x∗ ∈X∗ : x∗(x)=‖x‖,‖x∗‖=1}. This means that u is an integral solution to Equation (3) in the sense of Benilan [14] and moreover
both concepts of solution coincide within our context.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1658–1666

1
6

5
9



J. GARCIA-FALSET

If u, v are integral solutions of u′(t)+A(u(t))= f (t) and v′(t)+A(v(t))=g(t), respectively, with f, g∈L1(0, T, X), then

‖u(t)−v(t)‖�ewt‖u(0)−v(0)‖+
∫ t

0
ew(t−s)‖f (s)−g(s)‖ds.

We now recall some important facts regarding accretive operators which will be used in our paper (see for example [13]).

Proposition 1
Let A : D(A)→X an operator on X. The following conditions are equivalent.

• A is a w-accretive operator,
• The inequality [A(x)−A(y), x−y]s�−w‖x−y‖, holds for every x, y ∈D(A),
• For each 0<�<1 / w the resolvent J� := (I+�A)−1 : R(I+�A)→D(A) is a single-valued 1 / (1−w�)-Lipschitzian mapping.

3. General existence results

Our first step in this section will be to associate an m-accretive operator with the boundary value problem (1) whenever K : X2 →X1

is a nonexpansive mapping, i.e.

(H1) ‖K(f1)−K(f2)‖X1�‖f1 −f2‖X2 .

As a trivial consequence of (H1) we obtain that K is a continuous operator from X2 into X1.
Let us define the following operator: ⎧⎪⎨

⎪⎩
TK : D(TK )⊆L1(�)→L1(�),

�→TK (�(a, l))= ��

�a
(a, l),

(6)

where D(TK ) :={�∈W1(�) :�0(�)=K(�1(�))}.

Theorem 1
The operator TK : D(TK )⊆L1(�)→L1(�) is m-accretive on L1(�).

Proof
Let �1, �2 two elements of D(TK ). We claim that Tk is accretive. Indeed, if we introduce the function sgn0 :R→R by

sgn0(r)=

⎧⎪⎪⎨
⎪⎪⎩

1 if r>0,

0 if r =0,

−1 if r<0.

We obtain that

[TK (�1)−TK (�2),�1 −�2]s �
∫ l2

l1

(∫ l

0

(
�
�a

(�1(a, l)−�2(a, l))sgn0(�1(a, l)−�2(a, l)) da

)
dl

=
∫ l2

l1

(∫ l

0

(
�
�a

(|�1(a, l)−�2(a, l)|)da

)
dl. (7)

By using that the trace mappings are linear and continuous, we have the last term of inequality (7) greater than or equal to

∫ l2

l1
(|�1(�1)(l)−�1(�2)(l)|−|�0(�1)(l)−�0(�2)(l)|)dl. (8)

Since �1, �2 ∈D(TK ), we obtain that expression (8) is greater than or equal to

∫ l2

l1
(|�1(�1)(l)−�1(�2)(l)|−|K(�1(�1))(l)−K(�1(�2))(l)|)dl. (9)

Finally, since K is a nonexpansive mapping, we conclude that

[TK (�1)−TK (�2),�1 −�2]+�‖�1(�1)−�1(�2)‖−‖K(�1(�1))−K(�1(�2))‖�0. (10)

Inequality (10) implies that TK is accretive, as we claimed.
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By definition of m-accretive operator we only have to see that R(I+TK )=L1(�), i.e., given a function g∈L1(�) we have to find a
function �∈D(TK ) such that

�+TK (�)=g.

Thus, we look for the general solution of the following differential equation:

�(a, l)+ ��

�a
(a, l)=g(a, l). (11)

Since Equation (11) is linear with respect to the variable a, the general solution will be given by the following formula:

�(a, l)=e−a	(l)+
∫ a

0
g(s, l)es−a ds.

If we call �(a, l)=e−a we have that

�(a, l)=�(a, l)	(l)+
∫ a

0
g(s, l)es−a ds. (12)

First, let us show that if 	∈L1(l1, l2), then �∈W1(�). Indeed,

‖�‖1 = ‖�	+
∫ a

0
g(s, l)es−a ds‖1

=
∫ l2

l1

(∫ l

0
|e−a	(l)+

(∫ a

0
g(s, l)es−a ds

)
|da

)
dl

� ‖	‖L1(l1 ,l2) +
∫ l2

l1

(∫ l

0

(∫ a

0
|g(s, l)|es−a ds

)
da

)
dl

� ‖	‖L1(l1 ,l2) + l2‖g‖1. (13)

On the other hand, ∥∥∥∥��

�a

∥∥∥∥
1
=‖g−�‖1�‖g‖1 +‖�‖1. (14)

It is clear that if 	∈L1(l1, l2), inequalities (13) and (14) yield that �∈W1(�).
Now, our next step will be to prove that there exists a function �∈D(TK ) such that it satisfies Equation (12). In this case �0(�)=	.

Furthermore, if we call h(a, l)=∫ a
0 g(s, l)es−a ds, the following condition should be satisfied:

�1(�)=�1(�	)+�1(h)=e−l�0(�)+�1(h).

Since �∈D(TK ) we know that �0(�)=K(�1(�)). Consequently,

�1(�)(l)=e−lK(�1(�))(l)+�1(h)(l).

At this moment we may introduce the operator S : L1(l1, l2)→L1(l1, l2) defined by S(
)(l))=�(l, l)K(
)(l),
We claim that S is a strict contraction. Indeed,

‖S(
1)−S(
2)‖L1(l1 ,l2) =
∫ l2

l1
|e−lK(
1)(l)−e−lK(
2)(l)|dl

=
∫ l2

l1
e−l|K(
1)(l)−K(
2)(l)|dl

� e−l1‖K(
1)−K(
2)‖L1(l1 ,l2)

� e−l1‖
1 −
2‖L1(l1 ,l2). (15)

Thus, if l1>0 we obtain that S is a strict contraction as claimed.
In this case, it is not difficult to prove that the operator I−S : L1(l1, l2)→L1(l1, l2) is bijective and moreover (I−S)−1 is continuous

(for instance see [15]), then given �1(h)∈L1(l1, l2) there exists a unique function �∈L1(l1, l2) such that (I−S)(�)=�1(h).
The above argument allows us to define

�(a, l)=�(a, l)K(I−S)−1�1(h)(l)+h(a, l)∈W1(�)m

which yields that R(I+TK )=L1(�), i.e. TK is m-accretive. �

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1658–1666
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3.1. A general condition on K

In this section our goal will be to associate an w-m-accretive operator for an appropriate w>0) to the boundary value problem (1)
when the operator K : L1(l1, l2)→L1(l1, l2) satisfies a Lipschitz condition:

(H1)’ There exists �>1 such that ‖K(f1)−K(f2)‖��‖f1 −f2‖, for all f1, f2 ∈L1(l1, l2).

Let us introduce the weighted space X1
w =L1(�, hw) with the norm

‖�‖1,w =
∫

�
|�hw)(a, l)|da dl =

∫ l1

l1

(∫ l

0
|�hw|(a, l)da

)
dl, (16)

where hw is given by

hw(a, l)=e−w(l−a).

We also consider the partial Sobolev space

W1
w(�) :=

{
�∈X1

w :
��

�a
∈X1

w

}
.

Using the trace theorem (see Theorem 2.1 of [3]) it is possible to give a sense to the following operator:⎧⎪⎨
⎪⎩

TK : D(TK )⊆X1
w →X1

w,

�→TK (�(a, l))= ��

�a
(a, l),

(17)

where D(TK ) :={�∈W1
w(�) :�0(�)=K(�1(�))}.

In what follows we will take a fixed w> 1
l1

ln(�).

Theorem 2
The operator TK is a w-m-accretive operator on X1

w .

Proof
Given g∈X1

w and �∈ (0, 1 / w) there exists a function �∈D(TK ) such that �+�TK (�)=g. Using the same argument develops in proof
of Theorem (1) we look for a function � such that

�(a, l)=e− a
� 	(l)+ 1

�

∫ a

0
g(s, l)e− a−s

� ds.

Let us show that if 	∈L1(l1, l2), then �∈W1
w(�). Indeed,

‖�‖1,w =
∫ l2

l1

(∫ l

0
e−w(l−a)

∣∣∣∣e− a
� 	(l)+ 1

�

(∫ a

0
g(s, l)e

s−a
� ds

∣∣∣∣
)

da

)
dl

�
∫ l2

l1

(∫ l

0
e
(

w− 1
�

)
a|	(l)|da

)
dl+ 1

�

∫ l2

l1

(∫ l

0
e−w(l−a)

(∫ a

0
|g(s, l)|ew(s−a)ds

)
da

)
dl

� �

1−w�
‖	‖L1(l1 ,l2) +

1

�

∫ l2

l1
e−wl

(∫ l

0

(∫ l

0
|g(a, l)|ewada

)
da

)
dl

� �

1−w�
‖	‖L1(l1 ,l2) +

1

�

∫ l2

l1
l

(∫ l

0
|g(a, l)|e−w(l−a)da

)
dl

� �

1−w�
‖	‖L1(l1 ,l2) +

l2
�

‖g‖1,w. (18)

On the other hand,

‖��

�a
‖1,w = 1

�
‖g−�‖1,w�1

�
(‖g‖1,w +‖�‖1,w). (19)

It is clear that if 	∈L1(l1, l2), from inequalities (18) and (19) we obtain that �∈W1
w(�).

Now, our next step will be to prove that there exists a function �∈D(TK ) such that it satisfies Equation (12). In this case �0(�)=	.

Furthermore, if we call h(a, l)=∫ a
0 g(s, l)e− a−s

� ds, the following condition should be satisfied:

�1(�)=�1(��	)+ 1

�
�1(h)=e− l

� �0(�)+ 1

�
�1(h),

where ��(a, l)=e− a
� .

1
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Since �∈D(TK ) we know that �0(�)=K(�1(�)). Consequently,

�1(�)(l)=e− l
� K(�1(�))(l)+ 1

�
�1(h)(l).

At this moment we may introduce the operator S� : L1(l1, l2)→L1(l1, l2) defined by S�(
)(l))=��(l, l)K(
)(l),
We claim that S� is a strict contraction. Indeed,

‖S�(
1)−S�(
2)‖L1(l1 ,l2) =
∫ l2

l1
|e− l

� K(
1)(l)−e− l
� K(
2)(l)|dl

=
∫ l2

l1
e− l

� |K(
1)(l)−K(
2)(l)|dl

� e− l1
� ‖K(
1)−K(
2)‖L1(l1 ,l2)

� e− l1
� �‖
1 −
2‖L1(l1 ,l2). (20)

Since we have taken w> 1
l1

ln(�) and �∈ (0, 1 / w) it is clear that e− l1
� �<1, which means that S� is a strict contraction.

In this case, following the same argument as in Theorem 1 we have that given 1
� �1(h)∈L1(l1, l2) there exists a unique �∈L1(l1, l2)

such that (I−S�)(�)= 1
� �1(h).

The above argument allows us to define

�(a, l) := (I+�TK )−1(g)=��(a, l)K(I−S�)−1
(

1

�
�1(h)

)
(l)+ 1

�
h(a, l)∈W1

w(�),

which yields that R(I+�TK )=L1
w(�) whenever �∈ (0, 1 / w).

Now, consider g1, g2 ∈L1
w(�), by the above argument we can obtain �1, �2 ∈D(TK ) such that

�1 = (I+�TK )−1(g1), �2 = (I+�TK )−1(g2).

Hence,

‖�1 −�2‖1,w = ‖(I+�TK )−1(g1)−(I+�TK )−1(g2)‖1,w

� −�
∫

�
sgn0(�1 −�2)hw

�(�1 −�2)

�a
da dl+

∫
�

sgn0(�1 −�2)hw(g1 −g2)da dl

� −�
∫ l2

l1

∫ l

0

�
�a

|hw(�1 −�2)|da dl+w�
∫

�
|hw(�1 −�2)|da dl+

∫
�

hw(a, l)|g1(a, l)−g2(a, l)|da dl

� �

(∫ l2

l1
(e−wl|K(�1(�1))−K(�1(�2))|−|�1(�1)−�(�2)|

)
dl+w�‖�1 −�2‖1,w +‖g1 −g2‖1,w

� �(e−wl1�−1)‖�1(�1)−�1(�2)‖1 +w�‖�1 −�2‖1,w +‖g1 −g2‖1,w

� w�‖�1 −�2‖1,w +‖g1 −g2‖1,w. (21)

From this inequality we conclude that

‖(I+�TK )−1(g1)−(I+�TK )−1(g2)‖1,w� 1

1−w�
‖g1 −g2‖1,w.

�

3.2. The evolution equation

In this section, we are concerned with the existence and uniqueness result for Problem (1). For our subsequent analysis, we need
the following hypothesis:

(H2) � :�×R→R is a Carathéodory function,
(H3) there exists h∈L∞(�) such that |�(a, l, x)−�(a, l, y)|�|h(a, l)||x−y|.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1658–1666
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Given the equation: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
�t

f (t, a, l)=− �
�a

f (t, a, l)+�(a, l, f (t, a, l)),

f (t, 0, l)=K(f (t, l, l)),

f (0, ·, ·)∈L1(�, hw),

(22)

where w =0 if K is a nonexpansive mapping and w is a fixed number bigger than 1
l1

ln(�) if K is �-Lipschitzian mapping with �>1.

We may consider the Banach space X1
w =L1(�, hw) and u(t) := f (t, ·)∈X1

w. Define N� : X1
w →X1

w by N�(�)(a, l) :=�(a, l,�(a, l)). Thus, we
may interpret and rewrite Problem (22) as follows:{

u′(t)+TK (u(t))=N�(u(t)),

u(0)=g∈X1
w.

(23)

Now we try to show that if assumptions (H2), (H3) and either (H1) or (H1)’ hold, then Equation (23) has a unique mild solution.
Hence the main result of this section reads as follows.

Theorem 3
Under conditions (H2), (H3) and either (H1) or (H1)’, Equation (23) has a unique mild solution.

Proof

First, we claim that L1(�, hw)=D(TK )
L1(�,hw )

. In order to see this, it is enough to prove that C∞
0 (�)⊆D(TK )

L1(�,hw )
. Let v be an

element of C∞
0 (�). For each n∈N, define de function:

un(a, l)=

⎧⎪⎪⎨
⎪⎪⎩

v(a, l), (a, l)∈� with a� l1
n

,

K(v(l, l)), (a, l)∈� with 0�a<
l1
n

.

It is clear that |un(a, l)|�max{|v(a, l)|, |K(v(l, l)|} and both functions belong to L1(�). It is also clear that hwun →hwv a.e. in �. Thus,
by the dominated convergence theorem we have that ‖un −v‖1,w →0.

On the other hand,

�un

�a
=

⎧⎪⎪⎨
⎪⎪⎩

�v

�a
(a, l), (a, l)∈� with a� l1

n
,

0, (a, l)∈� with 0�a<
l1
n

.

Therefore, it is not difficult to see that un ∈D(TK ). Since un ∈W1
w(�), �1(un)(l)=v(l, l), and �0(un)(l)=K(v(l, l))=K(�1(un)(l)).

Second, let us see that N� : L1(�, hw)→L1(�, hw) is a Lipschitzian mapping.

‖N�(�)−N�(�)‖1,w =
∫

�
hw(a, l)|N�(�)(a, l)−N�(�)(a, l)|da dl

=
∫

�
hw(a, l)|�(a, l,�(a, l))−�(a, l,�(a, l)|da dl

�
∫

�
hw(a, l)|h(a, l)||�(a, l)−�(a, l)|da dl.

By using Hölder’s inequality we have that

‖N�(�)−N�(�)‖1,w �
∫

�
|h(a, l)|hw(a, l)|�(a, l)−�(a, l)|da dl

� ‖h‖∞‖�−�‖1,w.

Let T be a positive number. Consider the subset K :={u∈C(0, T; X1
w) : u(0)=g}. Given v ∈K, the problem{

u′(t)+TK (u(t))=N�(v(t)), t ∈ (0, T),

u(0)=g
(24)

has a unique mild solution, namely S(v)∈K. This fact allows us to introduce a mapping S :K→K defined as follows: given v ∈K,
S(v) is the unique mild solution of the above problem.
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From the properties of mild solutions, it follows that

‖S(v)(t)−S(w)(t)‖ �
∫ t

0
ew(t−�)‖h‖∞‖v(�)−w(�)‖d�

� ewt‖h‖∞t max{‖v(s)−w(s)‖ : s∈ [0, t]}.

Using an inductive process, we deduce that for each n∈N,

‖Sn(v)(t)−Sn(w)(t)‖� (ewt‖h‖∞t)n

n!
max{‖v(s)−w(s)‖ : s∈ [0, t]}.

Hence ‖Sn(v)−Sn(w)‖∞� (ewT ‖h‖∞T)n

n! ‖v−w‖∞. This means that there exists n0 ∈N such that Sn0 is a strict contraction on K.
Since K is closed, S has a unique fixed point in K by Banach’s fixed point theorem. This is fixed point is the unique mild solution
of Equation {

u′(t)+TK (u(t))=N�(u(t)), t ∈ (0, T),

u(0)=g.
(25)

In order to finish the proof, given t>0, we define u(t) :=uT (t) where uT is the unique integral solution of Problem (25) with T>t.
It is clear that u is the unique mild solution of Problem (23). �

Finally, if we assume that 0∈D(TK ), i.e. if K(0)=0 and replace assumption (H3) by the assumptions:

(H3)’ For every s>0 there exists L(s)>0 such that ‖N�(�)−N�(�)‖1,w�L(s)‖�−�‖1,w whenever �,�∈Bs(0),
(H4) there exists r>0 such that for every �∈X1

w with ‖�‖1,w�r then [N�(�),�]s�0.

Corollary 1
If assumptions (H2), (H3)’, (H4) and either (H1) or (H1)’ hold, Equation (23) has a unique mild solution.

Proof
Let us see that Equation (23) has a unique mild solution. Indeed, given g∈X1

w consider r>0 such that ‖g‖1,w�r and assumption
(H4) hods for this r>0.

Let us introduce the following function:


(x)=
⎧⎨
⎩

x, ‖x‖�r,

r

‖x‖ x, ‖x‖�r.

It follows from condition (H3)’ that the function N�(
(.)) is 2L(r)-Lipschitz.
Therefore, by Theorem 3, the equation {

u′(t)+TK (u(t))=N�(
(u(t))),

u(0)=g
(26)

has a unique mild solution u.
Since we are assuming that 0=TK (0) and N� satisfies condition (H4), we can apply Lemma 3.1 of [16] to obtain that u∈Br(0)

then 
(u)=u and thus we may conclude that Equation (23) has a unique mild solution. �

4. Comments

The condition l1 =0 means that there are cells which are born as mothers and daughters simultaneously. This presents a biological
pathology which corresponds to the mathematical difficulty that the operator S in Theorem 1 is not a strict contraction and then
we cannot assume that (I−S)−1 exists. This could be fixed assuming that K is a strict contraction.

In the structured population dynamics framework, we have in general a proliferation of the population, thus it is more appropriate
to consider boundary conditions of the type ‖K(u)‖�‖u‖ for all u∈L1(l1, l2), which was the reason to study, in Section 3.1, the
boundary value problem (1) when the operator K : L1(l1, l2)→L1(l1, l2) is �-Lipschizian with �>1. In particular, we may consider as
transition operators the following examples: Proliferating cell is related to the transfer of the cycle length between each mother
cell and its daughters. During each mitosis, it is possible that there exists a correlation between the cycle length of a mother
cell l′ and that of a daughter cell l. The general mathematical description of such correlation is given by the following boundary
condition:

f (t, 0, l)=
∫ l2

l1
r(l, l′, f (t, l′, l′))dl′,

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1658–1666
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where r(·, ·, ·) is Lipschitzian with respect to the third coordinate. In this sense we can take r(l, l′, f (t, l′, l′))=�k(l, l′)g(f (t, l′, l′)) where

(1) The function k(·, ·) is essentially bounded on [l1, l2]×[l1, l2]. We denote by ‖k‖∞ its essential norm,
(2) g :R→R is �-Lipschitz mapping,
(3) � is a positive constant.

The operator K : L1(l1, l2)→L1(l1, l2) defined by

K(�)(l)) :=�
∫ l2

l1
k(l, l′)g(�(l′))dl′

is ��‖k‖∞(l2 − l1) Lipschitzian. Indeed,

‖K()−K(�)‖1 = �
∫ l2

l1

∣∣∣∣∣
∫ l2

l1
k(l, l′)(g((l′))−g(�(l′)))dl′

∣∣∣∣∣dl

� �‖k‖∞
∫ l2

l1

(∫ l2

l1
|g((l′))−g(�(l′)|dl′

)
dl

� �‖k‖∞(l2 − l1)�‖−�‖1.

The above transition operator allows us to recapture the example of the transition operator given in [3], where k(l, l′) is a positive
kernel and ��0 is the average number of daughter cells viable per mitotic.

When there is no correlation but there is an inheritance between cycle length of a mother cell and that of its daughters, then
the biological rule of this inheritance is mathematically described by

f (t, 0, l)= r(f (t, l, l)),

where many times r is Lipschitzian. In particular , when there is a perfect inheritance we can describe this taking r(f (t, l, l)=�f (t, l, l)
where ��0 is the average number of daughter cells viable per mitotic (see [3]). At this point, we refer to [8, 7, 9, 10], where the
reader will find a study of several types of nonlinear transition operators.

Finally, in Theorem 3 of Section 3.2 we see that Equation (22) admits a unique solution for every initial function of density of
population whenever the rate of cell mortality or loss due to causes other than division satisfies Conditions ((H2) and (H3)) which
are quite usual (for instance see [5]). On the other hand, from the biological point of view it seems quite natural that if the density
of the population of the cell cycle length l at mitosis is zero, i.e, f (t, l, l)=0 , then the transition for the distribution of mothers cycle
length to daughters cycle length should be also zero, this is mathematically described by assuming that the transition operator K
satisfies that K(0)=0. We have studied this case in Corollary 1 and thus we can replace the condition (H3) by assumptions (H3)′
and (H4) which allow us to consider more general functions describing the rate of cell mortality (see [16]).
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