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Abstract

The purpose of this paper is to study the asymptotic behavior of the solutions of certain type of
differential inclusions posed in Banach spaces. In particular, we obtain the abstract result on the
asymptotic behavior of the solution of the boundary value problem

up — Ap() +[ul” Lu=f onl0, ool x £2,

_g;;; € Bu) on [0, oof x 352,

u(0, x) = ug(x) in 2,
wheres2 is a bounded open domainRf' with smooth boundary 2, f(z, x) is a givenL1-function
on]0,c0[ x £2,y > 1and I< p < 00. A, represents thp-Laplacian operatora%7 is the associated

Neumann boundary operator afich maximal monotone graph Id x R with 0 € g(0).
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a real Banach space. A mappitigX — 2X will be called an operator oX .
The domain ofA is denoted byD(A) and its range byR (A). An operatorA on X is said
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to beaccretiveif the inequality|x — y +A(z — w)|| > |lx — y|| holds for allx > 0, z € Ax,

andw € Ay. If, in addition, R(I + AA) is for one, hence for all, > 0, preciselyX, then

A is calledm-accretive. We say that satisfies the range conditionfi(A) ¢ R(I + 1A)

for all » > 0. (See, for instance, [10,17] to find sufficient properties which imply the range
condition.) Accretive operators were introduced by F.E. Browder [9] and T. Kato [15]
independently. Those accretive operators whichnas@ccretive or satisfy the range con-
dition play an important role in the study of nonlinear semigroups, differential equations
in Banach spaces, and fully nonlinear partial differential equations. For example, it is well
known that if X is Banach space antl: D(A) — 2% is an accretive operator which satis-
fies the range condition, then the initial value problem of the form

u' (1) + A(u(r)) 30,  u(0) =xo, (1)

has a unique integral solution for eaghe D(A), which is given by the Crandall-Liggett
exponential formula [12]:

. t \ "
u(t):= lim <I+ —A) (x0).
n—oo n
Moreover, the family

F:={S(t): D(A) - D(A): t >0},

whereS(t)x =lim,_ (I + %A)*” (x), is a nonexpansive semigroup.

Concerning the strong convergence of semigroups, Brézis in [7] (see also [8,19]) proved
that in Hilbert spaces, if the interior of the stationary points set of the semigroup generated
by —A is nonempty then, for eache D(A), S(r)x converges strongly to a zero df as
t — oo (this result has been subsequently extended in [18] and [14]).

On the other hand, in [20] Pazy introduced a general condition on the generator of a
semigroup¥ in a Hilbert spaceH, which guarantees the strong convergencs§@fx as
t — oo for eachx in the domain ofF.

This convergence condition was subsequently extended by Nevanlinna and Reich [18]
in 1979 and recently by Xu [22] to a Banach space setting.

In this paper, we study a special class of accretive operators which have a unique zero
and our goal is to show that for this kind of accretive operators the integral solution of
problem

u' )+ A@) s f(1),
{u(O):xo (2)

converges as — oo, to the zero ofA. Moreover, we should mention that, in general, the
above results cannot be applied in this case.

2. Preliminaries

Throughout this paper we assume tiais a real Banach space and denoteXythe
dual space oK. We define the normalized duality mapping by

J@) = {jex* (x, j)=IIxI? il =llx]}.
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Let(y,x)1 :=maX(y, j): j € J(x)}. Itis well known that an operatot on X is accretive
if and only if (u — v, x — y)+ > O for all (x, u), (¥, v) € A. (We refer the reader to [4,6,11]
for background material on accretivity.)

Let F={T(¢):C — C, t > 0} be a family of self-mappings af c X. We recall that
F is said to be a nonexpansive semigroup actingCoif the following conditions are
satisfied:

(&) T(0):=1, wherel is the identity mapping og’.

(b) T(s+t)x =T(s)T(t)x foralls,r € [0, o0[ andx € C.

©) IT@)x —T@)yll <|lx —y| forall x,y € C andt € [0, ool.
(d) t — T'(¢)x is continuous inr € [0, oo[ for eachx € C.

Givenx e C, the orbit ofx underF will be the function
y :[0,00[ — C defined byy (t) := T (t)x.

LetA: D(A) — 2X be an accretive operator with the range condition ArdL(0, oo, X).
If we consider the following initial value problem:

u'(t) + A () > f(@), 3)
u(0) = xo,

we say that a continuous functian [0, co[ — X is an integral solution of (3) i (0) = xg

and the inequality

t

Hu(t) —x||2— Hu(s) —x“2<2/(f(r) —y,u(t) —x)+dt

S
holds whenever & s < ¢, and(x, y) € A.
This concept of solution was introduced by Bénilan, who showed that for aaeh
D(A) problem (3) has a unique integral solutiesuch that:(r) € D(A) for all .
The following facts about nonexpansive semigroups can be found in [16].
A continuous function : [0, oo[ — C is called an almost-orbit of if

lim ( sup ||u(t+s)—T(t)u(s)||) =0.
[

500\ ¢[0,00

Of course, every orbit is an almost-orbit.

Lemma 1 [16]. Let X be a Banach space and |6 be a nonexpansive semigroup on a
subsetC of X. If u, v are almost-orbits ofF, then we have

(@) lim,_ o [lu(t) — v(t)|| exists.
(b) If A is an accretive operator itX with the range condition, then the integral solution
of the initial value problem
W' (1) + Au(t) 3 f(1), >0, u(0) =x € D(A),

with f(.) € L1(0, oo, X) is an almost-orbit of the nonexpansive semigroup generated
by —A.
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3. ¢-accretive operators
In order to proceed, we shall first give the following definition.

Definition 2. Let X be a Banach space, lg¢t X — [0, co) be a continuous function such
that¢ (0) =0, ¢ (x) > 0 for x £ 0 and which satisfies the following condition:

For every sequendg;,) in X such that||x,||) is decreasing angl(x,) — 0 asn — oo,
then|x,| — O.

An accretive operatod : D(A) — 2X with 0 € Az is said to begp-accretive at zero
whenever the inequality
(u,x —z)+ =2 ¢(x —z), forall (x,u) €A, (4)
holds.
Remark 3. The uniqueness of a zero for an operateaccretive at zero is an immediate
consequence of (4).

Onthe other hand, itis an easy consequence of [13, Theorem 8] thakevergtrongly
accretive operator i¢-accretive at zero withh = ¢ o ||.||.

Recall that given a continuous functiah: Rt — [0, co) such thaty(0) = 0 and
¥(x) > 0 for x # 0. An accretive operatod on X is said to bey-strongly accretive if
for each(x, u), (v, v) € A the inequality

(U—v,x=y)y 2 1//(||x - yII)IIx =l
holds.

Proposition 4. Let A : D(A) — 2X be anm-accretive operator orX such that there exists
z € X satisfying expressiof#). ThenA is ¢-accretive at zero.

Proof. SinceA is m-accretive, it is enough to consider the operatatefined by

A:D(A)U{z} — 2%,

3 A(x), x € D(A)\ {z},
x> Ax) =1 Al U{0}, x=ze D(A),
0, x=z¢ D(A).

Itis obvious, from expression (4), thatis an accretive operator and therefdre= A. O

Our results are stated for operatgrsaccretive at zero, which happen to form a wider
family of operators than the¢ -strongly accretive ones.

Example5. Let X be a Banach space. Consider the following operataX on
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T:X — 2%,
X
x'_)T(x):{m, X?éov
Bx, x=0,

whereBy denotes the unit ball of. It is easy to see that this operatorisaccretive onX,
¢-accretive at zero fop (x) = ||x|| but it fails to bey -expansive for anyr, and hence it
cannot be/-strongly accretive.

Proposition 6. Let £2 be a bounded open domain R* with smooth boundarys2 and
1 < g < 0. Considerg: 2 x R — R a function such that

(a) g(.,.) satisfies Carathéodory’s conditiofise., the mag — g(x, ¢) is continuous for
almost allx and the map — g(x, ¢) is measurable for every) and there exist > 0
and R > 0 such thatg(x, £)¢ > A|¢|? whenevelZ| > R.

(b) g(x,.):R— Risincreasingg(x,0) =0andg(x, ¢) # 0 whenever # 0.

(c) The mapping: € L9(2) — g(x,u(x)) € L4(82) is well defined.

Then the operatoB : L1($2) — L1($2) defined byB(u)(x) := g(x, u(x)), x € 2, ism-¢-
accretive at zero oi.? (£2).

Proof. Itis well know thatB is anm-accretive operator oh?(£2).
Thus, we will only prove thaB is ¢-accretive at zero. To see this, consider the function

¢ (u) = ||u|I§_q/g(x7u(x))u(x)!u(x)\q_zdx-

2

Hence, since (see, for instance, [11]) the normalized duality map 6s?) is given by
() = llully *|ul=%u,

we have that
(B),u), =d).

Having this in mind, it will be sufficient to see thatsatisfies the condition of Definition 2.

It is not difficult to see thap satisfies the following:

(i) ¢(0)=0and¢(x) > 0 whenever 0.
(i) With respect to the continuity o we argue as follows: Letu,) be a sequence
in L9(£2) such that converges ta € L7(£2) in LY($2). We have to see that

My 00 @ (un) = ¢ ().

We know that given(uy) a subsequence @fi,,), there existduy;,) subsequence afiy)
such that

(@) ui, (x) = u(x) a.e.
(b) u, (x)| < h(x) forall s € N and a.e. withh € L9 (£2).
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We can use thaj(., .) satisfies Carathéodory’s conditions and thus we derive that

g(x, U, (x))ukj (x)|uks ()c)|(172 — g(x, u(x))u(x)\u(x)|q72 a.e.

On the other hand, it is clear that

|8 (x. ek, () g, (0 g, (0|77 < g (3, R ))R AT ae.

Since, by Hoélder’s inequality, the right-hand side of the above inequality is an integrable
function, then the dominated convergence theorem allows us to conclude the continuity

of ¢.

Now, we only need to show that {i,) is a sequence at?(£2) such that(|u,ll,) is
decreasing and (u,) — 0 asn — oo, then|ju,|l; — 0.

Indeed, suppose

lim ¢ () = lim_ a1 / g (. 4 ()t () |un ()] "2 dx = 0. (5)
2
Let us notice that (5) implies that eithga, ||, — 0, asn — oo, or

lim /g(x, Uy (x))un(x)|u,, ()c)|q_2 dx =0. (6)
—00

2
Since clearly the results hold|ji, ||, — 0, we may assume (6). In this case,

IlunIIZ=/|un|"= / lunl? + / lunl?,

2 lun|>R lun| SR

n

whereR is given in the hypothesis of the proposition.
Now, we shall check both terms of the right-hand side of the above equality.
Sinceg(x, £)¢ > A|¢|2 whenevelZ| > R. We have

1 -
[ @l <5 [ @l g ). )

lun]>R [un|>R

which, by (6) and (7), means that

lim / lu, |9 =0.
n—oo

lwn|>R

Concerning the other term, we have

f lun? < / Rq*1|un|<R4*1/|un|. (8)
2

[un | <R lun|<R
Thus to obtain the proof it is sufficient to prove that
im_ [ fusl =0, ©)
n—od
2

which is true.



600 J. Garcia-Falset / J. Math. Anal. Appl. 310 (2005) 594-608

Otherwise, we can find a subsequeiieg,) of (1,) and a positive number > 0 such
that limy_, o [, lun, | = r. Nevertheless, by (6) and the propertieg dfis easy to see that
there exists a subsequentag, ) of (u,,) such thai,, — 0 a.e., moreover, sindgu, ;)
is decreasing, thefj|u,,|l,) is bounded, and thus we may apply Vitali's theorem to obtain
that lim_, o o, lun, | =0, which is a contradiction. O

Remark 7. It is an easy consequence of both Theorem 16.4 of [6] and Definition 2 that
if X is a smooth Banach spacé; D(A) — 2X anm-accretive operator oX such that

Oe Az andB: X — X is a continuous operator axi with 0 = Bz which is¢-accretive at
zero. Thend + B: D(A) — 2X is anm-¢-accretive at zero.

4. Strong asymptotic behavior

Let A: D(A) — 2X be ag-accretive operator at zero dhwith the range condition. If
we consider the initial value problem

{ W' @)+ Au() >0, tel0, o0,

u(0) = xo. (10)

it is well known that ifxg € D(A), then such problem has a unique integral solution. Such
solution is given by Crandall-Liggett's formula, so we have that

u(t) = 5()(x0) = lim (1 n %A>_ (x0).

Although a useful method to study the asymptotic behavior of semigroups of nonlinear
contractions is the Lyapunov method introduced by Pazy in [21], we will use the ideas
developed in [18,22] to obtain the following result. For such result we shall also need the
concept of strong solution for problem (10). That is (see [4, p. 110]):

A continuous functiom : [0, oo[ — X is said to be a strong solution of problem (10) if it
is Lipschitz on every bounded sub-interval§@fool, a.e. differentiable oR™, u(0) = xg,
u(t) € D(A) a.e., and/(t) + A(u(t)) > 0 for almost every e RT.

Theorem 8. Let X be a Banach space, K is an operator onX ¢-accretive at zero with
the range condition and such that probléf®) has a strong solution for eache D(A),
and F :={S(1): D(A) — D(A): t > 0} is the nonexpansive semigroup generated-by
via the exponential formula, then every almost-orbifof strongly convergent to the zero
of A.

Proof. SinceA is ¢-accretive at zero, theA has a unique zerpe D(A).
Let u:[0,00[ — X be an almost-orbit ofF and consider the following initial value
problem:

{ w} (1) + A(ws (1)) 30,

ws (0) = u(s). (11)
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If we assume thait(s) € D(A) for a fixeds > 0, then the unique solution of problem (11)
will be wg(t) = S(t)u(s) and moreover, by hypothesis, it will be a strong solution. There-
fore, there existav;(t) a.e. and moreover it satisfiesw; (r) € Aw,(¢) a.e. Then, there
existsj (r) € J(ws(t) — z) such that

(—wi @), ws (1) —2), = (—wi (@), j©))

1 . .
= E(mt —h) —w, (1), j () + (@, h), j@©)),

where lim,_o&(, h) =0.
Sincel|j(1)| = |lws(t) — z|| an elemental calculus yields:

(Wt — 1) = w (@), j () = (w6 = h) =z — we(t) + 2, j (1))
= —|ws (@) — 2|* + {wyt =) — 2. j ()

1 2 2
< 5(Jwst =1 = 2" = fJws@ = 2[%).
On the other hand, since the mapping> ||w,(¢) — z|| is Lipschitzian, it will be also
differentiable almost everywhere. Consequently,
. ld 2
o<<—w;(r),1<t))<—ﬁnwsa)—z|| : (12)

Moreover, sincer — |lwy(t) — z|| is decreasing, the function — 34w, (1) — z|2
is Lebesgue integrable ofD, o0). Hence by (12) we know that the function—
(—wi(r), j (1)) is also Lebesgue integrable  co). Then

liminf(—w/(r), j (1)) =0,
—00 -
which means that there exists a sequefgewith 7, — oo such that
lim (_w; (tn), j(tiz)) =0. (13)
n—oo
SinceA is ¢-accretive at zero, we know that
P (ws (1) — z) < (—wi (), j @)
and, since the sequen@aw;(,) — z||) is decreasing, by (13) we derive
lim |wy () —z| =0.
n—>oo
Finally, since the function — |w,(¢) — z|| is decreasing, we conclude that
lim |ws () —z|| =0.
11— 00
If we suppose thai(s) € D(A), then there exists a sequen@eg) C D(A) such thaty,, —
u(s). If we callu, (t) = S(¢)x,, by the above argument we have
lim u,(®) =z
t—00

Now, let us see that lim, » ||w, () — z|| = 0. Indeed, giver > 0 we know that there exists
n1 € N such that
€

||u(s) - xan < 2
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Consequently, taking> 1,
[ws (@) = 2| < JJws @) = uny @O + tny () = 2|
< ||u(s) — Xny ” + Hunl(t) - ZH <e.
The above argument shows that Jimy,, ||w,(t) — z|| = O for any fixeds > 0.
On the other hand, sinaeis an almost-orbit ofF, we have that
||S(t)u(s) —u(s+1) || <¢@(s)—> 0 ass— oo.

Hence,

Jut +s) —z|| < Jutt +5) = SOuE)|| + | SOuls) — z|| <ols) + |ws@) — 2|
Therefore,

limsup|u(t +5) —z| < (s) >0 ass — oco. (14)
11— 00

Now, sincex(.) andz are almost-orbits aof, by Lemma 1 we know that lim, o [|lu(¢) — z||
exists.
Consequently, by using this fact and (14) we obtain that

lim [u()—z|=0. O
t—>00

Corollary 9. Let X be a Banach space. Suppose tatC X x X is an m-yr-strongly
accretive operator onX. Suppose that probleifi0O) has a strong solution for each
D(A). Then, for eachr € D(A), the integral solution:(.) of the problem

w'(@)+ Aw (@) > f@), tel0, o0,
{u(O) =x, (15)

where f(.) € L(0, oo, X), converges strongly to the zero Afast — oo.

Proof. This corollary is a consequence of Lemma 1 and both [13, Theorem 8], and Theo-
rem8. O

Corollary 10. Let X be a Banach space with the Radon—Nikodym propg&ty for shor}.
Suppose thad C X x X is an m-accretive operator satisfying conditio@) for some
z € X. Then for eachx € D(A) the integral solutionu(.) of problem(15) converges
strongly toz ast — oo.

Proof. First, we may notice that sincé is m-accretive then, by Proposition 404 (z).

Second, sinc& has the RN property, then the integral solution of problem (10) is in
fact a strong solution whenever the initial data igi0A) (see [4]).

Third, sincef(.) € L1(0, o0, X), by Lemma 1, the integral solution of problem (15) is
an almost-orbit of the semigroup generated-by via Crandall-Liggett.

Finally, we may apply Theorem 8 and thus we obtain the resuit.

As an immediate consequence of Proposition 6 and the above corollary, we obtain
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Corollary 11. Let B: L1(£2) — L4(£2) be the operator given in Propositigh Then, for
eachx € L1(£2), the integral solution.(.) of the problem

u'(t) + Bu(r)) = f(t), te[0, o0,
{u(O) =x, (16)

wheref(.) € LY(0, 00, L1(£2)), converges strongly in? (£2) to 0 ast — oc.

Ph. Bénilan and M.G. Crandall introduce in [5] the concept of completely accretive
operator. This class of operators, in the particular cage'f2) with £2 bounded, can be
defined as follows: An operator € L1(£2) x L1(£2), is said to b&ompletely accretivi
one of the following conditions holds:

(i) Forr >0, (u,v), (x,y) € Aandj € Jo,

fj(u—x)</j(u—x+x(v—y>),

2 2
where

Jo= {convex lower-semicontinuous mapsR — [0, o]
satisfying,j (0) = 0}.
(iiy For (u,v), (x,y) € Aandp € Py,

/p(u —x)(v—y) =0,
Q
where

Po={peC™R): 0< p’' <1, suppp’) is compact and & supp(p)}.

Corollary 12. Let £2 be a bounded subset R" with smooth boundarys2. Consider
the Banach spac& = L1(2). If A:D(A) € X — 2X is m-completely accretive and
¢-accretive at zero, then, for eache D(A), the integral solution:(.) of problem(15)
converges strongly to the zero 4f

Proof. This is a consequence of Theorem 8, since in this case the homogeneous problem
has a strong solution whenever the initial data belond3(té) (see [5, Theorem 4.2]). O

5. Application

The present section is devoted to apply the abstract results of the previous sections to a
concrete example of an initial value problem for a partial differential equation.

Throughout this section we will assume thatis a bounded open domain R with
smooth boundary 2. It will be further assumed that: 2 x R — R satisfies:
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(@) Foralmostalk € 22, r — ¢(x, r) is continuous and nondecreasing.

(b) Foreveryr e R, x — @(x,r)isin L1(£2).

(€©) ¢(x,0) =0, ¢(x,r) # 0 whenever # 0 and there exist > 0 anda > 2 such that
o, r)r = Alr|.

Example 13. The functiong(x, r) = |r|¥~1r satisfies the above conditions whenever
y = 1.

Consider the following nonlinear boundary value problem:

u; —div(|Dul?=2Du) + ¢(x,u) = f 0on]0, c0[ x £2,
—g—; € Bu) on [0, oo x 32, 7)
u(0, x) =ug(x) in 2,

where 7 (z, x) is a givenL-function on10, co[ x 2, 1< p < o0, % is the associated

Neumann boundary operator, |§% = (|Du|P~2Du, n), with  the unit outward normal
on d£2, Du the gradient oft, 8 a maximal monotone graph IR x R with 0 € 8(0) and
¢: 2 x R — R satisfies conditions (a)—(c) as above.

In order to obtain the asymptotic behavior of the solution of problem (17), we shall first
study a perturbation result on completely accretive operators which will be useful for our
goal.

Proposition 14. Let A be anm-completely accretive operator i (2) such thaD € A(0),
and letg : £2 x R — R be a function satisfying conditiorfg) and (b) as above. If we define
the single-valued operataB,, in L1(£2) as follows D(B,) := {u € LY(2): ¢(.,u() €
L1(£2)} and for everyu e D(By), By(u(x)) := ¢(x,u(x)), then A + B, is an m-
completely accretive operator ofl(£2). Moreover, if D(A) = L1(£2) we have that
D(A+B,) = LY9).

Proof. First, we will prove thatB,, is completely accretive oh(£2).
Indeed, considep € Py, and(u, ¢(., u(.))), (v, ¢(.,v(.))) € B,.
Since, for almost alk € 2, ¢(x,.) is nondecreasing, we have
((p(x, u(x)) — <p(x, v(x)))(u(x) — v(x)) >0 ae. (18)
On the other hand, singg(0) = 0 andp is nondecreasing we know thatx)x > 0, hence
pu(x) —v(x))(u(x) —v(x)) > 0 and therefore by (18) it is clear that
((p(x, u(x)) — <p(x, v(x)))p(u(x) — v(x)) >0 a.e.,
thus we may conclude that

fp(u(x) - v(x))(go(x, u(x)) — (p(x, v(x))) > 0.

2

Second, by [5, Corollary 2.4], we have that B, is completely accretive ohl(2).

Third, sinceA is m-completely accretive and € A(0), then by [5, Proposition 2.2],
A satisfies the conditions of [1, Corollary 3.1], and therefore we can concluda thag,,
is m-completely accretive.
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Finally, let us see that iD(A) = L1(£2) then D(A + B,) = L(£2). For this purpose,
it will be enough to show thal > (£2) € D(A + By).

Foru e L*°(£2), sinceA + B, is anm-accretive operator, givene N there exists, €
D(A + By) such that, = (I + 2(A + By))tu, thenu, = (I + 2A) "2 — 1B, (un)).
Since A + B, is completely accretive we know (see [5]) that, [« < |lu]l therefore
u— %Bw(un) — uin LY(2), asn — oo.

On the other hand, if we denoﬁq‘}n := (I + 2A)71, sinceD(A) = L1(£2), there exists
a sequences,,) in D(A) such that,, — u in L1(2), asm — oo, hence

A 1
lun —ullr=|Ji/, “_;Bwun —u

1

1
< Jf}n <u — ;Bwun> — Jf)nu + H JlA/nu — u||1
1

<_B
u
X p“n

1= s+ s =l

1
< ;Btpun

= slly + || JEhsm — u) -
1

Consequently
Iimsup””n —ully < 2|l — ull1,

n—oo

which means that, — u in LY(£2), asn - co. 0O

Theorem 15. Let A be anm-completely accretive operator ih!(£2) such that0 € A(0),
and lety: 2 x R — R satisfying conditionga)—(c)as above. Thed + B, is anm-¢-
completely accretive at zero operator dA(£2).

Proof. Itis clear that 0= (A + B,)(0). Moreover, since by Proposition 14,+ B, is m-
completely accretive oal(£2), we only have to see that + B, is ¢-accretive at zero on
LY(£2).
Indeed, considefy, u) € A+ By, thenu = v+ B, (x), where(x, v) € A. Since O A(0)
we know that(v — 0, x — Q) > 0, which means that there exists
jeJ@ =lxlafj: j € L®), |jI1<1, andjx =|x| a.e}

such thatv, j) > 0.
Consequently, Holder's inequality yields > 0 such that

(u—0,x—0)1 > u,j)>(By(x), j)= ||x||1/<p(t,x(t))j
2

x(1)

lx (@)l

=[x / (1, x(1))
(tef2: x(1)#0)

-1
> xnxnl/}x(r)r‘ > K|x|l§.
22
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Therefore, if we defing (x) = K||x||{, we obtain thatd + B,, is ¢-accretive at zero.
In [2,3] the following problem is studied:

u; — div(|Dul?~2Du) =0 on]0, oo x £2,
—g—;; € Bu) on [0, co[ x 942, (19)
u(0, x) = ug(x) in 2.

In order to obtain the solution of (19) fgr > 1 in [2, Theorem 2.1], am-completely
accretive operatofi 4 , in L1(£2) is introduced such that8 Ag ,(0) and with dense do-
main. On the other hand, in [3, Theorem 5], it is studied the above problem#$ot by
using arnvn-completely accretive operateis 1 such that G= Ag 1(0) and with dense do-
main. Thus the abstract Cauchy problenLit(£2) corresponding to (19) reads as follows:

{u’(t)+Aﬂ,,,u(t)=o, 0<t < oo, (20)

u(0) = ug.

On the other hand, given a functiagn which satisfies conditions (a)—(c) as above, by
Theorem 15 we know tha := Ag , + By, whereD(B) = D(Ag,,) N D(By), is anm-¢-
completely accretive at zero operator bh(£2).

Thus problem (17) may be rewritten as

{ u' (1) 4+ Bu(t) = f(t), 0<t < oo,

u(0) = ug, (21)

whereu(.) is regarded as a function froff, oo[ to L1(£2). O

Theorem 16. If ug € L4(82), f € L1((0, 00), L(£2)) and u is the integral solution of
problem(21), thenu(t) converges irnL?(£2) to 0, ast — oo.

Proof. Caseq = 1. It is clear that the operat@® is under the conditions of Theorem 15
and it has dense domain (see Proposition 14), therefore we may apply Corollary 12 to
obtain the result.

Casel < g < oo. First, sinceD(B) = L1(£2) and B is m-completely accretive by
[5, Proposition 3.4], it is clear thdt? ($2) = D(B) N L4(§2) = D(B)L'(),

Now, we have to notice that il is anm-completely accretive operator dri(£2) and
1< g < oo, then the restrictiom,, of A to L9(£2) is m-accretive onL9(£2) (see [5]).

Therefore, sinceB is in such conditions, we know that its restricti®) to L9(£2) is
m-accretive. Thus, following the argument in the proof of Theorem 15, by Corollary 10
we only need to show tha, , (it means the restriction a8, to L9(£2)) is ¢-accretive at
zeroinLi($2).

Givenu € D(B,, ;), we obtain

(Bp.g(w),u), = ||u||§‘q/<p(x,u(x))u(x)|u(x)|‘1*2dx
2
> Mull; / u(0) |2 dx.
2
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Now by Hdélder’s inequality, we obtain that there exigts> 0 such that
(By.q ). u), = K [lull?.

Then, it is sufficient to take the functiaf(x) = K ||x lg- O

To finish this section, we are going to study the abstract result on the asymptotic behav-
ior of the solutions of the following problem:

u; — div(|Du|?2Du) + g(x,u) = f on]0, oo x £2,
_g_g € Bu) on [0, oo[ x 92, (22)
u(0,x) =ug € L1($2),

where (1< p < oo and 1< g < o0), g: 2 x R — R is as in Proposition 6.
Problem (22) can be read as the following abstract Cauchy problem:

u'(t) + (A, pg + Bu(®) = f(r), O0<t<oo,
u(0) = uo,

whereAg , , means the restriction of the operatdy, , to L?(£2), B is the operator given

in Proposition 6 andf € L1((0, 00), L7(£2)). From Proposition 6 and Remark 7 it is
clear thatAg , , + B is anm-¢-accretive at zero operator dif (£2). Hence since 0=
(Ag,p.q + B)(0), we can apply Corollary 10 and thus we can conclude that the integral
solution of problem (23) goes to zeromas> co.

(23)
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