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In this article we first discuss the existence and uniqueness of a solution for the

coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a

complete metric space, and T,S :X → Y are two mappings satisfying a Wardowski type

condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk

iteration process to the above coincidence problem as well as a rate of convergence

for this iteration scheme. Finally, we shall apply our results to study the existence and

uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration

process toward the solution of a second order differential equation.
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1. Introduction

Let X,Y be two nonempty sets and let T, S : X → Y be two arbitrary mappings. The coincidence
problem determined by the mappings T and S consists in

Find p ∈ X such that Tp = Sp. (1)

Quite often to solve problem (1), we have to assume that Y is a complete metric space, and
T, S : X → Y are two mappings satisfying some type of contractivity, for instance see [1–5].
Some nonlinear problems arising from many areas of applied sciences can be formulated, from
a mathematical point of view, as a coincidence problem (see, [1–3, 6, 7] and references within).

Once the existence of a solution to problem (1) is known, a central question consists to study if
there exists an approximating sequence (xn) ⊆ X generated by an iterative procedure f (T, S, xn)
such that the sequence (xn) converges to the coincidence point ofT and S. Jungck [8] introduced the
following iterative scheme: given x1 ∈ X, there exists a sequence (xn) in X such that Txn+1 = Sxn.
This procedure becomes the Picard iteration when X = Y and T = Id, where Id is the identity
map on X. In Jungck [8], the author proved that if (X, d) and (Y, ρ) are two complete metric
spaces and T and S satisfy both that S(X) ⊆ T(X) and that for every x, y ∈ X the inequality
d(Sx, Sy) ≤ κ d(Tx,Ty), with 0 ≤ κ < 1 holds, then (xn) converges to the unique coincidence
point of T and S. Later, this type of convergence results were generalized for more general classes
of contractive type mappings, see [6, 7, 9, 10] (to see another type of iterative schemes we can
quote [10, 11]).

Since it is well known that the existence of a solution to problem (1) is, under appropriate
conditions, equivalent to the existence of a fixed point for a certain mapping. In this article, we
will use the Wardowski fixed point theorem [12] in order to show that problem (1) has a unique
solution and that the Picard-Jungck iterative scheme converges to the unique coincidence point,
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moreover a rate of convergence for this scheme will also be given.
Finally, we will apply these results to a general second order
differential equation.

2. Notations and Preliminaries

Throughout this article R+ and N will denote the set of all
non-negative real numbers and the set of all positive integers
respectively.

Definition 2.1. Let X and Y be two nonempty sets and T, S :X →
Y two mappings. If there exists x ∈ X such that Sx = Tx then x is
said to be a coincidence point of S and T.

Definition 2.2. Let S and T be two self-mappings of a nonempty
set X. The pair of mappings S and T is said to be weakly compatible
if they commute at their coincidence points, that is, TSx = STx
whenever Tx = Sx.

The following straightforward result states a relationship
between coincidence points and common fixed points of two
weakly compatible mappings, see Proposition 1.4 in Abbas and
Jungck [9].

Lemma 2.1. Let S and T be weakly compatible self-mappings of a
nonempty set X. If S and T have a unique coincidence point x, then
x is the unique common fixed point of S and T.

Given k ∈ (0, 1), by Fk denote the set of all strictly increasing
real functions f : (0,∞) → R satisfying the following conditions:

(F1) For each sequence {αn}n∈N of positive numbers, lim
n→∞

αn =
0 ⇐⇒ lim

n→∞
f (αn) = −∞.

(F2) lim
α→0+

αk f (α) = 0.

Definition 2.3. Let (X, d) be a complete metric space. A mapping
T : X → X is said to be an F-contraction if there exist τ > 0 and
f ∈ Fk such that, for all x, y ∈ X,

d(x, y) > 0 H⇒ τ + f (d(x, y)) ≤ f (d(Tx,Ty)). (2)

The following result will be the key in the proof of our results.
This result was proved by Wardowski [12].

Theorem 2.1. [[12]] Let (X, d) be a complete metric space and
let T : X → X be an F-contraction. Then T has a unique fixed
point x∗ ∈ X and for every x0 ∈ X the sequence {Tn(x0)}n∈N is
convergent to x∗.

3. Main results

3.1. Existence and Uniqueness
In this subsection we present a result which guarantees the
existence and uniqueness of a solution to problem (1) when
the mappings T and S satisfy a Wardowski’s contractivity type
condition.

Theorem 3.1. Let X be a nonempty set and let (Y, ρ) be a
complete metric space. Assume that T, S:X → Y are twomappings
satisfying the following conditions:

(i) T(X) is closed;

(ii) S(X) ⊆ T(X);

(iii) There exist τ > 0 and f ∈ Fk such that, for all x, y ∈ X,

ρ(Sx, Sy) > 0 H⇒ τ + f (ρ(Sx, Sy)) ≤ f (ρ(Tx,Ty)). (3)

Then, T and S have at least one coincidence point in X. If,
moreover, T is one-to-one, then this coincidence point is unique.

Proof. Consider h : T(X) → 2T(X) given by h(x): = S(T−1x),
where T−1x: = {ξ ∈ X :T(ξ ) = x}. Notice that h is single-valued.
Indeed, if u, v ∈ h(x) with u 6= v, then by definition we know that
there exists ξu, ξv ∈ T−1x such that u = Sξu and v = Sξv. Since
ρ(Sξu, Sξv) = ρ(u, v) > 0, from (3), we have that

τ + f (ρ(Sξu, Sξv)) ≤ f (ρ(Tξu,Tξv)) = f (ρ(x, x)) = f (0),

which is a contradiction, because f is not defined at 0.

Therefore, h : T(X) → T(X) is a single valued map
from T(X) into itself. Furthermore, h verifies Wardowski’s
contractive condition [12], since if 0 < ρ(h(x), h(y)) =
ρ(S(T−1x), S(T−1y)), then by (3) we have that

τ + f (ρ(S(T−1x), S(T−1y))) ≤ f (ρ(T(T−1x),T(T−1y))),

that is, τ + f (ρ(h(x), h(y))) ≤ f (ρ(x, y)).

Bearing in mind that (Y, ρ) is complete and T(X) is closed,
Wardowski’s Theorem states that h has a unique fixed point y∗ ∈
T(X). Consider x∗ ∈ T−1y∗. Then, by definition, we have that
Sx∗ = S(T−1y∗) = h(y∗) = y∗ = Tx∗, that is, x∗ is a coincidence
point of T and S.

Now suppose that T is injective. If there exist x∗, x′ ∈ X such
that Sx∗ = Tx∗, Tx′ = Sx′ and x∗ 6= x′, then Sx∗ = Tx∗ 6= Tx′ =
Sx′ because T is injective. From (3), we obtain

τ + f (ρ(Sx∗, Sx′)) ≤ f (ρ(Tx∗,Tx′)) = f (ρ(Sx∗, Sx′)),

i.e., τ ≤ 0 which is a contradiction.

Corollary 3.1. Let X be a nonempty set and (Y, ρ) be a complete
metric space. Assume that T, S : X → Y are two mappings such
that:

(a) T(X) is closed;
(b) S(X) ⊆ T(X);
(c) There exist τ > 0 such that, for all x, y ∈ X,

ρ(Sx, Sy) > 0 H⇒ ρ(Sx, Sy) ≤ ρ(Tx,Ty)

(1+ τ
√

ρ(Tx,Ty))2
. (4)

Then, T and S have at least one coincidence point in X. If,
moreover, T is one to one, then this coincidence point is unique.
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Proof. From (c) it follows that

√

ρ(Sx, Sy) ≤
√

ρ(Tx,Ty)

1+ τ
√

ρ(Tx,Ty)
,

that is,

1+ τ
√

ρ(Tx,Ty)
√

ρ(Tx,Ty)
≤ 1

√

ρ(Sx, Sy)
,

therefore

τ + 1
√

ρ(Tx,Ty)
≤ 1

√

ρ(Sx, Sy)
.

The above inequality can be written as

τ − 1
√

ρ(Sx, Sy)
≤ − 1

√

ρ(Tx,Ty)
.

The last inequality means that T and S satisfy the conditions of
Theorem 3.1 with respect to the function f (t) = − 1√

t
, which

belongs to Fk for some k ∈ ( 12 , 1).

3.2. Picard-Juncgk’s Iteration Process
In this subsection we present the results on the convergence for
the Picard-Jungck scheme when the conditions of Theorem 3.1
are satisfied. Before giving our convergence result, we state the
following lemma proved implicitly in the proof of Wardowski’s
Theorem [12].

Lemma 3.1. Let τ > 0 and f ∈ Fk with k ∈ (0, 1). If {γn}n∈N is
a sequence of real non-negative numbers satisfying τ + f (γn+1) ≤
f (γn) for all n ∈ N, then the series

∑∞
i=0 γi is convergent.

Theorem 3.2. Let X be a nonempty set and (Y, ρ) be a complete
metric space. If T, S : X → Y satisfy the three conditions of
Theorem 3.1 and T is one-to-one, then given x1 ∈ X the iterative
scheme Txn+1 = Sxn satisfies that the sequences {Txn}n∈N and
{Sxn}n∈N converge to Tp = Sp, where p ∈ X is the unique
coincidence point of T and S.

Proof. Notice that under these assumptions, Theorem 3.1
guarantees the existence and uniqueness of a coincidence point
of T and S. Let x1 ∈ X. It is worth pointing out that the sequence
{xn}n∈N, implicitly defined as

Txn+1 = Sxn for all n ∈ N, (5)

is well-defined, since S(X) ⊆ T(X). Furthermore, from the
injectiveness of T, there exists T−1

:T(X) → X and, therefore, the
sequence {xn}n∈N can be explicitly defined by xn+1 = T−1(Sxn)
for all n ∈ N.

If there exists n0 ∈ N such that Sxn0 = Sxn0+1, then by (5)
xn0+1 is a coincidence point of T and S. But, in this case, we
have that Txn0+2 = Sxn0+1 = Txn0+1, which implies xn0+2 =
xn0+1 because T is injective. Again applying (5), we deduce that
Txn0+3 = Sxn0+2 = Txn0+1. Bearing in mind the injectiveness of
T, we get xn0+3 = xn0+1. Hence, {xn}n>n0 is a constant sequence.

Thus, we can assume that Sxn 6= Sxn+1 for all n ∈ N. For each
n ∈ N, we define γn: = ρ(Sxn, Sxn+1). Thus, γn > 0 for all n ∈ N.
Moreover, from (3) and (5), τ + f (γn+1) ≤ f (γn) for all n ∈ N. By
Lemma 3.1, the series

∑∞
i=0 γi is convergent. Then, {Sxn}n∈N is a

Cauchy sequence, since form ≥ n,

ρ(Sxm, Sxn) ≤ γm−1 + γm−2 + · · · + γn <
∞
∑

i=n

γi.

Since T(X) is complete, there exists q ∈ T(X) such that Sxn → q
as n → ∞. By (5), we also deduce that Txn → q as n → ∞.
Since q ∈ T(X), there exists p ∈ X such that q = Tp. Let us see
that Tp = Sp.

Notice that there exists n1 ∈ N such that Sxn 6= Sp for all
n ≥ n1. Otherwise there exists a subsequence {Sxnk}nk∈N such
that Sxnk = Sp for all nk ∈ N. In this case, Sp = Tp since
Sxn → Tp as n → ∞.

Therefore, we can assume that Sxn 6= Sp for all n ≥ n1. By the
contractive condition (3), for each n ≥ n1,

τ + f (ρ(Sxn, Sp)) ≤ f (ρ(Txn,Tp)).

Since τ > 0 and f is strictly increasing, we have that ρ(Sxn, Sp) <
ρ(Txn,Tp) for all n ≥ n1. Taking limits and bearing in mind that
Txn → Tp as n → ∞, we infer that Sxn → Sp as n → ∞. Then,
Tp = Sp.

We now state the convergence of the sequence {xn}n∈N to the
unique coincidence point of T and S.

Theorem 3.3. Let (X, d) and (Y, ρ) be two metric spaces, with
Y being complete. Suppose that T, S : X → Y satisfy the three
conditions of Theorem 3.1. If T is injective and T−1 is continuous,
then the sequence {xn}n∈N, defined by xn+1 = T−1Sxn for each
n ∈ N, converges to the unique coincidence point of T and S.

Proof. Let p be the unique coincidence point of T and S, whose
existence and uniqueness is guaranteed by Theorem 3.1. Fix
x1 ∈ X. By Theorem 3.2, we know that {Txn}n∈N and {Sxn}n∈N

converge to Tp = Sp. From the continuity of T−1 we conclude
that

lim
n→∞

xn+1 = lim
n→∞

T−1Sxn = T−1(Tp) = p.

Notice that it is not easy to check the continuity of T−1.
However, one can give some metric type condition for T which
implies the continuity of T−1. In order to do this, we denote by
G the set of functions g : R+ → R+ such that, for any sequence
{tn}n∈N, lim

n→∞
g(tn) = 0 implies lim

n→∞
tn = 0. On one hand, it

is easily seen that if g ∈ G then g(t) > 0 for all t > 0. On the
other hand, G contains a large number of functions, because G

contains the set of all monotone nondecreasing real functions
g : R+ → R+ such that g(t) = 0 if and only if t = 0, see [10,
Lemma 2.2].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 August 2015 | Volume 1 | Article 9

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Ariza-Ruiz et al. The coincidence problem

Corollary 3.2. Let (X, d) and (Y, ρ) be two metric spaces, with
Y being complete. Suppose that T, S : X → Y satisfy the three
conditions of Theorem 3.1. If there exists g ∈ G such that

g
(

d(x, y)
)

≤ ρ(Tx,Ty), for all x, y ∈ X, (6)

then the sequence {xn}n∈N, defined by xn+1 = T−1Sxn for each
n ∈ N, converges to the unique coincidence point of T and S.

Proof. It is sufficient to prove that T is one to one and T−1 is
continuous. Notice first that (6) implies that T is one to one.
Indeed, if Tx = Ty then g(d(x, y)) = 0 which implies that
d(x, y) = 0, since g ∈ G. Then, T−1

: T(X) → X is well-
defined. We now see that T−1 is continuous. Let {un}n∈N ⊆ T(X)
be a sequence converging to u ∈ T(X). From (6), we have
g
(

d(T−1v,T−1w)
)

≤ ρ(v,w) for all v,w ∈ T(X). Then,

0 ≤ lim
n→∞

g
(

d(T−1un,T
−1u)

)

≤ lim
n→∞

ρ(un, u) = 0.

Since g ∈ G, we deduce that T−1un → T−1u as n → ∞.

Remark 3.1. It is worth pointing out that the continuity of T−1

does not imply that (6) holds: Just take T : R+ → R+ defined by
Tx = √

x.

Remark 3.2. Since the identity mapping is weakly compatible
with respect to any mapping, from Corollary 3.2, we recapture
Theorem 2.1.

Corollary 3.3. Let (X.d) and (Y, ρ) be two metric spaces, with
Y being complete. Assume that T, S : X → Y are two mappings
satisfying the conditions of Corollary 3.1 and, in addition, that
there exists g ∈ G such that T : X → Y satisfies inequality
(Equation 6). Then the sequence {xn}, defined by xn+1 =
T−1(Sxn), converges to the unique coincidence point of T and S.

Proof. The proof of Corollary 3.1 shows that T and S satisfy the
hypotheses of Corollary 3.2 with f (t) = − 1√

t
and therefore we

obtain the result.

3.3. Rate of Convergence
The idea given in Kohlenbach [13] allows us to introduce the
concept of modulus of uniqueness for the coincidence problem
as follows.

Definition 3.1. Let (X, d) and (Y, ρ) be two metric spaces and let
T, S : X → Y be two mappings. A function ψ : (0,∞) → (0,∞)
is said to be a modulus of uniqueness for the coincidence problem
defined by T and S if, for any ε > 0,max{ρ(Tx, Sx), ρ(Ty, Sy)} <
ψ(ε) implies that d(x, y) < ε.

Theorem 3.4. Let (X, d) and (Y, ρ) be twometric spaces. Suppose
that T, S : X → Y satisfy the three conditions of Theorem 3.1
and also that there exists an increasing function g : (0,+∞) →
(0,+∞) such that

g
(

d(x, y)
)

≤ ρ(Tx,Ty), for all x, y ∈ X. (7)

If the function β : (0,+∞) → (0,+∞) defined by β(t): =
t − f−1

(

f (t) − τ
)

is increasing then ψ : = 1
2 β ◦ g is a modulus

of uniqueness for the coincidence problem defined by T and S.

Proof. Let ε > 0 and x, y ∈ X such that max {ρ(Tx, Sx),
ρ(Ty, Sy)} < ψ(ε). Notice that

ρ(Tx,Ty) ≤ ρ(Tx, Sx)+ ρ(Sx, Sy)+ ρ(Sy,Ty) < 2ψ(ε)

+f−1
(

f (ρ(Tx,Ty))− τ
)

.

Then, β
(

ρ(Tx,Ty)
)

< 2ψ(ε) = β
(

g(ε)
)

. Since β is increasing,
we get ρ(Tx,Ty) < g(ε). From (7), we deduce that d(x, y) < ε

because g is increasing.

Remark 3.3. As a direct consequence of the above theorem, we
can get a new result on generalized Ulam-Hyers stability of the
coincidence problem (1).

Another consequence of Theorem 3.4 is the following result
that states a rate of convergence for Picard-Juncgk’s iteration
process.

Theorem 3.5. Under the hypotheses of Theorem 3.4. Let {xn}n∈N

be the sequence defined by xn+1 = T−1Sxn for each n ∈ N.
Let p ∈ X be some coincidence point of T and S. Then, for all
n ≥ 8(ε), we have that d(xn, p) < ε, where 8 : (0,+∞) → N is
given as

8(ε): =










⌊

f (ρ(Sx1,Tx1))− f (ψ(ε))

τ

⌋

+ 2 if ψ(ε) ≤ ρ(Sx1,Tx1),

1 if ρ(Sx1,Tx1) < ψ(ε).

Proof. Fix ε > 0. By Theorem 3.4, if we prove that ρ(Txn, Sxn) <
ψ(ε) for all n ≥ 8(ε), then we are done, since in this case it is
enough to take x = xn and y = p.

Let us prove that ρ(Txn, Sxn) < ψ(ε) for all n ≥ 8(ε),
i.e., ρ(Sxn−1, Sxn) < ψ(ε) for all n ≥ 8(ε). From the proof
of Theorem 3.2 we know that the sequence {γn}n∈N, defined by
γn: = ρ(Sxn, Sxn+1), satisfies

τ + f (γn+1) ≤ f (γn) for all n ∈ N. (8)

Since f is increasing and τ > 0, we have that {γn}n∈N is strictly
decreasing.

If γ1: = ρ(Sx1,Tx1) < ψ(ε), then γn < ψ(ε) for all n ≥ 1 =
8(ε). Thus, we can assume that ψ(ε) ≤ γ1.

We claim that γ8(ε) < ψ(ε). By contradiction, suppose that
ψ(ε) ≤ γ8(ε). Using (8), we obtain that

(

8(ε)−1
)

τ+ f (γ8(ε)) ≤
f (γ1). Bearing in mind that f is increasing, we deduce that
(

8(ε)− 1
)

τ + f
(

ψ(ε)
)

≤ f (γ1), which contradicts the definition
of8(ε). Therefore, γ8(ε) < ψ(ε). Since {γn}n∈N is decreasing, we
conclude that γn < ψ(ε) for all n ≥ 8(ε).

Corollary 3.4. Let (X, d) and (Y, ρ) be two metric spaces. If T, S :

X → Y satisfy the condition of Corollary 3.3, then the function
ψ(ε) = 1

2 (β ◦ g)(ε), where β(t) = t − 1
(τ+ 1√

t
)2
, is a modulus of

uniqueness for the coincidence problem defined by T and S.
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Proof. In this case, the proof of Corollary 3.1 shows that
f (t) = − 1√

t
, and then it is clear that f−1(t) = 1

t2
. The above facts

imply that β(t) = t − 1
(τ+ 1√

t
)2

and then its derivative is β ′(t) =

1 − 1
(1+τ

√
t)3

≥ 0, which says that β is an increasing function.

Finally, by Theorem 3.4, we infer that ψ(ǫ) = 1
2 (β ◦ g)(ǫ) is a

modulus of uniqueness.

4. An Application to Differential Equations

We consider the following problem associated to a general
differential equation of second order with homogeneous
Dirichlet condition:

(P)







u′′(t) = G
(

t, u(t), u′(t)
)

, for t ∈ [a, b]

u(a) = 0, u(b) = 0,

whereG:[a, b]×R×R → R is certain known function satisfying
the following two general conditions:

(H1) G is continuous in [a, b]× R × R;
(H2) there exist τ, µ > 0 and f ∈ Fk, for some k ∈ (0, 1), such

that

∣

∣G(t, x1, x2)− G(t, y1, y2)
∣

∣ ≤ f−1
(

f
(

µ max
i=1,2

αi
∣

∣xi − yi
∣

∣

)

−τ
)

for all t ∈ [0, 1], xi, yi ∈ R, with i = 1, 2; where,

0 ≤ α1 ≤
8

µ (b− a)2
and 0 ≤ α2 ≤

2

µ (b− a)
.

Let Y = (C[a, b], ‖·‖∞) be the Banach space of the continuous
functions u : [a, b] → R, with its norm ‖u‖∞ : = max{

∣

∣u(t)
∣

∣

:

a ≤ t ≤ b}. In the linear space C2[a, b]: = {u : [a, b] →
R : u′′ ∈ C[a, b]} we consider the linear subspace X: =

{

u ∈
C2[a, b] : u(a) = u(b) = 0

}

. Notice that X endowed with the
norm ‖u‖∗ : = max

{

‖u‖∞ ,
∥

∥u′
∥

∥

∞ ,
∥

∥u′′
∥

∥

∞
}

is a Banach space.
In order to prove the existence and uniqueness of a solution

of (P) in C2[a, b], we need the following result attributed to
Tumura [14], see [15, p. 80].

Lemma 4.1. For any u ∈ X we have that ‖u‖∞ ≤ (b−a)2

8

∥

∥u′′
∥

∥

∞
and

∥

∥u′
∥

∥

∞ ≤ (b−a)
2

∥

∥u′′
∥

∥

∞. Moreover, the above inequalities
are sharp, since they become equalities for the function u(t) =
(t − a)(b− t).

Now we are able to state the main result of this section on the
existence and uniqueness of a solution of (P).

Theorem 4.1. With the previous notation, suppose that: G :

[a, b] × R × R → R satisfies conditions (H1) and (H2). Then,
problem (P) has a unique solution us ∈ C2[a, b].

Proof. We define T, S : X → Y as Tu(t) = u′′(t) and Su =
G

(

t, u(t), u′(t)
)

. In order to obtain the existence and uniqueness
of the solution to the problem (P), we will see that T and S satisfy

the conditions of Theorem 3.1. Notice that T is onto. Indeed,
given w ∈ Y it is enough to consider

u(t): =
∫ t

a
v(s) ds− t − a

b− a

∫ b

a
v(s) ds, where v(s): =

∫ s

a
w(r) dr,

since in this case u ∈ X and Tu = w. Thus, assumptions (i) and
(ii) in Theorem 3.1 hold. Let us prove that T and S satisfy (iii).
Assume that u, v ∈ X with ‖u− v‖∞ 6= 0. Then, there exists at
least one t ∈ [a, b] such that u(t) 6= v(t). Hence, by (H2),

∣

∣Su(t)− Sv(t)
∣

∣ =
∣

∣G
(

t, u(t), u′(t)
)

− G
(

t, v(t), v′(t)
)
∣

∣

≤ f−1
(

f
(

µ max{α1
∣

∣u(t)− v(t)
∣

∣ ,

α2
∣

∣u′(t)− v′(t)
∣

∣}
)

− τ
)

≤ f−1
(

f
(

µ max{α1
∥

∥u(t)− v(t)
∥

∥

∞ ,

α2
∥

∥u′(t)− v′(t)
∥

∥

∞}
)

− τ
)

≤ f−1
(

f
(
∥

∥u′′ − v′′
∥

∥

∞
)

− τ
)

,

the last inequality is obtained from Lemma 4.1 and because f is

increasing. Thus, ‖Su− Sv‖∞ ≤ f−1
(

f
(

‖Tu− Tv‖∞
)

−τ
)

, that

is, T and S satisfy (iii). From Theorem 3.1, T and S have a unique
coincidence point in X, i.e., problem (P) has a unique solution
us ∈ C2[a, b].

Remark 4.1. Under the conditions of Theorem 4.1, applying
Lemma 4.1 we obtain that ‖u‖∗ ≤ M

∥

∥u′′
∥

∥

∞, where

M: = max

{

(b− a)2

8
,
b− a

2
, 1

}

.

Then

(a) If we define g(t) = t/M, it is clear that T satisfies
inequalities (Equations 6, 7). Therefore, by Corollary 3.2, we
infer that for each u1 ∈ X, the sequence {un}n∈N defined by

un+1(t): =
∫ t

a

(∫ s

a
Gn(r) dr

)

ds

− t − a

b− a

∫ b

a

(∫ s

a
Gn(r) dr

)

ds, (9)

where Gn(r): = G
(

r, un(r), u
′
n(r)

)

, converges to us,

(b) If the function β : (0,∞) → R, defined by β(t): = t −
f−1

(

f (t) − τ
)

, is increasing, Theorem 3.5 yields that for any
ε > 0, ‖un − us‖∗ < ε for all n ≥ 8(ε), where

8(ε): =










⌊

f (‖u′′2−u′′1‖∞)−f (β(g(ε))/2)

τ

⌋

+ 2, if β(g(ε)) ≤ 2
∥

∥u′′2 − u′′1
∥

∥

∞ ,

1, if 2
∥

∥u′′2 − u′′1
∥

∥

∞ < β(g(ε)),

(10)
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which means that 8 given by (10) is a rate of convergence for
{un} to us.

4.1. A Particular Case
Let G : [0, 1] × R × R → R be a continuous function such that
for every t ∈ [0, 1], and for all x, y ∈ R the following inequality
holds for some τ > 0,

|G(t, x, y)−G(t, u, v)| ≤ max{|x− u|, |y− v|}
(1+ τ

√

max{|x− u|, |y− v|})2
. (11)

Let us check that G satisfies condition (H2). Indeed, consider the
function f : (0,∞) → (−∞, 0) defined by f (t) = − 1√

t
. It is clear

that f−1
: (−∞, 0) → (0,∞) is given by f−1(s) = 1

s2
. Therefore,

taking µ = α1 = α2 = 1 we have:

f−1(f (max{|x− u|, |y− v|})− τ ))
= 1

(f (max{|x−u|,|y−v|})−τ )2

= max{|x−u|,|y−v|}
(1+τ

√
max{|x−u|,|y−v|})2

,

which means that G satisfies condition (H2).

Example 4.1. The second order differential equation with
homogeneous Dirichlet condition







u′′(t) = et + |u(t)|
(
√
2+
√

2|u(t)|)2
+ |u′(t)|

(
√
2+
√

2|u′(t)|)2
, for t ∈ [0, 1],

u(0) = 0, u(1) = 0,
(12)

has a unique classical solution.

To see that Equation (12) has a unique classical solution it is
enough to show that the conditions of Theorem 4.1 are satisfied.
Since Equation (12) can be rewritten as







u′′(t) = G(t, u(t), u′(t)), for t ∈ [0, 1],

u(0) = 0, u(1) = 0,
(13)

where G : [0, 1]× R × R → R is defined by

G(t, x, y) = et + 1

2
[

|x|
(1+

√
|x|)2

+ |y|
(1+

√

|y|)2
],

we are going to prove thatG satisfies inequality (Equation 11). To
do this, we notice first that the following elementary properties
hold:

(1) the function ϕ : [0,∞) → [0,∞), ϕ(t) = t
(1+

√
t)2
, is

increasing since ϕ′(t) = 1
(1+

√
t)3
> 0,

(2) ϕ is concave since ϕ′′(t) = −3
2
√
t(1+

√
t)4
< 0,

(3) since ϕ(0) = 0 and ϕ is concave, then it is sub-additive, that
is ϕ(t + s) ≤ ϕ(t)+ ϕ(s).

Since

|G(t, x, y)− G(t, u, v)| ≤ 1

2

∣

∣

∣

∣

|x|
(1+

√
|x|)2

− |u|
(1+

√
|u|)2

∣

∣

∣

∣

+1

2

∣

∣

∣

∣

∣

|y|
(1+

√

|y|)2
− |v|

(1+
√
|v|)2

∣

∣

∣

∣

∣

With the above three properties, the above inequality can be
written as follows

|G(t, x, y)− G(t, u, v)|≤ 1

2

∣

∣ϕ(|x|)− ϕ(|u|)
∣

∣+ 1

2

∣

∣ϕ(|y|)− ϕ(|u|)
∣

∣

≤ 1

2

∣

∣ϕ(|x| − |u|)
∣

∣ + 1

2

∣

∣ϕ(|y| − |v|)
∣

∣

≤ 1

2
ϕ(|x− u|)+ 1

2
ϕ(|y− v|)

≤ ϕ(max{|x− u|, |y− v|})

= max{|x− u|, |y− v|}
(1+

√

max{|x− u|, |y− v|})2
,

which means that the conditions of Theorem 4.1 are satisfied and
therefore Equation (12) admits a unique classical solution.

Finally, let us give, by using expression (10), a
rate of convergence for the iterative scheme given in

FIGURE 1 | (A) Red line is the ratio taking as a starting point u1 = 0 and blue line is the ratio for the starting point u1 = t2 − t. (B) (The ratio of convergence 80

corresponds to u1 = 0, while 82 corresponds to u1 = t2 − t).
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Equation (9) concerning Equation (12). To apply Theorem
3.5, first we have to notice that the following facts
hold:

1. f : (0,+∞) → (−∞, 0) is given by f (t) = − 1√
t
,

2. f−1
: (−∞, 0) → (0,+∞) is f−1(s) = 1

s2
.

3. g : [0,∞) → [0,∞) is given by g(t) = t,
4. τ = 1,
5. β(t) = t − t

(1+
√
t)2
,

6. ψ(ǫ) = 1
2β(ǫ).

In Figure 1, we use the above facts and expression (Equation 10)
to compute the number of iterations that we have to do to obtain

an error less than ǫ = 10−k for k = 1, · · · , 6 and taking as
starting points u1 = 0 and u1 = t2 − t respectively.
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