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Abstract. In this note we study two different classes of accretive opera-

tors which have a unique zero. Moreover, we show that the resolvents Jr

of such operators converge strongly to the zero of the operator, as r →∞.

1. Introduction

Let X be a real Banach space. An operator A ⊆ X × X with domain
D(A) and range R(A) is said to be accretive if the inequality ‖x− y‖ ≤ ‖x−
y + r(z − u)‖ holds for all x, y ∈ D(A), z ∈ Ax, u ∈ Ay and r > 0. If
A is accretive, we may define, for each positive r, a single-valued mapping
JA

r : R(I + rA) → D(A) by JA
r := (I + rA)−1, where I is the identity. JA

r is
called the resolvent of A. In [6] Reich showed the following result: Let X be
a uniformly smooth Banach space, and let A ⊆ X ×X be m-accretive (which
means that A is accretive and moreover R(I + A) = X). If 0 ∈ R(A), then for
each x ∈ X the strong limr→∞ JA

r x exists and belongs to A−10. Later, in 1984
W. Takahashi and Y. Ueda [8] improved the Reich’s theorem in the following
sense: Let X be a reflexive space with a uniformly Gâteaux differentiable norm,
and let A ⊆ X ×X be an accretive operator that satisfies the range condition
(which means that D(A) ⊆ ⋂

r>0R(I + rA) ). Suppose that every weakly
compact convex subset of X has the fixed point property for nonexpansive
mappings. Let C be a closed convex subset of X such that C ⊆ R(I + rA) and
C is JA

r -invariant for some r > 0. If 0 ∈ R(A), then for each x ∈ C the strong
limr→∞ JA

r x exists and belongs to A−10.
As we can notice both above results works for general m-accretive operators

but however the framework of the Banach spaces where they must be defined
is not too large. In this paper, we yield special classes of accretive operators
and we study the strong convergence of their resolvents without any restriction
on the Banach spaces where they are defined.
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2. Preliminaries

Throughout this paper we assume that X is a real Banach space and denote
by X? the dual space of X. As it is usual we will denote by B[x, r] and S[x, r]
the closed ball and the sphere of the Banach space X with radius r and center
x ∈ X, respectively. We define the normalized duality mapping by

J(x) := {j ∈ X? : 〈x, j〉 = ‖x‖2, ‖j‖ = ‖x‖}.
Let 〈y, x〉+ := max{〈y, j〉 : j ∈ J(x)}.

Given an operator A : D(A) → 2X , we define

JA
λ : = (I + λA)−1 : R(I + λA) → D(A),

Aλ : =
I − JA

λ

λ
,

|Ax| : = inf{‖u‖ : u ∈ Ax}.
The operators JA

λ (Jλ for short) and Aλ are the resolvent and the Yosida
approximant of A, respectively.

We now recall some important facts regarding accretive operators which will
be used in this paper (see, for instance, [1]):

Proposition 2.1.
(i) A ⊂ X × X is accretive if and only if 〈u − v, x − y〉+ ≥ 0 for all

(x, u), (y, v) ∈ A.
(ii) A ⊂ X ×X is accretive if and only if for each λ > 0, the resolvent JA

λ

is a single-valued nonexpansive mapping.
(iii) For all x ∈ R(I + λA) with λ > 0, Aλx ∈ AJA

λ x.

3. Two different classes of accretive operators

In order to proceed, we shall first give the following definitions.

Definition 3.1. (see [2]) Let φ : [0,∞[→ [0,∞[ be a continuous function such
that φ(0) = 0 and φ(r) > 0 for r > 0. Let X be a Banach space. An operator
A : D(A) → 2X is said to be φ-strongly accretive if for every (x, u), (y, v) ∈ A,
then

φ(‖x− y‖)‖x− y‖ ≤ 〈u− v, x− y〉+.

Definition 3.2. (see [3]) Let X be a Banach space. An accretive operator
A : D(A) → 2X is said to be φ-expansive if for every (x, u), (y, v) ∈ A, then

φ(‖x− y‖) ≤ ‖u− v‖.
Definition 3.3. An accretive operator A : D(A) → 2X is said to be φ-accretive
at zero whenever there exists z ∈ X such that the inequality

(3.1) 〈u, x− z〉+ ≥ φ(‖x− z‖) for all (x, u) ∈ A.

holds.
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Next, we shall study the relationship between the above classes of accretive
operators.

Proposition 3.4. Let X be a Banach space and A ⊆ X × X a φ-strongly
accretive operator. Then A is φ-expansive.

Proof. Let (x, u), (y, v) ∈ A. Since A is φ-strongly accretive, we have

φ(‖x− y‖)‖x− y‖ ≤ 〈u− v, x− y〉+.

On the other hand, it is well known that 〈u− v, x− y〉+ ≤ ‖u− v‖‖x− y‖,
therefore

φ(‖x− y‖)‖x− y‖ ≤ ‖u− v‖‖x− y‖,
which implies that

φ(‖x− y‖) ≤ ‖u− v‖.
Next example shows that there exist accretive operators which are φ-expansive

and they cannot become φ-accretive at zero neither φ-strongly accretive for any
φ.

Example 3.5. Let X be the real Hilbert space R2 with the usual Euclidean
inner product. Define A : R2 → R2 by A(x, y) = (y,−x). Then A is accretive
and φ-expansive with φ(r) = r. However, A is not φ-accretive at zero for any
possible function φ as described above.

Example 3.6. Consider the Banach space (l2, ‖.‖2) and let (en = (δi,n)) be
the usual Schauder basis of such space.

Define the following operator:

T (
∞∑

k=1

xkek) =
∞∑

i=1

ziei

where

zi =
{

x2k i = 2k − 1
−x2k−1 i = 2k

Let us see that T is accretive:

〈T (x)− T (y), x− y〉 =

= 〈
∞∑

k=1

(x2k − y2k)e2k−1 +
∞∑

k=1

(y2k−1 − x2k−1)e2k,
∞∑

k=1

(xk − yk)ek〉 =

=
∞∑

k=1

(x2k − y2k)(x2k−1 − y2k−1) +
∞∑

k=1

(y2k−1 − x2k−1)(x2k − y2k) = 0.

This argument allows us to see that T is an accretive operator which fails to
be both φ-strongly accretive and φ-accretive at zero for any φ. Nevertheless, if
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we take φ(t) = t we may derive

‖T (x)− T (y)‖ = ‖
∞∑

k=1

(x2k − y2k)e2k−1 +
∞∑

k=1

(y2k−1 − x2k−1)e2k‖ =

= ‖x− y‖ = φ(‖x− y‖).
In the following example we will prove that there exist operators which are

φ-accretive at zero but not φ-expansive for any φ.

Example 3.7 (see [4]). Let X be a Banach space. Consider the following
operator on X :

T : X −→ 2X

x 7→ T (x) =
{ x

‖x‖ , x 6= 0
BX , x = 0.

Where BX denotes the unit ball of X. It is easy to see that this operator is
m-accretive on X, φ-accretive at zero for φ(r) = r but it fails to be ψ-expansive
for any ψ.

Proposition 3.8. Let Ω be a bounded open domain in Rn with smooth bound-
ary ∂Ω. Consider β a maximal monotone graph in R×R with 0 ∈ β(0) such that
β(r)r ≥ |r|α (this means that for each s ∈ β(r) we have that sr ≥ |r|α) for some
α > 2. Then, for each 1 ≤ p < ∞ the operator Bp : D(Bp) ⊆ Lp(Ω) → 2Lp(Ω),
where

D(Bp) := {u ∈ Lp(Ω) : ∃v ∈ Lp(Ω) : v(x) ∈ β(u(x)) a.e.}

and defined by

Bp(u) := {v ∈ Lp(Ω) : v(x) ∈ β(u(x)) a.e.},

is m-accretive and φ-accretive at zero on Lp(Ω).

Proof. It is well known that Bp is an m-accretive operator on Lp(Ω) (for in-
stance see [1]).

Thus, we will only prove that Bp is φ-accretive at zero on Lp(Ω).
Case p = 1. To see this, since 0 ∈ B10, if we consider u ∈ D(B1) and

v ∈ B1(u) we have to study 〈v, u〉+.
The normalized duality map on L1(Ω) is give by

J(u) = ‖u‖1{j : j ∈ L∞(Ω), |j| ≤ 1, ju = |u| a.e.}.

Hence, there exists j ∈ J(u) such that

〈v, u〉+ = 〈v, j〉.
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Consequently, Hölder’s inequality yields K > 0 such that

〈v, u〉+ = 〈v, j〉 = ‖u‖1
∫

Ω

v(t)j(t) =

= ‖u‖1(
∫

{t∈Ω : u(t) 6=0}
v(t)

u(t)
|u(t)| +

∫

{t∈Ω : u(t)=0}
|v(t)|dt) ≥

≥ ‖u‖1
∫

Ω

|u(t)|α−1 ≥ K‖u‖α
1 .

Therefore, if we define φ(t) = Ktα, we obtain that B1 is φ-accretive at zero on
L1(Ω).

Case 1 < p < ∞. Since (see for instance [1]) the normalized duality map on
Lp(Ω) is given by

J(u) = ‖u‖2−p
p |u|p−2u.

For each (u, v) ∈ Bp we have

〈v, u〉+ = ‖u‖2−p
p

∫

Ω

v(t)u(t)|u(t)|p−2dt ≥ ‖u‖2−p
p

∫

Ω

|u(t)|p+α−2dt

Then by Hölder’s inequality there exists K > 0 such that 〈v, u〉+ ≥ K‖u‖α
p ,

and thus , it is sufficient to take the function φ(t) = Ktα. ¤

Remark 3.9. In [4] we can find several examples of operators which are φ-
accretive at zero.

4. The behavior of the resolvents

Theorem 4.1. (see [5], Theorem 6) Let X be a Banach space, let A : D(A) ⊆
X → 2X be φ-accretive operator at zero and let z ∈ X satisfy condition (3.1).
Then

(a) If z ∈ R(I + A), then 0 ∈ R(A).
(b) If X is reflexive with the fixed point property for spheres and co(D(A)) ⊆

R(I + A), then 0 ∈ R(A).

Proof. Since the operator A is accretive, then it is well known that the resolvent:

g := (I + A)−1 : R(I + A) → D(A)

is a single-valued and nonexpansive mapping.
We claim that for every y ∈ R(I + A), g satisfies ‖g(y)− z‖ ≤ ‖y − z‖.
Consider y ∈ R(I + A), then there exists x ∈ D(A) such that x = g(y).

Hence, y ∈ x + Ax, which means that there exists u ∈ Ax satisfying that
y = x + u. Since A is φ-accretive at zero (i.e., 0 ≤ φ(‖x− z‖) ≤ 〈u, x− z〉+) we
obtain

‖g(y)− z‖ = ‖x− z‖ ≤ ‖x− z + u‖ = ‖y − z‖.
(a) If z ∈ R(I + A), then g(z) = z and hence z ∈ z + Az, which implies that

0 ∈ Az.
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(b) We may consider the set

C := co(D(A)) ∩B[z, dist(z, co(D(A))]

Since X is a reflexive Banach space, then C is a nonempty, weakly compact,
convex subset and it is not difficult to see that it is also g-invariant. Then the
set

K = PC(z) := {x ∈ C : ‖x− z‖ = dist(z, C) =: d}
is nonempty. Moreover K = C ∩B[z, d] = C ∩S[z, d] is closed and convex. For
every x ∈ K, gx ∈ C and then d ≤ ‖gx − z‖ ≤ ‖x − z‖ = d. Hence gx ∈ K
which implies that K is g invariant. Since X has the fixed point property for
spheres and K lies in a sphere, then g has a fixed point on K which is a zero
of A. ¤

Theorem 4.2. Let X be a Banach space, let A : D(A) ⊆ X → 2X be a
φ-expansive operator such that co(D(A)) ⊆ ⋂

λ>0R(I + λA). If

(4.1) lim
‖x‖→∞

|Ax| = ∞,

then 0 ∈ R(A).

Proof. Consider x0 ∈ D(A), it is well known that the function λ → ‖Aλx0‖ is
decreasing. Consequently there exists k > 0 such that

lim
λ→∞

‖Aλx0‖ = k.

Since, on the other hand, it is clear that Aλx0 ∈ AJλx0, by (4.1) we deduce
that the set {Jλx0 : λ ≥ 0} is bounded.

Now, by using both that limλ→0+ Jλx0 = x0 and that the function λ → Jλx0

is continuous, we may deduce that there exists a bounded neighborhood U of
x0 such that

t(x− x0) /∈ A(x) for x ∈ ∂U ∩D(A) and t < 0.

Therefore we may apply Theorem 13 of [3] and thus we obtain the result. ¤

Corollary 4.3. Let X be a Banach space, let A : D(A) ⊆ X → 2X be a
φ-expansive operator such that co(D(A)) ⊆ ⋂

λ>0R(I + λA). If

(4.2) lim
r→∞

φ(r) = ∞,

then 0 ∈ R(A).

Theorem 4.4. Let X be a Banach space, let A : D(A) ⊆ X → 2X be an
m-accretive and either φ-expansive or φ-accretive at zero. Then there exists a
unique z ∈ D(A) such that 0 ∈ A(z). In addition,

(i) limλ→∞ Jλx = z for each x ∈ X.
(ii) limn→∞ Jn

λ x = z for each λ > 0 and x ∈ X.
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Proof. If we assume that A is φ-expansive, then by ([3], Theorem 8) we know
that A is surjective and therefore 0 ∈ R(A). The uniqueness is an easy conse-
quence of the definition of such type of operators.

When A is φ-accretive at zero, we can use the above Theorem to show that
A has a zero. The uniqueness is a consequence of condition (3.1).

To see part (i), let x ∈ X. Since A is an m-accretive operator it is well known
that for all λ > 0, X = R(I + λA). Then xλ = Jλx ∈ D(A). This means,

x ∈ xλ + λA(xλ) for all λ > 0.

Since ‖xλ−z‖ ≤ ‖x−z‖, the set {xλ : λ > 0} is bounded, and consequently
λ−1(x− xλ) → 0 as λ →∞.

Now, if we assume that A is φ-expansive, since Aλx ∈ AJλx, we have

φ(‖xλ − z‖) ≤ ‖Aλx− 0‖ ≤ ‖λ−1(x− xλ)‖.
Therefore Jλx → z, as λ →∞.
When A is φ-accretive at zero, it is clear that

φ(‖xλ − z‖) ≤ 〈Aλx, xλ − z〉+ ≤ ‖xλ − x

λ
‖‖xλ − z‖.

Since JA
λ is nonexpansive, we obtain

λφ(‖xλ − z‖) ≤ 2‖x− z‖2 ∀λ > 0,

which means that φ(‖xλ − z‖) → 0 as λ → ∞, and hence we may conclude
that xλ → z.

To see (ii), let x ∈ X and let R > 0 be such that ‖x − z‖ < R. Then for a
fixed λ > 0, the mapping Jλ maps co(D(A)) ∩ B[z,R] into itself. Since Jλ is
firmly nonexpansive with a fixed point z, then it is asymptotically regular (see
Corollary 1 of [7]). In addition, for every λ > 0 and every x ∈ X we know that
AλJn

λ x ∈ AJn+1
λ x.

If A is φ-expansive, we have

λφ(‖Jn+1
λ x− z‖) ≤ ‖Jn

λ x− Jn+1
λ x‖ → 0 as n →∞.

If A is φ-accretive at zero, then

λφ(‖Jn+1
λ x−z‖) ≤ ‖Jn

λ x−Jn+1
λ x‖‖x−z‖ ≤ R‖Jn

λ x−Jn+1
λ x‖ → 0 as n →∞.

which completes the proof. ¤

Remark 4.5. As a consequence of Proposition 3.4 and ([3], Theorem 8) it is
worthy to observe that every m-accretive and φ-strongly accretive operator is
in fact ψ-accretive at zero for ψ(t) = tφ(t).
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