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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 
 
 

- H Hilbert space,  

- C closed, convex subset of H  

- T:C→C a nonexpansive mapping 

 

The orbit 

 Tnx  

does not converge, in general (also if T has fixed 
points) 

However, 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Krasnoselskii (1955) 

If instead of T we consider the auxiliary mapping 

 

and T(C) is compact,   

then the orbit  

 

is strongly convergent. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Opial  (1967)  

 

Without the assumption of compactness of T(C) 

one has weak convergence for the orbit of the 
average map 

 
𝑥𝑛+1 = 𝑇𝛼

𝑛𝑥𝑜 = 1 − 𝛼 𝑥𝑛 + 𝛼𝑇𝑥𝑛 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Mann (1953) 

 

 

• Halpern (1967)  

 

• Ishikawa (1974) 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Moudafi (2000) 

 

• M. – Xu (2006) 

 

Strong convergence to the argument of the 
minimization problem 

min
𝑥∈𝐹𝑖𝑥(𝑇)

1

2
< Ax, x >  +h(x) 

where h is a potential function for 𝛾𝑓. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• In the last two years he was born a new idea, 

starting from the Euler method for the 
construction of a polygonal approximating the 
solution of an ODE 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑡𝑛, 𝑦𝑛  

 

 

 

 

Drawback: numerical unstability 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Example:             𝑦′ = −2.3𝑦,  𝑦 0 = 1 

Solution 𝑦 𝑡 = 𝑒−2.3𝑡, which decays to zero as t → ∞  

However, if the Euler method is applied to this 
equation with step size h = 1, then the numerical 
solution is qualitatively wrong: it oscillates and 
grows (blue squares). Taking 

h=0.7 one obtain the red circle 

Polygonal. 

The black curve is the solution. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• A simple modification of the Euler method 
which eliminates the stability problems is the  

backward Euler method or implicit method 

 
𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) 

 

The midpoint method further improves the 
situation 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• We see some details. 

 

• The starting point is the initial value problem 
for an autonomous ODE 

 

 
𝑥′ 𝑡 = 𝑓(𝑥 𝑡 )

𝑥 𝑡𝑜 = 𝑥𝑜
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Given a time interval [𝑡𝑜, 𝑇]; 

• Fixed N natural number; 

• Defined the step size ℎ𝑁 =
𝑇−𝑡𝑜

𝑁
; 

• Defined the mesh 𝑡𝑛 = 𝑡𝑜 + 𝑛ℎ; 

 

• For h sufficiently small, (i.e. for N sufficiently 
big) 

𝑓(𝑥 𝑡 )=𝑥′(𝑡) ≈
𝑥 𝑡+ℎ −𝑥(𝑡)

ℎ
 

So, 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

we obtain the approximed values of the solution 
at each time step 𝑦𝑛 ≈ 𝑥 𝑡𝑛  via the Euler 
method 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛). 

Moreover, the Eulero polygonal 𝑌𝑁 𝑡  obtained 
connecting two consecutive nodes 𝑡𝑛, 𝑦𝑛  and  

𝑡𝑛+1, 𝑦𝑛+1 ,under suitable assumption on the 
function 𝑓 , converges to the solution when 
N→ ∞. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• On the other hand, one can replace 

 

with 

   𝑓(𝑥 𝑡 +
ℎ

2
)= 𝑥′(𝑡+ℎ/2)≈(𝑥(𝑡+ℎ)−𝑥(𝑡))/ℎ 

getting so 

𝑥 𝑡 + ℎ ≈ 𝑥 𝑡 + ℎ𝑓 𝑥 𝑡 +
ℎ

2
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Reached this stage, there are two different 
procedures for approximating the (unknown) 

value 𝑥 𝑡 +
ℎ

2
: 

(1) One can apply Euler’s method, obtaining 

𝑥 𝑡 +
ℎ

2
≈ 𝑥 𝑡 +

ℎ

2
𝑓 𝑥 𝑡  

that, substituted in  

𝑥 𝑡 + ℎ ≈ 𝑥 𝑡 + ℎ𝑓 𝑥 𝑡 +
ℎ

2
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

leads to 

𝑥 𝑡 + ℎ ≈ 𝑥 𝑡 + ℎ𝑓(𝑥 𝑡 +
ℎ

2
𝑓(𝑥 𝑡 ) 

Taking   𝑡𝑛 as t, we obtain the recursive scheme 

EMR 

𝑦𝑜 = 𝑥𝑜
𝑦 𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓
𝑦𝑛+𝑦 𝑛+1

2

 

Explicit midpoint rule 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

(2) The value 𝑥(𝑡 +
ℎ

2
) is approximated with the 

midpoint of the line segment from 𝑥 𝑡  to  
𝑥(𝑡 + ℎ), obtaining 

𝑥 𝑡 + ℎ ≈ 𝑥 𝑡 + ℎ𝑓
𝑥 𝑡 + 𝑥(𝑡 + ℎ)

2
 

Taking   𝑡𝑛 as t, we obtain the recursive scheme 

IMR 
𝑦𝑜 = 𝑥𝑜

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓
𝑦𝑛+𝑦𝑛+1

2

 

Implicit midpoint rule 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• If we write the function f in the form  

𝑓 𝑦 = 𝑦 − 𝑔(𝑦), 

then our Cauchy problem becomes 

 
𝑦′ = 𝑦 − 𝑔(𝑦)

𝑦 𝑥𝑜 = 𝑦𝑜
 

And the IMR is rewritten as 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑦𝑛 + 𝑦𝑛+1

2
− 𝑔

𝑦𝑛 + 𝑦𝑛+1
2
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• The equilibrium problem associated with the 
differential equation is the fixed point problem 
𝑦 = 𝑔(𝑦). 

• This motivates us to trasplant IMR to the solving 
the fixed point equation 𝑥 = 𝑇𝑥  

where T is, in general, a nonlinear operator in a 
Hilbert space. 

This is the new idea present in the paper «The 
implicit midpoint rule for nonexpansive mappings» 
by Hong Kun Xu , M. Alghamdi, M. A. Alghamdi and 
N. Shahazad, published on FPTA, 2014. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• According to the IMR (that, we underline, is a 
method for construct a single polygonal 
function approximating the solution of the 
differential equation) rewritten as 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑦𝑛+𝑦𝑛+1

2
− 𝑔

𝑦𝑛+𝑦𝑛+1

2
, 

Xu and al., propose the following algorithm for 
the approximation of fixed points of a 
nonexpansive mapping T  

𝑥𝑛+1 = 𝑥𝑛 − 𝑡𝑛
𝑥𝑛 + 𝑥𝑛+1

2
− 𝑇

𝑥𝑛 + 𝑥𝑛+1
2
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• They show also that the previous is equivalent 
to the algorithm 

𝑥𝑛+1 = 1 − 𝑡𝑛 𝑥𝑛 + 𝑡𝑛𝑇
𝑥𝑛 + 𝑥𝑛+1

2
 

Moreover, they prove weak convergence results 
under suitable assumptions on the sequence of 
parameters  𝑡𝑛. 

• After their paper, this algorithm is known as 
IMR for nonexpansive mappings 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• In 2015, Xu and al., again on FPTA, apply the 
viscosity technique introduced by Moudafi in 
2000 and obtain the following Viscosity 
Implicit Midpoint Rule (VIMR) 

𝑥𝑛+1 = 1 − 𝑡𝑛 𝑓(𝑥𝑛) + 𝑡𝑛𝑇
𝑥𝑛+𝑥𝑛+1

2
. 

• After this, Ke and Ma, once again on FPTA, 
improve the VIMR, replacing the midpoint by 
any point of interval 𝑥𝑛, 𝑥𝑛+1 . They obtain 
the following generalized VIMR 

 𝑥𝑛+1 = 𝛼𝑛𝑓 𝑥𝑛 + 1 − 𝛼𝑛 𝑇 𝑠𝑛𝑥𝑛 + 1 − 𝑠𝑛 𝑥𝑛+1  
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Inspired by these works, we follow the EMR 
derived by Eulero’s method 

EMR 

𝑦𝑜 = 𝑥𝑜
𝑦 𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓
𝑦𝑛+𝑦 𝑛+1

2

 

with the introduction of a viscosity term, and 
propose the iterative algorithm 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

 

 

𝑥𝑜 ∈ 𝐶

𝑥 𝑛+1 = 𝛽𝑛𝑥𝑛 + 1 − 𝛽𝑛 𝑇𝑥𝑛
𝑥𝑛+1 = 𝛼𝑛𝑓 𝑥𝑛 + 1 − 𝛼𝑛 𝑇(𝑠𝑛𝑥𝑛 + 1 − 𝑠𝑛 𝑥 𝑛+1)

 

 

where f is a viscosity term, T is a nonexpansive 
mapping and all the coefficients are in (0,1).  

We can call this  

generalized VEMR 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• In the attempt to prove the strong 
convergence of the generalized VEMR, we 
used the beautiful Maingé’s Lemma present in 
the paper 

   «Strong convergence of projected subgradient 
methods for nonsmooth and non-strictly convex 
minimization»,  

Set Valued Analysis 16 (2008) 899-912 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Maingé Lemma: 𝐿𝑒𝑡 (𝛾𝑛) 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓  

𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎  

𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝛾𝑛𝑗 𝑜𝑓 (𝛾𝑛)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝛾𝑛𝑗<𝑦𝑛𝑗+1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗. 

𝑇ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  
𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝜏 𝑛  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

• lim
𝑛
𝜏 𝑛 = ∞ 

• 𝛾𝜏(𝑛) < 𝛾𝜏 𝑛 +1 

• 𝛾𝑛 < 𝛾𝜏 𝑛 +1 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

The use of Maingé Lemma permitted us to 
obtain strong convergence results for both 
generalized VEMR and VIMR not only for 
nonexpansive mappings, but for the much 
bigger class of quasi-nonexpansive mappings 
(i.e. mappings T for which 𝐹𝑖𝑥(𝑇) ≠ ∅ and 

𝑇𝑥 − 𝑝 ≤ 𝑥 − 𝑝  ∀𝑝 ∈ 𝐹𝑖𝑥(𝑇). 

Moreover permitted also to weaken the 
assumption on the coefficients with respect to 
previous results. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Convergence result: 

The generalized VEMR 

 

𝑥𝑜 ∈ 𝐶

𝑥 𝑛+1 = 𝛽𝑛𝑥𝑛 + 1 − 𝛽𝑛 𝑇𝑥𝑛
𝑥𝑛+1 = 𝛼𝑛𝑓 𝑥𝑛 + 1 − 𝛼𝑛 𝑇(𝑠𝑛𝑥𝑛 + 1 − 𝑠𝑛 𝑥 𝑛+1)

 

converges to  
𝑝 ∈ 𝐹𝑖𝑥 𝑇  𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐹𝑖𝑥(𝑇) 

𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦  
< 𝑝 − 𝑓 𝑝 , 𝑝 − 𝑥 >≤ 0      ∀𝑥 ∈ 𝐹𝑖𝑥(𝑇) 

 

under the assumptions 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Assumptions on  space and on  mappings: 

• H real Hilbert space, C nonempty closed 
convex subset of H, T:𝐶 → 𝐶 quasi-
nonexpansive, I-T demiclosed in 0, 𝑓: 𝐶 → 𝐶 
contraction. 

• Assumptions on the coefficients (all in 0,1 ): 

• lim
𝑛
𝛼𝑛 = 0, 

•  𝛼𝑛 = ∞ 

• 𝑙𝑖𝑚𝑠𝑢𝑝𝑛𝛽𝑛 1 − 𝛽𝑛 1 − 𝑠𝑛 > 0 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Example 1. A nonspreading mapping 

• H=ℝ, S: −3,3  → −3,3  

𝑆𝑥 =  

0      𝑖𝑓 𝑥 ∈ −2,2

−1      𝑖𝑓 𝑥 ∈ −3,−2

1  𝑖𝑓 𝑥 ∈ 2,3

 

S is nonspreading (i.e.  

2 𝑆𝑥 − 𝑆𝑦 2 ≤ 𝑆𝑥 − 𝑦 2+ 𝑥 − 𝑆𝑦 2) 

and so quasi-nonexpansive, S is not continuous 
and I-S is demiclosed in 0 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• If we take 

•  𝛼𝑛 =
1

𝑛
, 𝛽𝑛 =

𝑛−1

2𝑛
, 𝑠𝑛 =

1

𝑛
, 𝑓 𝑥 =

𝑥

2
, 𝑥1 = 3, 

then the VEMR is given by 

𝑥 𝑛+1 =
𝑛 − 1

2𝑛
𝑥𝑛 +

𝑛 + 1

2𝑛
𝑆𝑥𝑛

𝑥𝑛+1 =
𝑥𝑛
2𝑛

+
𝑛 − 1

𝑛
𝑆

𝑥𝑛
𝑛
+
𝑛 − 1

𝑛
𝑥 𝑛+1

 

so that 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• 𝑥1 = 3,  𝑥2 =
3

2
,   𝑥3 =

3

8
,  … , 𝑥𝑛+1 =

3

𝑛!2𝑛
, 

That quikly converges to 0. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Example 2. Fredholm integral equation 

𝑥 𝑡 = 𝑔 𝑡 +  𝐹(𝑡, 𝑠, 𝑥 𝑠 𝑑𝑠,  𝑡 ∈ 0,1
1

0

 

where g is a given continuous function on [0,1] 

and 𝐹: 0,1 × 0,1 × ℝ → ℝ is continuous. 

If 𝐹 satisfies the Lipshitz continuity condition 
𝐹 𝑡, 𝑠, 𝑥 − 𝐹(𝑡, 𝑠, 𝑦) ≤ 𝑥 − 𝑦  

then the Fredholm equation has solutions in  

𝐿2 0,1  (classical) 

32 



ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• The fixed points of the nonexpansive mapping  

𝑇: 𝐿2 0,1 → 𝐿2 0,1  defined by 

𝑇𝑥 𝑡 = 𝑔 𝑡 +  𝐹(𝑡, 𝑠, 𝑥 𝑠 𝑑𝑠,  𝑡 ∈ 0,1
1

0

 

re the solutions of the Fredholm equation. 

So,  sequence of functions in 𝐿2 0,1  defined by 

𝑥𝑛+1 = 1 − 𝑡𝑛 𝑥𝑛 + 𝑡𝑛𝑇
𝑥𝑛 + 𝑥𝑛+1

2
 

converges weakly in 𝐿2 0,1  to a solution of 
Fredholm equation. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

• Example 3. Nonlinear Evolution problem 

Browder in 1965 proved the existence of a 
periodic solution of the time-dependent 
nonlinear evolution equation in a real Hilbert 
space H 

𝑑𝑢

𝑑𝑡
+ 𝐴 𝑡 𝑢 = 𝑓 𝑡, 𝑢 , 𝑡 > 0 

where 𝐴 𝑡  is a family of closed linear operator 
in H and 𝑓:ℝ × 𝐻 → 𝐻  satisfy suitable 
conditions that ensure periodic solutions of 
period 𝜏. 
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ON TWO MIDPOINT RULE FOR QUASI-NONEXPANSIVE MAPPINGS 

Define a nonexpansive mapping 𝑇:𝐻 → 𝐻 as 
𝑇 𝑣 ≔ 𝑢 𝜏 , 

where u is the solution of the nonlinear 
evolution equation satisfying the initial value 
𝑢 0 = 𝑣. 

Then the periodic solutions are the fixed points 
of T. 

To approximate such solutions we can use each 
of our algorithms. 
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