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Outline of the talk

The purpose of this talk is to present some coupled �xed point
results with applications.
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The concept of b-metric space

De�nition-Bakhtin, Czerwik, ...

Let X be a nonempty set and let s ≥ 1 be a given real number. A
functional d : X × X → R+ is said to be a b-metric (quasi-metric,
almost metric) on X if the following axioms are satis�ed:
1) if x , y ∈ X , then d(x , y) = 0 if and only if x = y ;
2) d(x , y) = d(y , x), for all x , y ∈ X ;
3) d(x , z) ≤ s[d(x , y) + d(y , z)], for all x , y , z ∈ X .

A pair (X , d) with the �rst two properties is called a semi-metric
space, while a pair (X , d) with above three properties is called a
b-metric space.

For the concept of b-metric space see also N. Bourbaki, D. Kurepa,
L.M. Blumenthal, J. Heinonen.

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

The concept of b-metric space

De�nition-Bakhtin, Czerwik, ...

Let X be a nonempty set and let s ≥ 1 be a given real number. A
functional d : X × X → R+ is said to be a b-metric (quasi-metric,
almost metric) on X if the following axioms are satis�ed:
1) if x , y ∈ X , then d(x , y) = 0 if and only if x = y ;
2) d(x , y) = d(y , x), for all x , y ∈ X ;
3) d(x , z) ≤ s[d(x , y) + d(y , z)], for all x , y , z ∈ X .

A pair (X , d) with the �rst two properties is called a semi-metric
space, while a pair (X , d) with above three properties is called a
b-metric space.

For the concept of b-metric space see also N. Bourbaki, D. Kurepa,
L.M. Blumenthal, J. Heinonen.

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

The concept of b-metric space

De�nition-Bakhtin, Czerwik, ...

Let X be a nonempty set and let s ≥ 1 be a given real number. A
functional d : X × X → R+ is said to be a b-metric (quasi-metric,
almost metric) on X if the following axioms are satis�ed:
1) if x , y ∈ X , then d(x , y) = 0 if and only if x = y ;
2) d(x , y) = d(y , x), for all x , y ∈ X ;
3) d(x , z) ≤ s[d(x , y) + d(y , z)], for all x , y , z ∈ X .

A pair (X , d) with the �rst two properties is called a semi-metric
space, while a pair (X , d) with above three properties is called a
b-metric space.

For the concept of b-metric space see also N. Bourbaki, D. Kurepa,
L.M. Blumenthal, J. Heinonen.

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

Examples.

Example

The set lp(R) with 0 < p < 1, where

lp(R) := {(xn) ⊂ R|
∞∑
n=1

|xn|p <∞}, together with the function

d : lp(R)× lp(R)→ R,

d(x , y) := (
∞∑
n=1

|xn − yn|p)1/p,

is a b-metric space with constant s = 21/p > 1.
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Example

For 0 < p < 1, the space Lp[a, b] of all real functions x(t),

t ∈ [a, b] such that
∫ b
a |x(t)|

pdt <∞, together with the function

d(x , y) := (

∫ b

a
|x(t)− y(t)|pdt)1/p, for each x , y ∈ Lp[a, b],

is a b-metric space. Notice that in this case s = 21/p > 1.
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Example

Let E be a Banach space and P a normal cone in E with
int(P) 6= ∅. Denote by "≤" the partially order generated by P .

If X is a nonempty set, then a mapping d : X × X → E is called a
cone metric on X if the usual axioms of the metric take place with
respect to "≤".
The cone P is called normal if there is a number K ≥ 1 such that,
for all x , y ∈ E , the following implication holds:

0 ≤ x ≤ y =⇒ ‖x‖ ≤ K‖y‖.

If the cone P is normal with the coe�cient of normality K ≥ 1,
then the functional

d̂ : X × X → R+, d̂(x , y) := ‖d(x , y)‖

is a b-metric on X with constant s := K .
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Czerwik's �xed point theorem for single-valued

nonlinear contractions

Theorem. (Czerwik (1993), Kirk-Shahzad)

Let (X , d) be a complete b-metric space with constant s ≥ 1 and
f : X → X be an operator, for which there exists a comparison
function ϕ : R+ → R+ (i.e., ϕ is increasing and lim

n→∞
ϕn(t) = 0, for

every t > 0) such that

d(f (x), f (y)) ≤ ϕ(d(x , y)), ∀x , y ∈ X .

Then, f has a unique �xed point x∗ ∈ X and, for all, x ∈ X
lim
n→∞

d(f n(x), x∗) = 0, i.e., f is a Picard operator.

Particular case: ϕ(t) := kt, t ∈ R+ (where k ∈ (0, 1)).

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

Czerwik's �xed point theorem for single-valued

nonlinear contractions

Theorem. (Czerwik (1993), Kirk-Shahzad)

Let (X , d) be a complete b-metric space with constant s ≥ 1 and
f : X → X be an operator, for which there exists a comparison
function ϕ : R+ → R+ (i.e., ϕ is increasing and lim

n→∞
ϕn(t) = 0, for

every t > 0) such that

d(f (x), f (y)) ≤ ϕ(d(x , y)), ∀x , y ∈ X .

Then, f has a unique �xed point x∗ ∈ X and, for all, x ∈ X
lim
n→∞

d(f n(x), x∗) = 0, i.e., f is a Picard operator.

Particular case: ϕ(t) := kt, t ∈ R+ (where k ∈ (0, 1)).

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

Czerwik's �xed point theorem for single-valued

nonlinear contractions

Theorem. (Czerwik (1993), Kirk-Shahzad)

Let (X , d) be a complete b-metric space with constant s ≥ 1 and
f : X → X be an operator, for which there exists a comparison
function ϕ : R+ → R+ (i.e., ϕ is increasing and lim

n→∞
ϕn(t) = 0, for

every t > 0) such that

d(f (x), f (y)) ≤ ϕ(d(x , y)), ∀x , y ∈ X .

Then, f has a unique �xed point x∗ ∈ X and, for all, x ∈ X
lim
n→∞

d(f n(x), x∗) = 0, i.e., f is a Picard operator.

Particular case: ϕ(t) := kt, t ∈ R+ (where k ∈ (0, 1)).

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

Czerwik's �xed point theorem for multi-valued nonlinear
contractions

If (X , d) is a metric space, then we denote

Hd(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Theorem 1. (Czerwik-1998)

Let (X , d) be a complete b-metric space with constant s ≥ 1 and
F : X → Pcp(X ) be a multivalued operator. Suppose that d is
continuous and there exists a comparison function ϕ : R+ → R+

such that

Hd(F (x),F (y)) ≤ ϕ(d(x , y)), ∀x , y ∈ X .

Then, there exists x∗ ∈ X such that x∗ ∈ F (x∗).
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Czerwik's �xed point theorem for multi-valued nonlinear
contractions

Theorem 2. (Czerwik-1998)

Let (X , d) be a complete b-metric space with constant s ≥ 1 and
F : X → Pcl(X ) be such that there exists k ∈ (0, 1s ) such that

Hd(F (x),F (y)) ≤ kd(x , y), ∀x , y ∈ X .

Then, F is a multivalued weakly Picard operator, i.e., there exists
x∗ ∈ X such that x∗ ∈ F (x∗) and, for every (x , y) ∈ Graph(F ),
there is a sequence of successive approximations for F starting from
(x , y) which converges to x∗(x , y) ∈ Fix(F ).
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Ran-Reurings type theorem

Ran-Reurings (2003)

Let X be a nonempty set endowed with a partial order "�" and d
be a complete metric on X .

Let f : X → X be a mapping for which there exists k ∈ [0, 1) such
that

d(f (x), f (y)) ≤ kd(x , y), for all x , y ∈ X with x ≤ y .

If additionally, f is continuous and increasing (or decreasing) and
there exists an element x0 ∈ X such that x0 ≤ f (x0), then f has at
least one �xed point.

If additionally, for every x , y ∈ X there exists z ∈ X which is
comparable to x and y or every pair of elements of X has a lower
bound or an upper bound, then f is a Picard operator.
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Ran-Reurings theorem in b-metric space (I)

Theorem.

Let X be a nonempty set endowed with a partial order "�" and
d : X × X → X be a complete b-metric with constant s ≥ 1. Let
f : X → X be an operator which has closed graph with respect to
d and increasing with respect to "�".

Suppose that there exist a constant k ∈ (0, 1s ) and an element
x0 ∈ X such that:
(i) d(f (x), f (y)) ≤ kd(x , y), for all x , y ∈ X with x ≤ y .
(ii) x0 ≤ f (x0).

Then Fix(f ) 6= ∅ and the sequence (f n(x))n∈N converges to a �xed
point x∗(x) of f , for each x ∈ X which is comparable to x0.
Moreover, if d is continuous, then we also have

d(f n(x), x∗) ≤ skn

1− sk
d(x , f (x)), ∀n ∈ N∗.
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Ran-Reurings theorem in b-metric space (II)

Theorem.

Let X be a nonempty set endowed with a partial order "�" and
d : X × X → X be a complete b-metric with constant s ≥ 1.

Let
f : X → X be an operator which has closed graph with respect to
d and is increasing with respect to "�".
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Coupled �xed point problems

The coupled �xed point problem

If (X , d) is a metric space and T : X × X → X is an operator,
then, by de�nition, a coupled �xed point for T is a pair
(x∗, y∗) ∈ X × X satisfying{

x∗ = T (x∗, y∗)
y∗ = T (y∗, x∗) .

(1)

We will denote by CFix(T ) the coupled �xed point set for T .
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Coupled �xed point theorems

Theorem.

Let (X ,≤) be a partially ordered set and let d : X × X → R+ be a
complete b-metric on X with constant s ≥ 1. Let T : X × X → X
be an operator with closed graph which has the mixed monotone
property on X × X . Assume that the following conditions are
satis�ed:

(i) there exists k ∈ (0, 1s ) such that, ∀x ≤ u, y ≥ v , we have:

d(T (x , y),T (u, v))+d(T (y , x),T (v , u)) ≤ k[d(x , u)+d(y , v)];

(ii) there exist x0, y0 ∈ X such that x0 ≤ T (x0, y0) and
y0 ≥ T (y0, x0).
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Then, the following conclusions hold:
(a) there exists (x∗, y∗) ∈ X × X a solution of the coupled �xed

point problem (7) and the sequences (xn)n∈N, (yn)n∈N in X de�ned
by {

xn+1 = T (xn, yn) := T n(x0, y0)
yn+1 = T (yn, xn) := T n(y0, x0),

(2)

have the property that (xn)n∈N → x∗, (yn)n∈N → y∗ as n→∞.
Moreover, for every pair (x , y) ∈ X × X with x ≤ x0 and y ≥ y0
(or reversely), we have that (T n(x , y))n∈N converges to x∗ and
(T n(y , x))n∈N converges to y∗.

(b) In particular, if the b-metric d is continuous, then:

d(T n(x0, y0), x
∗) + d(T n(y0, x0), y

∗) ≤

skn

1− sk
· [d(x0,T (x0, y0)) + d(y0,T (y0, x0))], for all n ∈ N∗.
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Proof.

We denote Z := X × X and the partially ordering ≤P given by

(x , y) ≤P (u, v)⇔ x ≤ u, y ≥ v .

We also introduce the functional d̃ : Z × Z → R+ de�ned by

d̃((x , y), (u, v)) := d(x , u) + d(y , v).

It is easy to see that d̃ is a b-metric on Z with the same constant
s ≥ 1 and if the space (X , d) is complete, then (Z , d̃) is complete
too.
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We consider now the operator F : Z → Z given by

F (x , y) := (T (x , y),T (y , x)).

As a consequence of our hypotheses and the construction of F , we
have the following properties for F :
1) F : Z → Z has closed graph on Z ;
2) F : Z → Z is increasing on Z with respect to ≤P ;
3) there exists z0 := (x0, y0) ∈ Z such that z0 ≤P F (z0);
4) there exists k ∈ (0, 1s ) such that

d̃(F (z),F (w)) ≤ kd̃(z ,w), for all z ,w ∈ Z with z ≤P w .

Hence we can apply Ran-Reurings Theorem for b-metric spaces.
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Uniqueness of the �xed point

- under some additional assumptions
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Other qualitative properties of the coupled �xed point
problem

If we assume that all the hypotheses of previous Theorem take
place, then the following properties of the solution take place:

• Data dependence

• Well-posedness

• Ulam-Hyers stability

• Ostrovski (Limit shadowing) property
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A more general case

If (X , d), (Y , ρ) are two b-metric spaces and T1 : X × Y → X ,
T2 : X × Y → Y are two single-valued operators, �nd
(x∗, y∗) ∈ X × Y satisfying{

x∗ = T1 (x
∗, y∗)

y∗ = T2 (x
∗, y∗) .

(3)
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The approach

De�nition

Let (X ,≤1) and (Y ,≤2) be a two partially ordered sets and

T1 : X × Y → X and T2 : X × Y → Y be two mappings. We say

that the operators T1 and T2 have the inverse mixed-monotone

property if the following conditions hold:

(i) if x1, x2 ∈ X with x1 ≤1 x2 then

T1(x1, y) ≤1 T1(x2, y)

T2(x1, y) 2 ≥ T2(x2, y)
, ∀ y ∈ Y

(ii) if y1, y2 ∈ Y with y1 2 ≥ y2 then

T1(x , y1) ≤1 T1(x , y2)

T2(x , y1) 2 ≥ T2(x , y2)
, ∀ x ∈ X
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An existence result

Theorem

Let (X ,≤1) and (Y ,≤2) be a two partially ordered sets and
suppose that we have two complete b-metrics d : X × X → R+

and ρ : Y × Y → R+ with the same constant s ≥ 1.

Let T1 : X × Y → X and T2 : X × Y → Y be two operators with
closed graphic which have the inverse mixed-monotone property.

Suppose that there exists a constant k ∈
(
0,

1
s

)
such that for

each (x , y), (u, v) ∈ X × Y with x ≤1 u, y 2 ≥ v we have:

d(T1(x , y),T1(u, v))+ρ(T2(x , y),T2(u, v)) ≤ k[d(x , u)+ρ(y , v)].
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If there exists (x0, y0) ∈ X × Y such that

x0 ≤1 T1(x0, y0), y0 2 ≥ T2(x0, y0)

or
x0 1 ≥ T1(x0, y0), y0 ≤2 T2(x0, y0)

then:

(a) there exists (x∗, y∗) ∈ X × Y such that the sequence (xn)n∈N
in X and (yn)n∈N in Y , de�ned by

xn+1 = T1(xn, yn) and yn+1 = T2(xn, yn) for all n ∈ N,

have the property xn → x∗ and yn → y∗ as n→∞ and{
x∗ = T1(x

∗, y∗)

y∗ = T2(x
∗, y∗)
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Moreover, for any (x , y) ∈ X × Y such that

(x ≤1 x0, y 2 ≥ y0) or (x 1 ≥ x0, y ≤2 y0)

the sequences un+1 = T1(T
n(x , y)) and vn+1 = T2(T

n(x , y))
where

T (x , y) = (T1(x , y),T2(x , y))

converges to x∗ and respectively to y∗.
(b) If, in addition, d and ρ are two continuous b-metrics, then we
have:

d(xn, x
∗)+ρ(yn, y

∗) ≤ skn

1− sk
[d(x0,T1(x0, y0))+ρ(y0,T2(x0, y0))].
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Proof's idea.

Let Z = X × Y and T : Z → Z , T (x , y) = (T1(x , y),T2(x , y)).

Consider on Z the functional

d̃ : Z × Z → R+, d̃((x , y), (u, v)) = d(x , u) + ρ(y , v)

and the partial order relation

(x , y) ≤p (u, v) if and only if x ≤1 u, y 2 ≥ v .

Notice that the operator T : Z → Z has the following properties:
1) T has closed graph on Z ;
2) T is increasing on Z wrt ≤p;
3) there exists z0 = (x0, y0) ∈ Z such that z0 ≤p T (z0);

4) there is k ∈
(
0,

1
s

)
such that

d̃(T (z),T (w)) ≤ kd̃(z ,w) for all z ,w ∈ Z with z ≤p w .
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Then, by Ran-Reurins Theorem in b-metric space, we get that T
has at least one �xed point z∗ = (x∗, y∗) ∈ Z and, for any z ∈ Z
which is comparable with z0, the sequence of successive
approximation for T starting from z converges to z∗ = (x∗, y∗).

Remark. If, in addition to the hypotheses of above Theorem, we
suppose that every pair of elements X × Y has a lower bound or an
upper bound with respect to ≤p,

then the system of equations

x = T1(x , y), y = T2(x , y) has a unique solution.
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A global version of the previous theorem

Let (X , d) and (Y , ρ) be two complete b-metric spaces with
constant s ≥ 1. Let T1 : X × Y → X and T2 : X × Y → Y be two
operators with closed graph. Suppose there is k ∈ (0, 1) such that

d(T1(x , y),T1(u, v)) + ρ(T2(x , y),T2(u, v))

≤ k[d(x , u) + ρ(y , v)], ∀ (x , y), (u, v) ∈ X × Y .

Then, there exists a unique (x∗, y∗) ∈ X × Y with

x∗ = T1(x
∗, y∗), y∗ = T2(x

∗, y∗)

such that the sequences (xn)n∈N in X and (yn)n∈N in Y de�ned by

xn+1 = T1(xn, yn) and yn+1 = T2(xn, yn) for all n ∈ N,

have the property xn → x∗ and yn → y∗ as n→∞.
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An application

We will consider, for a given continuous function
f : [a, b]× R2 → R, the following system:

−x ′′(t) = f (t, x(t), y ′(t))
−y ′′(t) = f (s, y(t), x ′(t)),

x(a) = x(b) = y(a) = y(b) = 0.
(4)

This problem is equivalent to
x(t) =

b∫
a
G (t, s)f (s, x(s), y ′(s))ds

y(t) =
b∫
a
G (t, s)f (s, y(s), x ′(s))ds,

where G (t, s) :=

{
(s−a)(b−t)

b−a , if s ≤ t
(t−a)(b−s)

b−a , if s ≥ t.
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Application (II)

We denote X := {x ∈ C 1[a, b] : x(a) = x(b) = 0} and we consider
on X the following norms

‖x‖C := max
t∈[a,b]

|x(t)| and ‖x‖S := max
t∈[a,b]

|x ′(t)|.

Then, both of them are Banach spaces.
Denote

T : X × X → X , by T (x , y)(t) :=

b∫
a

G (t, s)f (s, x(s), y ′(s))ds.

Then T is well de�ned and our problem can be re-written as follows{
x = T (x , y)

y = T (y , x)
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Application (III)

Let us suppose that there exist α, β > 0 such that, for each
u1, v1, u2, v2 ∈ R and for all s ∈ [a, b], we have

|f (s, u1, v1)− f (s, u2, v2)| ≤ α |u1 − u2|+ β |v1 − v2| . (5)

Moreover assume that

max{α
(
(b − a)2

8
+

b − a

2

)
, β

(
(b − a)2

8
+

b − a

2

)
} < 1. (6)

Then, we obtain:

‖T (x1, y1)− T (x2, y2)‖C + ‖T (x1, y1)− T (x2, y2)‖S ≤

max{α
(
(b − a)2

8
+

b − a

2

)
, β

(
(b − a)2

8
+

b − a

2

)
}·

(‖x1 − x2‖C + ‖y1 − y2‖S) .
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An existence, uniqueness and approximation theorem

Let us consider the problem (4), where f : [a, b]× R× R→ R is a
continuous mapping. Assume that that the above conditions (5)
and (6) hold. Then, problem (4) has a unique solution
(x∗, y∗) ∈ C 2[a, b]× C 2[a, b] and the sequences (xn)n∈N, (yn)n∈N
given, for n ∈ N∗, by

xn+1(t) :=

b∫
a

G (t, s)f (s, xn(s), y
′
n(s))ds,

and

yn+1(t) :=

b∫
a

G (t, s)f (s, yn(s), x
′
n(s))ds,

converges to x∗ and respectively to y∗ as n→∞, for any arbitrary
elements x0, y0 ∈ C 1[a, b].

Adrian Petru³el (joint work with G. Petru³el, J.-C. Yao) Coupled �xed point problems and applications



Fixed point theorems in b-metric spaces
Coupled �xed point theorems

Applications and research directions

The coupled �xed point problem in the multivalued case

Let (X , d) be a metric space and P(X ) be the family of all
nonempty subsets of X .
If G : X × X → P(X ) is a multi-valued operator, then, by
de�nition, a coupled �xed point for G is a pair (x∗, y∗) ∈ X × X
satisfying {

x∗ ∈ G (x∗, y∗)
y∗ ∈ G (y∗, x∗) .

(7)
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