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    Introduction 
 Among the numerous steps of gene expression, formation, and 

maturation of messenger RNP particles (mRNPs) are crucial 

steps before transcripts can be exported from the nucleus and 

translated in the cytoplasm. Studies over the past years have re-

vealed that these various steps, including gene activation, tran-

scription, 5 �  capping, 3 �  end processing and polyadenylation, 

splicing, mRNA surveillance/quality control, and export of mRNPs 

are tightly coupled (for reviews see  Reed and Cheng, 2005 ; 

 Sommer and Nehrbass, 2005 ). 

 In the yeast  Saccharomyces cerevisiae , the THO – tran-

scription export (TREX) complex and the Sac3 – Thp1 – Sus1 –

 Cdc31 (TREX-2) complex are involved in transcription-coupled 

mRNA export (for reviews see  Reed and Cheng, 2005 ;  K ö hler 

and Hurt, 2007 ). The THO – TREX complex is thought to be 

recruited to the elongating RNA polymerase II complex via the 

THO subunits (Hpr1, Tho2, Mft1, and Thp2), which preferen-

tially function in transcription and packaging of nascent mRNA, 

whereas the other TREX factors Sub2 and Yra1 are involved in 

recruiting the Mex67-Mtr2 export receptor to the mRNP, thereby 

coupling mRNP biogenesis with mRNA export (for reviews see 

 Reed and Cheng, 2005 ;  K ö hler and Hurt, 2007 ). The TREX-2 

complex potentially coordinates Spt/Ada/Gcn5 acetyltransferase 

(SAGA) – mediated transcription of certain genes at the inner 

nuclear side of the nuclear pore complex (NPC;  Rodr í guez-

Navarro et al., 2004 ). A key factor of TREX-2 is the Sac3 sub-

unit, a multidomain protein that binds the remaining complex 

members. Sac3 associates with Thp1, which was initially found 

to be involved in transcription elongation ( Gallardo and Aguilera, 

2001 ), and with Sus1 and Cdc31 via its CID (Cdc31-interacting 

domain) motif ( Fischer et al., 2004 ). Moreover, Sac3 can also 

directly bind to the export receptor Mex67-Mtr2 ( Fischer et al., 
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nner nuclear membrane proteins containing a LEM 

(LAP2, emerin, and MAN1) domain participate in dif-

ferent processes, including chromatin organization, gene 

expression, and nuclear envelope biogenesis. In this study, 

we identify a robust genetic interaction between transcrip-

tion export (TREX) factors and yeast Src1, an integral in-

ner nuclear membrane protein that is homologous to 

vertebrate LEM2. DNA macroarray analysis revealed that 

the expression of the phosphate-regulated genes  PHO11 , 

 PHO12 , and  PHO84  is up-regulated in  src1 Δ   cells. Nota-

bly, these  PHO  genes are located in subtelomeric regions 

of chromatin and exhibit a perinuclear location in vivo. 

Src1 spans the nuclear membrane twice and exposes its 

N and C domains with putative DNA-binding motifs to the 

nucleoplasm. Genome-wide chromatin immunoprecipita-

tion – on-chip analyses indicated that Src1 is highly en-

riched at telomeres and subtelomeric regions of the yeast 

chromosomes. Our data show that the inner nuclear mem-

brane protein Src1 functions at the interface between sub-

telomeric gene expression and TREX-dependent messenger 

RNA export through the nuclear pore complexes.

 The inner nuclear membrane protein Src1 associates 
with subtelomeric genes and alters their regulated 
gene expression 
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that Src1 functions at the interface between chromatin organiza-

tion of subtelomeric genes at the inner nuclear membrane and 

TREX-dependent mRNA export. 

 Results 
 TREX factors interact genetically 
with  SRC1  
 To unravel the genetic network in which TREX factors carry out 

their function in vivo, we performed synthetic lethal screens with 

the mutant strains  hpr1  �  (a THO – TREX factor), which is thermo-

sensitive for growth at 37 ° C, and  thp1  �  (a TREX-2 factor). 

Each screen yielded a synthetic lethal mutant that was comple-

mented by  SRC1  (unpublished data). DNA sequencing of the 

 SRC1  allele recovered from the  thp1  Δ  synthetic lethal mutant 

indeed revealed that Src1 was inactivated in the synthetic lethal 

strain by a premature stop codon at amino acid 455 (unpublished 

data).  SRC1  was previously identifi ed as an intron-containing gene 

involved in sister chromatid segregation ( Rodr í guez-Navarro 

et al., 2002 ). In another study, Src1/Heh1 was shown to be located 

at the inner side of the nuclear membrane ( King et al., 2006 ). 

To directly verify the identifi ed genetic interactions, we com-

bined the nonessential  src1  �  (null) allele with the nonessential 

 thp1  �  or  hpr1  �  disruption alleles. This analysis confi rmed that 

the generated double mutants,  src1  �  thp1  �  and  src1  �  hpr1  � , were 

not viable (i.e., synthetic lethal;  Fig. 1 ). 

 To gain further insight in the genetic network in which 

 SRC1  is active, we tested additional factors with known roles 

in transcription-coupled mRNA export for a functional overlap 

with  SRC1 . This analysis indicated that  SRC1  is genetically 

linked to another TREX-2 factor  SAC3  ( Fig. 1 ) but not to  SUS1  

or  CDC31  ( Fig. 1  and not depicted). This correlates with the 

fact that  src1  �  is not synthetic lethal with  sac3  � CID, where 

the binding site for Sus1 and Cdc31 is deleted ( Fig. 1 ). Un-

expectedly, the other THO – TREX mutants  tho2  � ,  mft1  � , and 

 thp2  �  were not found to be genetically linked to  src1  �  ( Fig. 1  

and not depicted). Moreover, factors acting more downstream 

in transcription-coupled mRNA export (e.g., mutants of  YRA1  

or  MEX67)  and  mlp1  �  mlp2  �  were not synthetic lethal with 

 src1  �  (unpublished data). In contrast, a synthetically enhanced 

growth inhibition was observed between  src1  �  and the  sub2-
85  allele ( Fig. 1 ). Collectively, these genetic studies indicated 

that  SRC1  is functionally linked to factors of the THO – TREX 

and TREX-2 complex, and thus, Src1 might functionally over-

lap with an upstream step in the formation of an export-compe-

tent mRNP. 

 Two forms of Src1 protein generated by 
alternative splicing are functionally not 
equivalent 
 To study the in vivo role of Src1 with respect to its genetic link-

age to TREX factors, we sought to tag chromosomal  SRC1  at the 

C terminus with the tandem affi nity purifi cation (TAP) and GFP 

tag to perform affi nity purifi cation and subcellular location experi-

ments, respectively. However, C-terminal tagging was not straight 

forward because  SRC1  contains an intron that can be alterna-

tively spliced ( Davis et al., 2000 ;  Rodr í guez-Navarro et al., 2002 ). 

2002 ;  Lei et al., 2003 ). In vivo, the TREX-2 complex is pre-

dominantly located at the NPC, which requires the nuclear basket 

nucleoporin Nup1 ( Fischer et al., 2002 ). Notably, the TREX-2 

factor Sus1 is also a component of the chromatin-bound 

SAGA complex involved in transcription initiation of a subset 

of genes ( Rodr í guez-Navarro et al., 2004 ) and part of a SAGA 

module, which is involved in deubiquitination of H2B ( K ö hler 

et al., 2006 ). Thus, Sus1 could be a bridging factor between 

the SAGA transcription machinery and the NPC-associated 

TREX-2 complex. 

 Historically, the nuclear periphery was known as a zone 

that harbors silenced regions of the genome and thus was be-

lieved to be an area of transcription repression. However, re-

cent studies have revealed that genes can be recruited to the 

nuclear periphery upon their transcriptional activation (for re-

views see  Akhtar and Gasser, 2007 ;  K ö hler and Hurt, 2007 ). 

Thus, activating and repressing chromatin environments co-

exist but appear to be spatially partitioned. Whereas the hetero-

chromatin, like telomeres and the mating-type locus, line the 

nuclear envelope, the active chromatin domains are in the vi-

cinity of the NPCs ( Taddei et al., 2004 ; for review see  Akhtar 

and Gasser, 2007 ). 

 Gene recruitment to the nuclear periphery involves com-

ponents of the nuclear basket and associated factors implicated 

in transcription and mRNA export, including SAGA and TREX-2 

factors as well as Mex67. Regarding the mechanism, gene gat-

ing requires the nascent transcript or posttranscriptional events. 

However, other studies suggest that gene gating can also be in-

dependent of transcription and is then mediated by direct inter-

action of the gene with components of the nuclear periphery 

(for reviews see  Akhtar and Gasser, 2007 ;  K ö hler and Hurt, 2007 ). 

In general, gene recruitment to the periphery could allow access 

to a favorable environment, including chromatin remodeling, 

transcription, and export machineries, thereby optimizing gene 

expression and mRNA export (for reviews see  Akhtar and Gasser, 

2007 ;  K ö hler and Hurt, 2007 ). 

 In this study, we found Src1 (also called Heh1;  King et al., 

2006 ) in genetic screens using mutants of the THO – TREX and 

TREX-2 complexes. Src1 exhibits a domain organization simi-

lar to higher eukaryotic LEM2 and MAN1, which are integral 

inner nuclear membrane proteins that consist of an N-terminal 

LEM domain, two transmembrane-spanning sequences, and 

a Man1-Src1 C-terminal (MSC) domain ( Mans et al., 2004 ; 

 Brachner et al., 2005 ). LEM proteins (named after LAP2, 

emerin, and MAN1) can interact with the nuclear lamina and/or 

chromatin-binding factors, thereby providing anchoring sites 

for chromatin at the nuclear periphery and modulating higher 

order chromatin structure (for reviews see  Gruenbaum et al., 

2005 ;  Wagner and Krohne, 2007 ). Our analyses further revealed 

that Src1 is an integral membrane protein that spans the inner 

nuclear membrane twice, thereby exposing the putative DNA-

binding N and C domains to the nucleoplasm. As shown by 

chromatin immunoprecipitation (ChIP) – on-chip analysis, Src1 

is associated with subtelomeric regions that are located at the 

nuclear periphery. Moreover, the regulation of expression of 

genes located in the subtelomeric regions (e.g.,  PHO11 ,  PHO12 , 

and  PHO84 ) is altered in cells lacking Src1. These data suggest 
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cal functions, as the long form of Src1 complements the syn-

thetic lethal phenotype of THO – TREX and TREX-2 mutants 

signifi cantly better than the short form ( Fig. 2 C ). 

 To fi nd out whether both Src1s have a similar subcellular 

location, we performed fl uorescence microscopy. Both Src1-L 

and Src1-S tagged at the N terminus with GFP exhibited a dis-

tinct concentration at the nuclear envelope with no apparent 

staining of other cellular membranes (Fig. S1, left, available 

at http://www.jcb.org/cgi/content/full/jcb.200803098/DC1). 

Moreover, Src1-L and Src1-S did not cluster with NPCs in the 

NPC-clustering  nup133  �  mutant (Fig. S1, right). Thus, Src1-L 

and Src1-S are located at the inner nuclear membrane and ap-

pear not to have stable physical contact to the NPCs, although a 

transient interaction cannot be excluded. 

Specifi cally, the  SRC1  intron has two alternative 5 �  splice sites, 

which could potentially encode two different Src1 proteins: a 

long form with 834 (Src1-L) and a shorter form with 687 amino 

acids (Src1-S). Importantly, Src1-L and Src1-S would differ 

in their amino acid sequences at the C-terminal end because 

the alternative 5 �  splice sites shift the reading frame in the 

3 �  exon ( Fig. 2 A ). 

 To demonstrate that both Src1 splice variants are produced 

in vivo, we inserted the TAP tag at the two alternative stop co-

dons by homologous recombination ( Fig. 2 A ). Both Src1-L and 

Src1-S were detected in about equimolar amounts in whole cell 

lysates ( Fig. 2 B ). Moreover, N-terminal TAP tagging of Src1 

showed that both Src1 splice forms were coexpressed in similar 

ratios ( Fig. 2 B ). Notably, Src1-L and Src1-S do not have identi-

 Figure 1.    Genetic interaction of  SRC1  with THO – TREX and TREX-2 members.  (A) The double-disrupted strains were transformed with the respective plasmid-
borne wt or mutant genes. Growth was analyzed by spotting transformants in 10-fold serial dilutions on 5-FOA – containing plates at the indicated 
temperature for 5 d or on synthetic dextrose complete – Leu-Trp for 3 d ( src1  �  sub-85 ,  src1 Δ tho2 Δ  ,   and  src1 Δ sus1 Δ  ). No growth indicates synthetic lethality. 
(B) Schematic representation of the genetic network between  SRC1  and factors involved in transcription-coupled mRNA export. Arrows to gray components 
indicate synthetic lethality/enhancement, and proteins depicted in white are genetically not linked to  SRC1 .   
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 Figure 2.    Alternative splicing of  SRC1  results in two different spliced protein forms.  (A) Schematic overview of pre-mRNA, mRNA, and protein products upon 
alternative splicing. Either a 126- or a 130-nt intron can be excised by using two alternative 5 �  splice sites. In the latter case, a frame shift results in an earlier 
stop codon and, therefore, in a shorter protein with a different amino acid sequence at the C terminus compared with Src1-L. Conserved domains (HEH/LEM 
and MSC) and transmembrane domains (M) are indicated. Numbers represent amino acid residues. (B) Whole cell lysates of N- (TAP-Src1) and C-terminal 
TAP-tagged Src1-L or Src1-S were analyzed by SDS-PAGE followed by Western blotting using anti-ProtA antibodies. (C) Genetic relationship of  SRC1  splice 
variants with TREX – THO and TREX-2 components. The double-disruption strains were transformed with empty vector, GFP-Src1 splice variants, and the respec-
tive TREX component. Transformants were spotted in 10-fold serial dilutions on 5-FOA – containing plates for 5 d at the indicated temperatures.   

 Src1-L and Src1-S are integral inner 
nuclear membrane proteins with 
different topology 
 Biocomputational analysis suggested that Src1-L could be a mem-

brane protein with two membrane-spanning sequences, but only 

the fi rst transmembrane span has a strong prediction ( Fig. 3 A ). 

To experimentally verify that Src1-L is an integral membrane pro-

tein, whole cell lysates containing Src1-TAP were extracted under 

different conditions, and the partitioning of Src1-TAP into soluble 

and insoluble (membrane) fractions was tested and compared with 



901S RC 1 REGULATES SUBTELOMERIC GENE EXPRESSION  • Grund et al. 

Src1-L and Src1-S within the inner nuclear membrane. Src1 

was genomically TAP tagged at the N terminus (protein A [ProtA] –

 tobacco etch virus [TEV] – calmodulin-binding peptide – Src1) 

or C terminus (Src1 – calmodulin-binding peptide – TEV-ProtA). 

The accessible TEV cleavage site in these constructs could be 

exploited to test whether it is cleaved by an inducible TEV pro-

tease carrying an NLS and a myc tag. We anticipated that the 

TEV protease should remove the ProtA moiety only from those 

Src1 constructs in which the epitope is exposed to the nucleo-

plasm but not when hidden in the perinuclear space ( Fig. 4 B , 

left). When cells were grown in glucose (no TEV expression), all 

Src1 constructs retained the ProtA epitope, as shown by Western 

blotting with anti-ProtA antibodies ( Fig. 4 B , lanes 1, 3, and 5). 

the behavior of a peripheral membrane protein (Nsp1) and an inte-

gral membrane protein (vacuolar Vam3). Whereas high salt (1 M 

NaCl) or pH 11.5 treatment did not release Src1-L and Src1-S, de-

tergent (Triton X-100) effi ciently solubilized both Src1-TAP splice 

variants, as with Vam3 ( Fig. 3 B ). Thus, the biochemical behavior 

of Src1 is typical of an integral membrane protein. 

 Because the putative transmembrane span M2 (residues 

708 – 725) of Src1 has a lower hydrophobicity than transmem-

brane span M1 (residues 450 – 474) and M2 is absent from the 

Src1-S form because of alternative splicing ( Fig. 3 A ), we wanted 

to analyze the topology of both Src1 forms within the inner nu-

clear membrane in living cells (see models in  Fig. 4 A ). Thus, 

we developed a novel in vivo assay to probe for the topology of 

 Figure 3.    Src1-L and Src1-S are integral membrane proteins.  (A) Kyte-Doolittle hydropathy analysis (with a 19 – amino acid window size;  Kyte and Doolit-
tle, 1982 ) revealed two putative hydrophobic transmembrane-spanning regions (M1 and M2) for Src1-L but only one region with signifi cant transmembrane 
potential for Src1-S. The hydrophobicity scores are plotted against the window number. (B) Crude membrane fractions from cells expressing Src1-L – TAP or 
Src1-S – TAP were extracted using four different conditions: 150 mM NaCl, 1 M NaCl, 1% Triton X-100, or pH 11.5. Equivalent amounts of fractions from 
lysate (L), membrane (P1), soluble (S1), and, after ultracentrifugation, insoluble pellet (P) and supernatant (S) were analyzed by SDS-PAGE followed by 
Western blotting with antibodies against ProtA, Vam3, and Nsp1. Western blotting against Vam3 and Nsp1 is only shown for Src1-S – TAP (top). Extraction 
profi le of  src1  �  cells harboring intron-containing constructs of ProtA-Src1 full length and deletion of the fi rst (Src1 � M1) or second (Src1 � M2) hydrophobic 
stretch. Western blots were probed with an anti-ProtA antibody (bottom).   
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 Role of the various Src1 domains for 
membrane insertion and nuclear envelope 
targeting 
 To determine the contribution of the transmembrane spans M1 

and M2 for membrane insertion of Src1, mutants lacking M1 or 

M2 were expressed in the  src1  �  mutant and subsequently ana-

lyzed in vitro and in vivo. Biochemical studies revealed that 

Src1 � M2 behaved like an integral membrane protein, whereas 

Src1 � M1 was no longer inserted into the membrane and be-

came soluble ( Fig. 3 B ). Thus, M1 is necessary and suffi cient 

for membrane insertion of Src1. However, M2 alone could not 

confer a stable membrane insertion and only integrated into the 

nuclear membrane in the context of full-length Src1 ( Fig. 4 B ). 

When cells were shifted to galactose to induce the TEV prote-

ase, both short and long N-terminally tagged Src1 as well as 

C-terminally tagged Src1-L lost their ProtA tags, suggesting 

that the N terminus of Src1-L and Src1-S and the C terminus of 

Src1-L are facing the nucleoplasm ( Fig. 4 B , lanes 2 and 4). 

However, the TEV protease could not remove the ProtA epitope 

from the C-terminally tagged Src1-S ( Fig. 4 B , lane 6). Al-

together, these data suggest that Src1-L spans the inner nuclear 

membrane twice with the N and C domain exposed to the nu-

cleoplasm ( Fig. 4 A , boxed in red). In contrast, Src1-S spans the 

membrane once with the N domain located in the nucleoplasm 

and a short C-terminal domain hidden in the perinuclear space 

( Fig. 4 A , boxed in red). 

 Figure 4.    Src1-L is a double-pass integral membrane protein, and Src1-S is a single-pass integral membrane protein.  (A) The six possible topological 
orientations for Src1-L and the two for Src1-S are shown. N, N terminus; C, C terminus; INM, inner nuclear membrane; ONM, outer nuclear membrane. 
Experimentally determined topologies are boxed in red. (B) Schematic illustration of the TEV-based method to determine the topology of Src1 membrane 
insertion (left). Under inducing conditions, the TEV protease is expressed and cleaves at TEV cleavage sites when accessible at the nuclear side. TEV-CS, 
TEV cleavage site. Cells expressing N- (TAP-Src1) or C-terminal TAP-tagged Src1 (Src1-L – TAP and Src1-S – TAP) or  src1  �  cells containing C-terminal TAP-
tagged Src1-L –  � M2 were grown either under noninducing ( � ) or inducing (+) conditions (right). Whole cell extracts were analyzed by Western blotting 
using anti-ProtA, anti-myc (TEV protease), and anti-Arc1 antibodies (loading control).   
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 Figure 5.    Src1 domain analysis.  (A) Schematic representation of Src1 deletion constructs. (B) Fluorescence microscopy of  src1  �  cells harboring the indi-
cated GFP-tagged Src1 full-length and truncation constructs. (C) The double-disruption strain  src1  �  thp1  �  carrying plasmid-borne  THP1  was transformed 
with the indicated constructs, and cells were spotted in 10-fold serial dilutions on 5-FOA – containing plates and incubated for 5 d at 30 ° C. Only cDNA-
based constructs of Src1-L are shown.   
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Thus, the fi rst transmembrane domain in Src1 is necessary for 

membrane insertion, whereas the second membrane span alone 

cannot confer integral insertion into the membrane but develops 

insertion activity when M1 is present. 

 To study the role of the transmembrane sequences M1 and 

M2 and of other domains for nuclear envelope targeting of Src1 

in vivo, GFP-tagged Src1 mutant constructs ( Fig. 5 A ) were ana-

lyzed for their subcellular location by fl uorescence microscopy 

( Fig. 5 B ). This analysis showed that GFP-Src1 � M2 was still 

located at the nuclear envelope, in contrast to GFP-Src1 � M1, 

which was detached from the nuclear periphery and mislocalized 

to the nucleoplasm. 

 Consistent with these fi ndings, the N-terminal domain of 

Src1 devoid of any membrane span showed a strong nuclear ac-

cumulation. The reciprocal construct, GFP-Src1 � N, was still 

targeted to the nuclear envelope, albeit with lower effi ciency, and 

was partly found to be associated with other membranes (corti-

cal ER or plasma membrane). Deletion of only the N-terminal 

 Figure 6.    Analysis of gene expression in the  src1  �  mutant.  (A and B) Relative increases ( src1 /wt, when  src1   >  wt) or decreases (wt/ src1 , when  src1   <  wt) 
of gene expression were plotted versus their distance to the closest telomere (A) or centromere (B). A sliding window of 100 genes was used. The average 
of the 100 genes was used for the y axis, and the distance of the central gene in the window was used for the x axis. The bottom panel of A is an expanded 
view of the top graph showing the  � 27-kb region close to the telomeres, which exhibits a misregulation in the  src1  deletion strain. (C) Expression levels of 
 PHO  mRNAs in wt and  src1  Δ  cells. Total RNA of wt and  src1  Δ  cells grown in HP and LP was prepared, and cDNA was analyzed by quantitative RT-PCR 
using specifi c primers for  PHO11 ,  PHO12 , and  PHO84 . Each gene was assayed in triplicates. The mRNA levels of wt HP expression are set as one. 
One representative dataset of fi ve times independently isolated RNA is shown. Error bars represent SD.   
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oligo(dT) nucleotide probes did not reveal a nuclear mRNA ex-

port defect in  src1  �  cells (unpublished data), consistent with 

the fi nding that Src1 is not genetically linked to mRNA export 

factors such as Mex67 (see the fi rst Results section). To investi-

gate whether Src1 plays a role in transcription, we analyzed the 

expression profi le of the  � 6,000 yeast genes in the  src1 Δ   strain 

using DNA macroarrays. This genome-wide analysis indicated 

that only a small number of genes ( � 60) is affected in the  src1  �  

mutant (increased or decreased expression), which also included 

genes that have a subtelomeric location (Table S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200803098/DC1; and 

Gene Expression Omnibus database). To analyze whether sub-

telomeric genes have a higher probability to be affected in their 

expression than other genes when  SRC1  is deleted, the relative 

increases ( src1 /wild type [wt] when  src1   >  wt) or decreases 

(wt/ src1  when  src1   <  wt) of gene expression were plotted ver-

sus their distance to the closest telomere or centromere using a 

sliding window of 100 genes. This analysis suggested a statisti-

cally signifi cant misregulation of subtelomeric genes in  src1  �  

cells (subtelomeric regions are defi ned to be within  � 25 kb 

from each telomere;  Fig. 6 A ;  Louis, 1995 ). This effect is spe-

cifi c to telomeres because it does not occur (e.g., in regions close 

to the centromeres;  Fig. 6 B ). In particular, several  PHO  genes 

( PHO84 ,  PHO11 ,  PHO12 , and, to a lesser extent, also  PHO4 ) 

were markedly up-regulated in cells devoid of Src1 (Table S1). 

Quantitative real-time PCR independently showed that  PHO84, 
PHO11 , and  PHO12  transcript levels increased approximately 

fi vefold in  src1  �  cells when grown in high phosphate (HP) me-

dium. However, further up-regulation of these  PHO  genes was 

no longer observed in  src1  �  cells when shifted from high to low 

LEM domain ( � LEM) did not affect the nuclear envelope loca-

tion of Src1. Notably, the Src1 � N � M1 construct was also located 

in the nucleoplasm with occasional perinuclear spots. Altogether, 

the data suggest that the N domain and, to a lesser extent, also the 

C domain of Src1-L contribute to nuclear targeting, whereas the 

fi rst transmembrane domain is necessary and suffi cient to insert 

Src1 into the inner nuclear envelope. 

 To assess which Src1domains are functionally important, 

we tested the ability of the different truncated Src1 forms to 

complement the synthetic lethal phenotype of the  src1  �  thp1  �  

double mutant ( Fig. 5 C ). None of the constructs, which lacked 

either M1 or M2, complemented the  src1  �  thp1  �  strain. Thus, 

although Src1 � M2 apparently is targeted to and inserted into 

the nuclear membrane, it is not functional in our complementa-

tion assay. Notably, the C-terminal domain of Src1-L is exposed 

to the nucleoplasm (see previous section), but in the Src1 � M2 

strain it is hidden in the lumen of the perinuclear space ( Fig. 4 B ). 

Thus, the C-terminal domain of Src1 performs a crucial role with 

respect to the Thp1 function and has to be both targeted to the 

membrane and exposed to the nucleoplasm. In contrast, Src1 

devoid of the LEM domain or the entire N terminus is able to 

signifi cantly complement the  src1  �  thp1  �  strain and thus may 

perform additional functions. 

 Src1 is involved in expression of 
subtelomeric  PHO  genes that exhibit a 
perinuclear location 
 As Src1 was found in this study to be linked to TREX factors, 

we determined whether Src1 participates in transcription and/or 

mRNA export. In situ hybridization using fl uorescently labeled 

 Figure 7.    In vivo localization of  PHO  gene loci.  3D localization of TetO/TetR-GFP – labeled  PHO11 ,  PHO12 ,  PHO84 , and  GIS1  loci in wt or  src1  Δ  cells 
expressing GFP-Nup49 was determined after microscopy acquisition in vivo (see Materials and methods). For each strain, positions of the loci obtained 
from N nuclei are plotted in radial projection on the same graph (as previously described in  Cabal et al., 2006 ). Hot colors indicate high density of 
loci, and cold colors indicate low density (the color scale is indicated on the bottom right). Average outlines of the nuclear envelope (orange circles) are 
also shown.   
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or  – Src1-S could be signifi cantly enriched using a protocol for 

isolation of membrane proteins, coenrichment of stoichiometri-

cally interacting proteins was not observed (Fig. S2, available at 

http://www.jcb.org/cgi/content/full/jcb.200803098/DC1). 

 Next, we tested whether ProtA-Src1 is associated with 

chromatin. We performed genome-wide ChIP-on-chip analyses 

to determine the chromosomal distribution profi le of Src1-L. 

Overall, three independent ChIP-on-chip experiments were per-

formed with ProtA-Src1, and the data were highly similar. As 

shown in  Fig. 8  and Fig. S3 (available at http://www.jcb.org/cgi/

content/full/jcb.200803098/DC1) for one set of these experi-

ments, a signifi cant enrichment of Src1 at subtelomeric regions 

of all 16 yeast chromosomes was observed (note that the genomic 

chips used in this study did not contain the repetitive telomeric 

DNA). Moreover, Src1 localizes also to other heterochromatin-

like regions such as the ribosomal DNA (rDNA) locus, the 

mating-type loci (within subtelomeric regions of chromosome III), 

and, albeit only to a minor degree, to centromeric regions ( Fig. 8 ). 

Most of the other locations to which Src1 maps to a minor ex-

tent are likely to be unspecifi c, as those loci are also enriched in 

the ProtA control. Altogether, these data indicate that Src1 is pref-

erentially associated with subtelomeric chromatin, and this in-

teraction can affect expression of subtelomeric-located genes. 

 To test whether Src1 plays a role in gene silencing, we 

monitored the expression of a silenced  URA3  reporter inserted 

into the telomeric region of chromosome 7 in the presence and 

absence of  SRC1 . Deletion of  SRC1  did not affect telomeric si-

lencing as revealed by a normal growth of cells on 5-fl uoro-

orotic acid (5-FOA) – containing plates in comparison with a wt 

strain. In contrast, when  yku70  �  cells known to have a telo-

meric silencing defect ( Laroche et al., 1998 ) were plated on 

5-FOA, a signifi cant growth inhibition was observed. Moreover, 

the combination of  src1  �  and  yku70  �  in haploid cells caused a 

phosphate (LP) medium ( Fig. 6 C ). In contrast,  PHO84 ,  PHO11 , 

and  PHO12  transcript levels were low in wt cells when grown 

in HP medium but could be signifi cantly up-regulated upon trans-

fer to LP medium ( Fig. 6 ; for review see  Oshima, 1997 ). Alto-

gether, these analyses indicated that deletion of  SRC1  leads to a 

disturbed regulation of gene expression of a group of  PHO  genes, 

which encode a phosphate transporter in the plasma membrane 

and secreted acid phosphatases. 

 Notably, the  PHO84 ,  PHO11 , and  PHO12  genes that ex-

hibit altered gene expression in the  src1  �  strain are all located in 

subtelomeric regions of the chromosomes (Table S1). It is well 

known that telomeres are preferentially located at the nuclear peri-

phery in yeast ( Klein et al., 1992 ); thus, we wanted to localize the 

subtelomeric  PHO84 ,  PHO11 , and  PHO12  gene loci with regard 

to the nuclear envelope in live cells. As a control, a randomly 

 selected region that was not proximal to telomeres but was close 

to the interchromosomal  GIS1  locus was investigated. Thus, TetO 

repeats were inserted close to the  PHO11 ,  PHO12 ,  PHO84 , or 

 GIS1  chromosome loci, and TetR-GFP was expressed to visual-

ize the TetO-labeled genes. This analysis showed that all of the 

three gene loci,  PHO11 ,  PHO12 , or  PHO84,  are positioned at the 

nuclear periphery, whereas  GIS1  is distributed predominantly in 

the nucleoplasm ( Fig. 7 ). However, the observed nuclear enve-

lope tethering of the  PHO  genes did not require Src1, as the peri-

nuclear location of these gene loci was not altered in  src1  Δ  cells 

( Fig. 7 ). Collectively, the data showed that Src1 is involved in 

gene expression of a class of  PHO  genes that are located in sub-

telomeric regions and in vivo exhibit a perinuclear location. 

 Src1 is associated with subtelomeric 
chromatin 
 To identify molecules, which potentially link Src1 to chromatin, 

we sought to affi nity purify ProtA-Src1. Although ProtA – Src1-L 

 Figure 8.    Genome-wide distribution maps of Src1.  ChIP-on-chip analyses were performed to identify the global targets of Src1-L across the  S. cerevisiae  
genome. Relative enrichments of ProtA-Src1 or ProtA as a control are plotted in alignment with the map of each chromosome. For simplicity, only four 
representative chromosomes are shown. Localization of  PHO11  and  PHO12 , the rDNA locus, and the two mating-type loci is shown. cen, centromere; 
HML/HMR, mating-type loci; tel, telomere.   
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chromatin-associated barrier to autointegration factor (for review 

see  Wagner and Krohne, 2007 ). However, a homologue of barrier 

to autointegration factor does not exist in yeast, and we were un-

able to fi nd stoichiometric protein interaction partners of Src1. 

 Telomeres are anchored to the nuclear periphery in yeast 

by redundant mechanisms involving the heterodimeric yKu 

complex and Sir4, which associates with the membrane-associ-

ated Esc1 ( Hediger et al., 2002 ;  Taddei et al., 2004 ). Moreover, 

the SUN domain protein Mps3 assists in Sir4-dependent telo-

mere tethering and silencing ( Bupp et al., 2007 ). Whether Src1 

functions directly in silencing remains open.  SRC1  is not geneti-

cally linked to  ESC1  or  YKU70  (unpublished data), and telomere 

silencing was not affected in  src1  �  cells. However, disruption of 

 SRC1  affected telomere length ( Askree et al., 2004 ), and a syn-

ergistically reduced silencing of subtelomeric genes was ob-

served when  src1  �  was combined with the  yku70  �  allele. 

 In addition to telomeres, Src1 is also associated with the 

rDNA locus. Both consist of repetitive sequences, which have 

to be protected from uncontrolled homologous recombination 

to maintain genomic integrity. Notably, Src1 was copurifi ed with 

Lrs4, a factor located at the rDNA locus with a role in rDNA si-

lencing and suppression of rDNA recombination ( Huang et al., 

2006 ). Lrs4 together with cohesin are thought to prevent the 

formation of chromatid junctions, and Src1 could aid in this 

step locally at the inner nuclear membrane. In line with a func-

tion together with cohesin, Src1 has been reported to be in-

volved in sister chromatid separation and is genetically linked 

to S CC1  and  ESP1  ( Rodr í guez-Navarro et al., 2002 ). 

 Our study further reveals that Src1 is required for proper 

gene expression of subtelomeric genes, such as several  PHO  

genes, that are associated with the inner nuclear membrane. 

Transcription of  PHO  genes in response to the phosphate con-

centration is regulated by the phosphorylation status of the tran-

scription factor Pho4, which in turn affects its nucleocytoplasmic 

shuttling ( O ’ Neill et al., 1996 ). Our data suggest that the sub-

telomeric  PHO  genes may exhibit, besides specifi c control by 

Pho4, a global regulation as a result of their association with the 

inner nuclear membrane, which is repressive for gene expres-

sion. By which mechanism Src1 could affect subtelomeric gene 

expression remains unclear. It is known that in contrast to telo-

mere silencing mediated by the Sir complex, silencing of genes 

within subtelomeric/HAST (Hda1-affected subtelomeric) do-

mains depends on the local nucleosome structure ( Wyrick et al., 

1999 ). This is characterized by histone H3 hypomethylation 

and hypoacetylation ( Bernstein et al., 2002 ;  Robyr et al., 2002 ). 

Whether Src1 specifi cally affects histone modifi cations in sub-

telomeric regions remains to be determined, but its role in gene 

expression could be envisaged in a broader sense (e.g., by 

interfering with different types of mechanisms that activate 

or repress gene expression). The effect of both up- and down-

regulation of genes observed in the  src1 �   mutant could be caused 

by transcription factors concentrated at the nuclear periphery that 

act as both activators and repressors. Lack of Src1 might restrict 

the access of these factors to subtelomeric loci as a result of an 

altered chromatin structure. The macroarray data also show that 

expression of some genes that are not located at subtelomeric 

regions, but randomly across the chromosomes, were affected 

synergistic inhibition of growth on 5-FOA plates ( Fig. 9 ). These 

data suggest that Src1 in combination with another silencing 

factor can synergistically affect telomeric silencing. 

 Discussion 
 This study has revealed that the integral inner nuclear mem-

brane protein Src1 functions in gene regulation of subtelomeric 

genes and is embedded functionally in a network of factors, which 

participate in transcription-coupled mRNA export. Importantly, 

Src1 is associated with subtelomeric chromatin and thus can 

help to organize this region of the chromosomes. In previous 

studies, Src1 was shown to contain an intron with the possibility 

of alternative splicing ( Davis et al., 2000 ;  Rodr í guez-Navarro 

et al., 2002 ). Our study revealed that both splice forms localize 

to the nuclear periphery and are integral inner nuclear membrane 

proteins ( King et al., 2006 ). However, both proteins are not 

functionally equivalent. To the best of our knowledge, this is the 

fi rst demonstration that two forms of a protein generated by al-

ternative splicing in yeast have different functions. 

 The N domain of Src1 mediates nuclear targeting, and in-

sertion into the nuclear membrane requires the fi rst transmembrane 

span. These fi ndings are consistent with studies of vertebrate 

LEM2 and MAN1 in which nuclear envelope targeting and re-

tention are also dependent on the fi rst transmembrane domain 

and the N terminus ( Wu et al., 2002 ;  Brachner et al., 2005 ). Pre-

viously, it has been shown that Src1 is imported to the inner 

nuclear membrane by the Kap60 – Kap95 pathway in a RanGTP-

dependent manner ( King et al., 2006 ). Replacing the entire N 

terminus of Src1 with the classical SV40 NLS, however, was 

not suffi cient to restore its normal localization at the inner nu-

clear membrane (unpublished data). This suggests that besides 

an NLS, additional targeting/retention information is retained 

within the N domain of Src1. 

 Src1 is preferentially associated with heterochromatin such as 

subtelomeric and telomeric chromatin. As both N- and C-terminal 

domains of Src1-L face the nucleoplasm and each harbors a 

potential DNA-interacting domain (LEM and MSC), it is possi-

ble that the interaction with DNA is direct, but adaptor proteins 

could also be involved in chromatin binding. LEM domain pro-

teins in higher eukaryotes are able to associate with chromatin 

either directly ( Cai et al., 2001 ;  Caputo et al., 2006 ) or via the 

 Figure 9.    src1  �  cells are not affected in telomere silencing, but in combi-
nation with the  yku70  �  mutation, they are synergistically impaired. Dele-
tions of  SRC1 ,  YKU70 , or double deletion in a telVIIL:: URA3  strain were 
spotted in 10-fold serial dilutions on 5-FOA – containing plates and grown 
for 5 d at 23 ° C. Note that growth refl ects telomeric silencing and reduced 
growth derepression of silencing. Synthetic dextrose complete without 5-FOA 
was used as a plating control.   
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 Fluorescence microscopy 
 Cells were grown in selective medium at 30 ° C to logarithmic phase. Fluo-
rescence microscopy was performed using an Imager Z1 (Carl Zeiss, Inc.) 
equipped with a 63 ×  NA 1.4 Plan-Apochromat oil immersion lens (Carl 
Zeiss, Inc.) and using DICIII and HEeGFP fi lters. Pictures were acquired 
with a camera (AxioCamMRm; Carl Zeiss, Inc.) and AxioVision 4.3 soft-
ware (Carl Zeiss, Inc.). Pictures were exported as jpg fi les and processed 
in PhotoShop 7.0 (Adobe) for levels. 

 Src1 membrane extraction, topology analysis, and affi nity purifi cation 
 500 mg of spheroplasts prepared from early log-phase cultures were lysed 
with a Dounce homogenizer in 3 ml of buffer (150 mM NaCl and 20 mM 
Tris-HCl, pH 8.0) containing protease inhibitors and was pelleted at 2,000 rpm 
for 2 min. The supernatant was centrifuged at 13,000 rpm for 20 min at 
4 ° C, resulting in pellet and supernatant. One fourth of the pellet was re-
suspended in 400  μ l of buffer (1% Triton X-100 and 1 M NaCl or in 0.1 M 
sodium carbonate, pH 11.5), incubated 30 min on ice, and separated into 
a soluble and pellet fraction by ultracentrifugation at 100,000  g  for 1 h at 
4 ° C. Equal amounts were analyzed by Western blotting using anti-ProtA, 
anti-Vam3, and anti-Nsp1 antibodies. 

 The galactose promoter – driven TEV protease fused to NLS and a 
myc tag was integrated into strains expressing N- or C-terminal – tagged 
Src1 forms. An equivalent of 3 OD 600  of exponentially growing cells in 
YPD or YPG at 30 ° C was harvested, TCA lysis was performed, and equal 
amounts were analyzed by Western blotting using anti-ProtA, anti-myc, 
and anti-Arc1 antibodies. Affi nity purifi cation of ProtA-tagged bait Src1 
was performed as described previously ( Gavin et al., 2002 ). 

 DNA macroarray measurement of RNA levels 
 50 ml of wt and  src1  �  cells (OD 600  0.5) were pelleted and immediately 
frozen. After thawing the samples on ice, total RNA was isolated and re-
verse transcribed using  33 P-labeled deoxycytidine triphosphate and oligo 
d(5 � -T 15 VN-3 � ) ( Garc í a-Mart í nez et al., 2004 ). Hybridization was per-
formed on nylon fi lters using PCR-amplifi ed whole ORF sequences as 
probes ( Alberola et al., 2004 ;  Garc í a-Mart í nez et al., 2004 ) except that 
hybridizations were 40 – 48 h. Three different cultures were used for each 
strain. Scanning and analysis of the macroarrays were performed essen-
tially as described previously using ArrayStat software ( Garc í a-Mart í nez 
et al., 2004 ;  Rodr í guez-Navarro et al., 2004 ). Apart from the genes de-
tected by ArrayStat as signifi cantly up- or down-regulated, we obtained an 
additional list of 16 genes that were expressed over background in the 
three replicates in  src1  �  and below background in all three replicates in 
wt cells. Array data have been submitted to the Gene Expression Omnibus 
data repository (accession no.  GSE6370 ). 

 RNA isolation and real-time PCR 
 Cells were grown in selective HP medium (11 mM KH 2 PO 4 ) at 30 ° C to an 
OD 600  of 0.5. Half of the cells was washed and grown for 2 h in selective 
LP medium (220  μ M KH 2 PO 4 ) at 30 ° C. Total RNA was isolated using the 
RNeasy Mini kit (QIAGEN). cDNA was synthesized from 1  μ g of total RNA 
using the QuantiTect Reverse Transcription kit (QIAGEN).  PHO11 ,  PHO12 , 
and  PHO84  cDNAs were detected by quantitative real-time PCR (ABI-
Prism 7000; Applied Biosystems) using specifi c primers and TaqMan 
probes (Table S3, available at http://www.jcb.org/cgi/content/full/
jcb.200803098/DC1). Triplicate reactions containing cDNA equivalent 
to 0.08  μ g RNA were analyzed per experiment. 

 ChIP-on-chip analysis 
 ChIP-on-chip analyses were performed as described previously ( Cam et al., 
2005 ) with minor modifi cations. Cells were grown in selective HP medium 
at 30 ° C to an OD 600  of 0.5. After washing, the cells were grown for 2 h in 
selective LP medium at 30 ° C. The PFA – dimethyl adipimidate cross-linked 
chromatin was sheared by sonication and without preclearing was incu-
bated with IgG Sepharose 6 Fast Flow (GE Healthcare) for 2 – 3 h at 4 ° C. 
After extensive washing and amplifi cation, we combined 500 ng Cy5-
 labeled ChIP DNA with an equal amount of Cy3-labeled whole cell extract 
DNA and hybridized it onto a 4  ×  44 K  S. cerevisiae  Whole Genome ChIP-
on-chip Microarray (Agilent Technologies). Hybridization, washes, and 
processing slides were performed in accordance with the yeast ChIP-on-
chip protocol (version 9.1; Agilent Technologies). 

 For statistical analysis, we have taken a 10-kb region from the end 
of the chromosomes. The 599 independent probes representing subtelo-
meric regions show an average of 4.45 ×  Src1 enrichment over the base-
line. The remaining 40,881 probes give a 1.06 ×  average enrichment. 
In the negative control (cells expressing only ProtA), we did not detect any 
enrichment of immunoprecipitated ProtA at telomeres, centromeres, HML 

by loss of  SRC1 . Because Src1 did not interact signifi cantly with 

these genes according to ChIP-on-chip, the effect could be in-

direct (e.g., caused by misregulation of subtelomeric genes, which 

in turn alter expression of genes located elsewhere in the genome). 

 The fi nding that Src1 is genetically linked to factors of the 

THO – TREX and TREX-2 complexes suggested an involvement 

in transcription and/or export. However, the disruption of  SRC1  

did not cause an mRNA export defect. Thus, Src1 could be con-

nected to the transcription-assisted (upstream) functions of these 

TREX complexes. It is well established that mutations in these 

TREX factors (e.g., in Thp1, Sac3, and Hpr1) not only inhibit 

transcription elongation but also induce transcription-dependent 

hyperrecombination and genome instability (for review see  Reed 

and Cheng, 2005 ). Src1 is not genetically linked to all of the 

subunits of THO – TREX and TREX-2, which suggests that the 

subunits within the TREX complexes may have different roles 

with respect to Src1 function. For example, Sub2, a subunit of 

THO – TREX, not only functions in transcription, splicing, and 

mRNA export but was also shown to be localized to telomeres and 

to affect heterochromatic gene expression ( Lahue et al., 2005 ). 

 Collectively, the simplest model of how Src1 functions as 

an integral inner nuclear membrane protein is to help in recruiting 

and organizing the peripheral (telomeric and subtelomeric) chro-

matin, perhaps by directly binding to specifi c DNA sequences or 

nucleosomes (see above). By organizing subtelomeric and telo-

meric DNA in a distinct nuclear compartment, the nuclear pe-

riphery, Src1 could help to cluster a group of genes in a zone in 

which silencing factors, transcription activators, and repressors 

cooperate for regulated gene expression and which also has ac-

cess to an effi cient mRNA export pathway via the TREX ma-

chineries associated with NPCs. Subtelomeric and telomeric 

chromatin and the rDNA locus are repetitive, and their preserva-

tion is crucial for maintaining genome integrity. Thus, localiza-

tion of this chromatin to the nuclear membrane could also play a 

role in preventing unwanted recombination. Many of these de-

scribed functions attributed to Src1 can now be tested by exploit-

ing  src1  mutants in different functional assays. 

 Last but not least, Src1 is related to higher eukaryotic LEM 

domain – containing inner nuclear membrane proteins that were 

shown to interact with transcription regulators (e.g., R-Smads 

and HDAC3) and thus affect gene expression and signal trans-

duction by recruitment of transcription regulators to the nuclear 

periphery (for reviews see  Gruenbaum et al., 2005 ;  Wagner and 

Krohne, 2007 ). Our study showed that the LEM domain protein 

Src1 is associated with subtelomeric chromatin and affects gene 

expression in this region. Thus, Src1 could serve as a model 

protein to gain further insight into the complex role of inner nu-

clear membrane proteins, including their involvement in dis-

eases such as laminopathies. 

 Materials and methods 
 Yeast strains and plasmid constructs 
  S. cerevisiae  strains and plasmids are listed in Table S2 (available at 
http://www.jcb.org/cgi/content/full/jcb.200803098/DC1). The synthetic 
lethal screens were performed as described previously ( Segref et al., 
1997 ). In the  thp1  �  screen, 54 synthetic lethal mutants were obtained from 
 � 70,000 colonies. 24 of these mutants were complemented by plasmid-
borne  THP1  and used for further analysis. 
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and HMR loci, or on rDNA (1.08 ×  average enrichment at subtelomeric re-
gion vs. 1.03 × ). 

 Localization of single chromosomal loci 
 Growing and mounting yeast cells for in vivo microscopy were performed 
as described previously ( Cabal et al., 2006 ) using a Revolution Nipkow 
disk confocal system (Andor Technology). The system was controlled using 
Revolution IQ software (version 1.5; Andor Technology). Z stacks of 41 im-
ages with a 250-m Z step were acquired using a 100 × /1.4 NA Plan Apo-
chromat oil immersion objective (Carl Zeiss, Inc.). Pixel size was 77.3 nm. 
Quantitative analysis of microscopy data was performed using Matlab 
software as described previously ( Cabal et al., 2006 ). In brief, each nu-
cleus was processed to extract 3D coordinates of the locus, the nuclear 
center, and the nuclear envelope. In the following step, loci positions rela-
tive to the nuclear center obtained from different nuclei were plotted on the 
same 3D graph. Finally, and for reading facility, this 3D graph was pro-
jected on a 2D graph using radial projection (i.e., the loci – nuclear center 
distance is conserved;  Cabal et al., 2006 ). 

 Online supplemental material 
 Fig. S1 contains the localization of Src1 splice forms in wt and  nup133  �  
cells. Fig. S2 shows that Src1-L and Src1-S do not purify stoichiometric bind-
ing partners. Fig. S3 shows the genomic-wide distribution maps of Src1-L. 
Table S1 contains the up- and down-regulated genes in  src1  �  cells. Table S2 
indicates the yeast strains and plasmids used, and Table S3 presents the real-
time PCR primers used in this study. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200803098/DC1. 
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