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ABSTRACT

In order to study the intragenic profiles of active
transcription, we determined the relative levels of
active RNA polymerase II present at the 30- and 50-
ends of 261 yeast genes by run-on. The results
obtained indicate that the 30/50 run-on ratio
varies among the genes studied by over 12 log2

units. This ratio seems to be an intrinsic character-
istic of each transcriptional unit and does not sig-
nificantly correlate with gene length, G+C content
or level of expression. The correlation between the
30/50 RNA polymerase II ratios measured by run-on
and those obtained by chromatin immunopre-
cipitation is poor, although the genes encoding ribo-
somal proteins present exceptionally low ratios in
both cases. We detected a subset of elongation-
related factors that are important for maintaining
the wild-type profiles of active transcription,
including DSIF, Mediator, factors related to the
methylation of histone H3-lysine 4, the Bur CDK
and the RNA polymerase II subunit Rpb9. We con-
ducted a more detailed investigation of the alter-
ations caused by rpb9D to find that Rpb9
contributes to the intragenic profiles of active tran-
scription by influencing the probability of arrest of
RNA polymerase II.

INTRODUCTION

In the last decade, the importance of transcription elong-
ation regulation has been brought into focus. Many
factors have been associated with this key step of gene
expression, and it has been proved that several biological
processes are connected to this transcription phase,
including response to stress, development and viral infec-
tions (1,2).
Chromatin immunoprecipitation (ChIP) (3,4) using

antibodies against different phosphorylated forms of
RNA polymerase II (RNA pol II) (5) enables the meas-
urement of elongation rates and processivity (6). Besides,
the combination of RNA pol II ChIP with DNA arrays
and massive sequencing has provided pictures of the
distribution of RNA pol II in several genomes (7).
Studying transcription elongation in vivo has also
involved the use of other techniques, including the deple-
tion of the intracellular pools of ribonucleotide triphos-
phates by drugs like 6-azauracile (8) and mycophenolic
acid (9), or the comparison of reporter genes of different
lengths (10).
One of the drawbacks of the ChIP of RNA pol II is its

lack of specificity against the active, elongation-competent
form of the polymerase. In vitro studies have shown that
RNA pol II often becomes arrested during elongation in
the chromatin context (11), while molecular modeling has
suggested that backtracking during elongation is indeed a
frequent phenomenon in vivo (12).
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The run-on technique has proved highly appropriate to
deal with these issues. It enables the measurement of the
density of actively transcribing RNA polymerases by
labelling nascent mRNA in the presence of high salt and
sarkosyl, which inhibits a new round of transcription ini-
tiation without affecting the elongation reaction (13).
Global transcription analyses have been carried out by
combining run-on with either DNA arrays hybridization
(14) or massive sequencing (15). Using this genomic
run-on (GRO) approach, we have recently shown that
some functional gene categories are controlled at the
elongation step by modulating the fraction of RNA poly-
merases that become inactive during transcription (16).
In the present work, we have used the run-on technique

and a new type of custom-developed DNA arrays to quan-
titatively analyse the intragenic distribution of active
RNA pol II. By probing run-on preparations with the
DNA sequences of the two ends of a broad set of genes,
we found that the 30/50 ratio of actively transcribing poly-
merases is gene-specific. Among the tested genes, those
encoding structural ribosomal proteins (RP) showed the
lowest 30/50 run-on ratios. We also measured these ratios
under several conditions and in mutant backgrounds, and
we detected a clear influence of some elements of the tran-
scriptional machinery on the intragenic distribution of
active RNA pol II.

MATERIALS AND METHODS

Strains and media

All the strains, except W303 (MAT a ade2-1 can1-100
ura3-1 leu2-3,112 his3-11,15 trp1-1) (17) and its derivatives
SET1-myc and set1AA-myc (18), were purchased from
EUROSCARF and were isogenic to BY4741 (MAT a;
his3D1; leu2D0; met15D0; ura3D0) with the corresponding
gene substituted by a KANMX4 cassette.
Rich (YPD) and minimal (SC) media were used as pre-

viously described (19). Osmotic shock was produced by
adding NaCl at a final concentration of 0.5M.

Macroarray fabrication

DNA macroarrays were produced in the Sección de Chips
de DNA-S.C.S.I.E of the University of Valencia following
the procedure described in (20). The double strand DNA
300-bp-length probes obtained by PCR were printed onto
positively charged nylon membranes using a BioGridTM

robot (BioRobotics). Later, 20–30 ng of DNA were
spotted on each position.
Some of the probes were amplified using genomic DNA

as a template, while some others were amplified using
plasmids containing the individual ORFs (20). The
primers used (Supplementary Table SI) are available
upon request.

Slot-blotted membranes

A Hybond N+membrane (Amersham) was placed into a
PR600 Slot Blot device (Hoefer Scientific Instruments).
Each well of the device was loaded with 500 ng of
dsDNA probes diluted in 0.5ml 0.4M NaOH 200mM

EDTA, previously boiled to denaturalize the DNA. The
solution was forced through the membrane by applying a
vacuum pump to the slot blot device. The membrane was
then washed by rinsing it in 0.6M NaCl 60mM Na citrate
(SSC 2�). Probes were obtained by PCR using the primers
listed in Supplementary Table SII.

Run-on

Run-on assays were performed as described in (21) with
minor modifications. Shortly, 50ml of yeast culture were
collected at OD600 0.5 by centrifugation at 4�C. Cells were
washed in 5ml cold TMN solution (10mM Tris–HCl pH
7.4, 5mM MgCl2, 10mM NaCl), centrifuged again and
resuspended in 950 ml cold H2O. Next, 50 ml of 10%
sarkosyl were added at a final concentration of 0.5%.
Cells were incubated in this solution for 20min at 4�C
for permeabilization purposes. Afterward, cells were
centrifuged and the supernatant was completely
removed. The transcription reaction was performed in
150 ml of transcription buffer (50mM Tris–HCl pH 7.9,
100mM KCl, 5mM MgCl2, 1mM MnCl2, 2mM
dithiothreitol, ATP, GTP and CTP 0.5mM each and
100 mCi alpha-33P] UTP (3000Ci/mmol)). The mix was
incubated for 3min at 30�C. The reaction was stopped
by adding 1ml cold TMN solution. RNA was immediate-
ly extracted following the acid-phenol protocol (22).

ChIP

ChIP experiments were performed as previously described
(23) with minor modifications. Shortly, 50ml of yeast
culture were collected at OD600 0.5. Crosslinking was per-
formed by adding formaldehyde to 1% to the culture and
by incubating at room temperature for 15min. Then
2.5ml 2.5M glycine were added and the culture was
incubated for 5min. Cells were then harvested and
washed four times with 25ml Tris–saline buffer (150mM
NaCl 20mM Tris–HCl pH 7.5) at 4�C. Cell breakage was
performed in 300 ml of lysis buffer (see the above reference)
with glass beads, and cell extracts were sonicated in a
Bioruptor sonicator (Diagenode) for 30min in 30 s on/
30 s off cycles (chromatin is sheared into an average size
of 300 bp). Immunoprecipitation was performed with
magnetic beads coated with pan anti-IgG antibodies
(Dynal), which were incubated with the 8WG16 monoclo-
nal antibody beforehand.

Finally, 25 ml real-time PCR were performed to quantify
immunoprecipitation using a dilution of 1:1500 for the
input samples and another of 1:10 for the immunopre-
cipitated samples. Immunoprecipitation was defined as
the ratio of each specific probe product in relation to
that of a non transcribed region (chromosome V, coord-
inates 9716 to 9863). The primers used are listed in
Supplementary Table SIII.

For ChIP on chip purposes, the immunoprecipitated
DNA was amplified and labelled following the procedure
described in (24).

Genomic DNA labeling

First, 50–20 ng of yeast genomic DNA was diluted in 35 ml
H2O and then boiled. Afterward, 5 ml of the 10� random
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hexanucleotides mix (ROCHE), 5 ml of a solution contain-
ing dATP, dGTP, dTTP, 0.5mM each, 20 mCi
[a-32P]dCTP (3000Ci/mmol) and 2U of Klenow polymer-
ase were added to a final volume of 50 ml. The reaction mix
was incubated for 1 h at 37�C. Non incorporated nucleo-
tides were eliminated by purifying the sample through a
Sephadex G-50 column.

Hybridization

Radio-labelled RNA from the run-on was fragmented and
denatured prior to hybridization by adding NaOH to the
sample at a final concentration of 50mM and by
incubating for 5min on ice. Fragmentation was stopped
by adding HCl to a concentration of 50mM. Genomic
DNA was denatured before hybridization by boiling it
for 5min. Hybridization with labelled RNA (run-on) or
DNA (ChIP or genomic DNA) samples was performed as
described in (16). Membranes were exposed in Fuji BAS
screens for 5–7 days and were developed with a FUJIX
FLA3000 device. Signals were quantified using the Array
Vision software, version 8.0 (Imaging Research Inc.).

Normalizations, quality filters and statistical analysis

Only those spots with a signal 1.3 times over the back-
ground were considered. After this filtering and back-
ground subtraction, the average signal of the two
replicas of each probe was only obtained if both values
were over the threshold value. For RNA hybridizations,
this value was corrected by the number of uracils present
in the coding strand of the probe. Then the 30/50 ratio was
obtained. Similarly, genomic DNA signals were corrected
for the numbers of cytidines present in the probes. The
run-on ratio was divided by the genomic DNA ratio to
correct probe to probe differences in DNA amount and
hybridization efficiency. Finally, the log2 of this ratio was
obtained. At least three replicas of each experiment were
performed.

The comparisons made of the results obtained for each
strain or condition were analysed with a Student’s
two-tailed paired t-test (25).

RESULTS

The 30/50 run-on ratio as a parameter reflecting the
intragenic distribution of active RNA pol II

In order to determine the intragenic distribution of tran-
scriptionally active RNA pol II in a large number of genes,
we designed a DNA macroarray containing probes of
about 300 bp corresponding to the 50 and 30 ends of 377
S. cerevisiae ORFs (Supplementary Table SI). We also
designed a second array containing similar probes for a
subset of 76 highly expressed genes (26) (Supplementary
Table SI). We used these membranes for the hybridization
done with the labelled RNA via the run-on technique so
that the signal obtained in each probe was proportional to
the density of the active RNA pol II present in this par-
ticular piece of the genome. Then we divided the signal
obtained in the 30 probe by the signal obtained in the 50

probe of each transcriptional unit. This ratio was used as a

parameter to reflect the intragenic distribution of the tran-
scriptionally active, i.e. transcriptionally competent, RNA
pol II in the genes represented in the membrane (see
‘Materials and Methods’ section for the normalization
and quality control procedures). Log2 scale is used; there-
fore, positive values represent a higher density of active
RNA polymerase present at the 30-end than at the 50-end,
while negative values mean that more active RNA poly-
merases are present at the 50-end than at the 30-end.
First, we tested the intragenic distribution of transcrip-

tionally active RNA pol II in a BY4741 wild-type strain.
The results of 261 transcriptional units were obtained after
the quality controls and normalizations (see ‘Materials
and Methods’ section). We did not obtain consistent
signals (repetitively over the background threshold) for
at least one of the two probes of the other 116 genes rep-
resented in the array. The average results are depicted in
Figure 1A as a dot plot in a log2 scale with the standard
deviations shown as error bars. The 30/50 ratio range
covered more than 12 log2 units (from–5.49 in RPL25
to 6.66 in YRF1-2; Supplementary Table SIV) and
adapted to a normal distribution (Figure 1A,
Supplementary Figure S2A and B). Conventional run-on
assays of five highly expressed genes confirmed that the
intragenic distribution of active RNA pol II was not
uniform (Supplementary Figure S2C). Additional
evidence indicating that the dispersion of the 30/50 results
did not happen by chance was obtained by randomly
pairing the 30 probes signal with the 50 probes signal of a
particular experiment. The results of five random distribu-
tions were much more dispersed than the results of the real
experiment (Supplementary Figure S3). Therefore, in spite
of the background noise that the use of single probes
might have introduced in these results, we conclude that
the distribution of active transcription is gene-specific.
In order to understand the cause of these differences in

the 30/50 run-on ratios, we studied whether there was a
correlation between the 30/50 ratios and several gene
properties. We found no correlation with either the
G+C content (Supplementary Figure S4A) or the
distance to the nearest telomere (Supplementary Figure
S4B), although the subtelomeric YRF1 genes exhibited
the highest 30/50 ratios (Supplementary Table SIV). Since
the 50 probes were situated inside the ORFs, we looked for
a possible correlation between the 30/50 run-on ratios and
the length of the 50 UTRs. By using the data of the tran-
scription start sites published by Zhang and Dietrich (27),
we found no correlation between these two parameters
(Supplementary Figure S4C). The data also dismissed a
significant influence of overlapping cryptic unstable tran-
scripts (CUTs) or stable unannotated transcripts (SUTs)
(28) on the 30/50 run-on ratios (Supplementary Figure S4D
and E). We observed a slightly positive correlation of
the 30/50 run-on ratios with the length of the transcription
unit (Supplementary Figure S4F) and a weak negative
correlation with the expression level according to
Holstege et al. (26) (Supplementary Figure S4G). We
also found that the average 30/50 ratios of intron-
containing genes were slightly lower than those of
intron-less genes (Supplementary Figure S4H).
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These results suggest that short, highly expressed,
intron-containing genes should have the lowest average
30/50 run-on ratios. The functional group of genes that
best fitted these three features is that of the RP genes.
The positive correlation between gene length and the
30/50 run-on ratio, and the negative correlation between
this and the expression level, diminished when the RP
genes were excluded (Supplementary Figure S4F and G),
while the average 30/50 run-on ratio of the intron-
containing genes, once non-RP genes were excluded, was
even more significantly different to intron-less genes

(Supplementary Figure S4H). Accordingly, we found an
overrepresentation of the RP genes in the minimal values
of the 30/5 ratios distribution (Figure 1A; Supplementary
Figure S2A), where the average 30/50 ratio (�1.351 log2
units) was significantly lower than that of those genes
without a functional link to the ribosomes (0.375 log2
units; P=4.34� 10–6; Figure 1A). The low 30/50 run-on
ratio is a very specific feature of those genes encoding
structural RPs since other ribosome-related genes
belonging to the RiBi regulon (29) displayed a scattered
distribution of 30/50 ratios, while their average ratio

Figure 1. (A) Average 30/50 ratios of the run-on signals obtained from a wild-type BY4741 strain for the transcriptional units present in the 377 genes
array. RP genes are represented in red and RiBi genes in green. Error bars represent standard deviation. The box-and-whiskers diagrams represent
the minimum, the maximum, the average (cross), the median and the 25th and the 75th percentiles of the average 30/50 run-on ratios for the indicated
gene categories. The P-values of the Student’s two-tailed t-test for those samples with unequal variances are shown. (B) The same as in A but for the
ChIP signals obtained with the 8WG16 antibody. (C) Scatter plot of the average 30/50 run-on ratios in A (X-axis) versus the average 30/50 ChIP ratios
in B (Y-axis). Linear regressions and their corresponding Pearson’s correlation coefficients (R) are shown.
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(0.74 log2 units) did not show a statistically significant
difference to the non ribosome-related genes
(P=3.04� 10–1; Figures 1A and S2A). Gene ontology
analysis of the data, using the Fatigo application from
Babelomics (30), revealed that RP-related categories
were the only ones exhibiting a significantly biased distri-
bution of active transcription. ‘Structural constituent
of ribosomes’ was the item showing the highest adjusted
P-value (2.68� 10–6).

Run-on assays measure the density of the actively
elongating RNA polymerases present in a given
sequence, but it does not detect enzymes that are not com-
petent for elongation, because either they have not yet
initiated, have already terminated, or have been arrested
and backtracked during elongation (13). In order to test
whether the different run-on profiles of the genes related to
the different proportions of active RNA pol II (active
versus total), we performed ChIP on chip experiments
using the 8WG16 antibody which recognizes the
carboxy-terminal domain of the biggest RNA pol II
subunit (5), and the same 5–30 macroarrays we used
in the run-on experiments; a protocol that we called
RPCC (RNA Pol ChIP on Chip) in a previous paper
(16). The 30/50 ChIP ratios extended between –3.35
(RPL24B) and 2.99 (GAL7), a considerably shorter
range than the one we found for the run-on ratios
(Figure 1B). Of the analysed genes, 80% showed ChIP
ratios close to 1 (between 0.5 and 2; Supplementary
Figure S2B), whereas only 53% exhibited run-on ratios
within this range (Supplementary Figure S2A). The bio-
logical meaning of this difference is uncertain and it
might be related to the shorter dynamic range of RPCC
vs GRO (16).

RP genes were also overrepresented in the lowest part of
the 30/50 ChIP ratios distribution and the average ChIP
ratio for RP genes (�0.91 log2 units) even differed more
significantly from the non ribosomal genes (0.28 log2
units; P= 2.04� 10–11) than the average run-on ratio
(Figure 1B). However, the overall correlation between
run-on and ChIP ratios was poor (Figure 1C) and ex-
hibited a Pearson’s coefficient of only 0.375. These
results suggest that the 30/50 run-on ratio is not just a
direct consequence of the distribution of total RNA Pol
II within the genes, but reflects a combination of this par-
ameter with others that contribute to set the proportion of
active enzyme along the gene. We also measured the dis-
tribution of RNA pol II by ChIP and quantitative PCR in
the individual genes tested before. The difference between
the run-on and ChIP profiles was clear in most cases
(Supplementary Figure 2C). We conclude that RNA pol
II has the tendency to become transcriptionally inactive by
becoming arrested during elongation in certain gene
contexts.

The 30/50 run-on ratios are not globally affected by
nutritional conditions or stress, but depend on the
genetic background

In spite of the low overall correlation between the ChIP
and run-on ratios, some functional categories, like RP and
RiBi, presented more significant correlations (Figure 1D).

This suggests that the distribution of active RNA pol II
within a particular gene could be affected by its regulatory
mechanisms. To test this hypothesis, we investigated
whether the run-on ratios of a subset of 76 highly ex-
pressed genes globally respond to physiological changes.
First, we compared the distribution of the RNA pol II in
those cells grown in a rich medium (YPD) and in a
minimal medium (SC) for two wild-type strains: BY4741
and W303 (Supplementary Figure S5A and B). In all the
comparisons made in this work, we did not find a uniform
homogenous behaviour of all the genes represented in the
array as there was always a fraction of genes that
increased the ratios while another fraction decreased
them. Therefore, the same absolute value of average incre-
ment can reflect a modest, but very general effect on the
gene population, or a stronger effect in a subpopulation of
genes. To display this information, we presented the data
using box-and-whisker diagrams in which the minimum,
the maximum, the average, the median and the 25th and
75th percentiles are all represented. To test whether the
two data distributions significantly differed, we performed
Student’s two-tailed t-tests for paired samples. In BY4741,
there was an apparently slight displacement of active poly-
merases toward the 30 end of the transcription units in the
minimal medium (Figure 2). The average log2 (3

0/50 ratio)
of the minimal medium was �0.29 and �0.42 for the rich
medium (Table 1). A small shift toward the 50 end was also
observed in W303 (with averages of 0.09 and �0.01 for the
rich and the minimal mediums, respectively). However,
the level of confidence that we set for this work
(P<0.01) indicates that these changes are not statistically
significant (Figure 2, Table 1).
We then investigated the effect of osmotic stress on the

intragenic distribution of active RNA pol II. We per-
formed run-on assays on a BY4741 strain with or
without adding NaCl at a final concentration of 0.5M
and after a 20-min incubation. No general change was
observed in the 30/50 ratios (Supplementary Figure S5C).
The difference between the averages of both conditions
was only 0.12 log2 units (�0.29 and �0.41 for the

Figure 2. Box-and-whiskers diagrams representing the increments in
the 30/50 run-on ratios for the transcription units present in the array
of highly expressed genes in the indicated strains and conditions. The
diagrams summarize the data represented as scatter plots in the
Supplementary Figure S5. Dark gray indicates a significant P-value.

Nucleic Acids Research, 2010 5

 at U
N

IV
E

R
S

ID
A

D
 D

E
 V

A
LE

N
C

IA
 on July 9, 2010 

http://nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org


non-treated and the NaCl-treated cultures, respectively),
with no statistical significance (Figure 2, Table 1). We
conclude that the physiological stimuli tested do not
have a general effect on the intragenic distribution of
active RNA pol II.
We then compared the 30/50 run-on ratios of the two

genetic backgrounds studied. The general distribution in
both strains was conserved. Those genes with a high 30/50

run-on ratio in the BY4741 background also showed a
high ratio in the W303 background and the transcription
units with a low 30/50 run-on ratio in BY4741 also pre-
sented a low one in W303 (Supplementary Figure S5D).
The distribution of the cells grown in the YPD medium
showed a high Pearson’s correlation coefficient
(r=0.806). However, the average distribution of active
polymerases shifted to the 30-end in W303 in relation to
BY4741. The average 30/50 ratios were �0.33 log2 units for
BY4741 and 0.15 for W303, with a very significant statis-
tical difference (P= 2.39� 10–6; Figure 2, Table 1). Very
similar results were obtained in the minimal medium
(Figure 2, Supplementary Figure S5E). In this case, the
correlation between the two series of data was even
higher (r=0.902) and the difference between the
averages of both strains was 0.28 logarithmic units,
while the P-value in the Student’s t-test was 5.25� 10–5

(Table 1). We conclude that the genetic background has a
general influence on the intragenic distribution of active
RNA pol II.

Genetic analysis of the intragenic distribution of
active transcription

In order to test whether a single-gene mutation can alter
the intragenic distribution of active pol II, we performed a
series of run-on assays with an spt4D mutant, which lacks
one of the two subunits of the well-known transcription
elongation factor DSIF (31–35). Figure 3A shows a
typical run-on hybridization experiment to compare a
wild-type BY4741 with an isogenic spt4D mutant. A
visual inspection reveals that the 30/50 ratio in several
genes is lower in the mutant than in the wild type. The
quantification of the ratio in both strains confirmed this
observation (Figure 3B). The statistical analysis of the
data showed the two distributions to be different
(P= 8.38� 10–4) with a log2 average difference of �0.31
units (Table 1).

Given this result, we wondered whether the difference
observed between BY4741 and W303 might be due to
a single mutation. One of the genetic specificities of
the W303 background is the SSD1 gene, which is
involved in several aspects of transcription and mRNA
biogenesis (36–41).The BY4741 strain bears the
dominant SSD1-v allele, whereas the W303 background
possesses the ssd1-d allele that encodes a truncated form of
the Ssd1 protein (42). We analysed the 30/50 run-on ratios
in an ssd1D strain (BY4741 background). The results
obtained showed a clear shift of the run-on signal
toward the 30-end in ssd1D (a difference of 0.39 log2

Table 1. Average change of 30/50 ratios in all mutants and conditions tested

Query
condition/mutant

Control Query log2
(30/50 ratio) average

Control log2
(30/50 ratio) average

Difference
(mutant-control)

Student’s t-test
P-value

Number of
genes analysed

BY4741-SC BY4741-YPD �0.29 �0.42 0.13 1.56� 10�1 50
W303-SC W303-YPD �0.01 0.09 �0.11 2.13� 10�2 43
BY4741-YPD+NaCl
0.5M

BY4741-YPD �0.41 �0.29 �0.12 2.03� 10�1 54

W303-YPD BY4741-YPD 0.15 �0.33 0.48 2.39� 10�6 46
W303-SC BY4741-SC �0.06 �0.34 0.28 5.25� 10�5 47
bre1D BY4741 �0.55 �0.23 �0.32 7.93� 10�3 55
bur2D BY4741 �0.01 �0.34 0.33 3.00� 10�3 49
ccr4D BY4741 0.22 �0.43 0.65 3.70� 10�4 36
cdc73D BY4741 �0.39 �0.23 �0.16 1.50� 10�1 52
dst1D BY4741 �0.52 �0.31 �0.21 8.61� 10�3 45
fes1D BY4741 �0.84 �0.47 �0.37 4.17� 10�3 38
fun12D BY4741 �0.07 �0.40 0.32 5.02� 10�3 50
med2D BY4741 �0.85 �0.38 �0.47 3.17� 10�4 38
not5D BY4741 �0.29 �0.43 0.14 3.97� 10�1 25
rpb4D BY4741 �0.62 �0.35 �0.27 1.53� 10�2 54
rpb9D BY4741 0.76 �0.27 1.03 1.68� 10�12 47
rtf1D BY4741 �0.59 �0.34 �0.25 6.47� 10�2 27
set1D SET1-myc (W303) 0.14 0.19 �0.05 6.80� 10�1 48
set1-AA-myc SET1-myc (W303) �0.19 0.21 �0.40 1.15� 10�4 42
spt4D BY4741 �0.59 �0.28 �0.31 8.38� 10�4 50
spt7D BY4741 �0.33 �0.48 0.15 2.97� 10�1 37
spt20D BY4741 �0.05 �0.21 0.16 2.72� 10�1 32
ssd1D(BY4741) BY4741 0.11 �0.28 0.39 6.30� 10�3 57
ssd1D(BY4741) ssd1-d (W303) 0.09 0.15 �0.06 6.87� 10�1 47

377 array:
rpb9D (377 array) BY4741 (377 array) 0.91 0.25 0.66 5.14� 10�31 261
rpb9DChIP BY4741 ChIP 0.08 0.19 �0.11 4.92� 10�5 324
BY4741 run on BY4741 ChIP 0.29 0.12 0.17 5.46� 10�2 250
rpb9Drun on rpb9DChIP 0.93 0.03 �0.90 2.93� 10�19 250
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units and a P-value of 6.20� 10–3) (Figure 3C and D). A
comparison between the ssd1D mutant in the BY4741
background and the wild-type W303 strain revealed no
significant difference, with average ratios of 0.09 and
0.15 log2 units, respectively, and a P-value of 6.87� 10–1

(Supplementary Figure S6A). We conclude that the ssd1
mutation in W303 is the most likely reason for its different
RNA pol II intragenic distribution, as compared with
BY4741.

These results might suggest that any alteration of the
RNA pol II machinery has a significant unspecific impact
on the intragenic profiles of active transcription.
Alternatively, Spt4 and Ssd1 might belong to a more
select group of elongation factors that are involved in
shaping these profiles. In order to test these hypotheses,

we decided to carry out a more systematic genetic analysis
of the intragenic distribution of active RNA pol II. We
analysed the 30/50 run-on ratios in a collection of mutants
defective for the elements involved in RNA pol II tran-
scription elongation. First, we studied mutants lacking
one of the two non essential subunits of the RNA pol
II, namely Rpb4 and Rpb9 (43,44). On the one hand,
the deletion of RPB4 resulted in a slight shift of the
active RNA pol II distribution toward the 50-end of
�0.27 log2 units (Figures 3D and Supplementary S6B);
however, this shift was not statistically significant
(P= 1.53� 10–2; Table 1). On the other hand, the
deletion of RPB9 led to a very marked change in the dis-
tribution of active RNA pol II in the opposite direction
(Figures 3D and Supplementary S6C). The average 30/50

Figure 3. (A) Image of a typical hybridization of the array of highly expressed genes with a run-on preparation from the BY4741 wild-type strain
(top) and an isogenic spt4D mutant (bottom). See Supplementary Figure S1 and Supplementary Table SI for probe keys. The signals of six
transcriptional units, in which changes in the 30/50 ratio between the wild type and the mutant can be easily seen, are squared. (B) Scatter plot
of the run-on 30/50 ratios obtained for a wild-type BY4741 strain (X-axis) and an spt4D mutant (Y-axis). The dashed line represents a perfect match
for the X and Y values. The continuous line represents linear regression. The distance between the two lines reflects the average effect of the mutant.
P-value for the Student’s two-tailed t-test for paired samples (P) and Pearson’s coefficient (R) are shown. The lower the Pearson’s coefficient of a
mutant, the more gene-specific its effect on the 30/50 ratios. (C) The same as in (B) but for the ssd1D mutant. (D) Box-and-whiskers diagrams
representing the increments in the 30/50 run-on ratios for the transcription units present in the array of highly expressed genes, in the indicated
mutant, related to the corresponding isogenic wild types. The boxes representing the mutants with a significantly higher P-value are shown in dark
gray, those with a significantly lower value are represented in light gray, and those with no statistically significant difference are represented in white.
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ratio in the rpb9D mutant was 0.76 log2 units, while it
was� 0.27 in the wild type, yielding an extremely signifi-
cant P-value of 1.68� 10–12 (Table 1).
The next mutant we studied was bur2D. It lacks a com-

ponent of the BUR cyclin-kinase complex, which phos-
phorylates not only the carboxy-terminal domain of the
DSIF component Spt5 (45,46), but possibly the CTD of
Rpb1 (47–49). The deletion of BUR2 led to a general shift
of active RNA pol II toward the 30-end of the transcrip-
tion units (Figure 3D and Supplementary S6D), present-
ing a statistically significant average difference of 0.33 log2
units (P= 3.00� 10–3; Table 1).
The lack of TFIIS/Dst1, a cleavage factor which rescues

RNA pol II from arrested situations (50–52), led to an
accumulation of the run-on signal toward the 50-end of
the transcribed regions (Figures 3D and Supplementary
S6E). This alteration is statistically significant according
to the Student’s t-test (P= 8.61� 10–3; Table 1) despite
being slight (an average log2 difference of �0.21 units).
We have recently published the findings that those mu-

tations lacking subunits of the Mediator (53) and the
CCR4-Not complex (54) produce transcription elongation
defects both in vitro and in vivo (55). The med2D mutant,
lacking a subunit of the Mediator tail domain, produced a
clearly significant (P= 3.17� 10–4) displacement of the
run-on signal toward the 50-end with an average difference
of �0.47 log2 units (Figures 3D and Supplementary S6F,
Table 1). With regard to the CCR4–Not complex, we
studied ccr4D and not5D. Although the not5D mutant pre-
sented no significant differences with the wild-type strain
(Figures 3D and S6G, Table 1), the ccr4D mutant was
clearly affected (Figures 3D and Supplementary S6H)
and showed a general accumulation of the run-on signal
at the 30-ends of the transcription units (increment of 0.65
log2 units, P= 3.70�10–4; Table 1).
Next, we decided to analyse some of the mutations af-

fecting the chromatin-related factors involved in the
covalent modifications of histones. We chose spt7D and
spt20D which lack subunits of SAGA (56,57); cdc73D and
rtf1D which lack subunits of the PAF complex (58,59);
set1D which lacks the catalytic subunit of the
COMPASS H3-K4 methylase complex (60,61); and
bre1D which lacks the E3 ubiquitin ligase involved in
H2B ubiquitination (62). We found no significant differ-
ence in the two SAGA mutants when compared with
the wild type (Figures 3D and Supplementary S6I-J,
Table 1). The same happened with cdc73D, rtf1D and
set1D (Figures 3D and Supplementary S6K-M, Table 1).
In contrast, bre1D presented a significant decrease in the
average log2 (30/50 ratio) when compared with the wild
type (�0.55 versus �0.23 with a P-value of 7.93� 10–3)
(Figures 3D and Supplementary S6N and Table 1).
H2B ubiquitination and H3-K4 methylation are closely

connected as the former is a covalent modification
required for H3-K4 di- and tri-methylation (18,63).
Since set1D abolishes any kind of H3-K4 methylation
and bre1D only eliminates H3-K4 di- and tri-methylation,
we tested set1AA, a point mutation in an RRM domain of
Set1 that almost abolishes H3-K4 tri-methylation, but ac-
cumulates significant levels of dimethylation at the 50-end
of the transcribed region (64). The analysis of the set1AA

mutant shows a clear shift of the run-on signal toward the
50-end (increment of �0.40 log2 units, P= 1.15� 10–4;
Figures 3D and Supplementary S6O, Table 1), which
suggests that the imbalance between tri- and mono-/
di-methylation in the transcribed regions brings about
an aberrant intragenic distribution of active RNA pol II.

Finally, we investigated the consequences of two muta-
tions related to translation, fun12D and fes1D, which
somehow cause transcription elongation-related pheno-
types (55). FUN12 encodes a translation initiation factor
(65). Its deletion brought about an important change in
the 30/50 run-on, and an average 30/50ratio of �0.07 log2
units was noted as opposed to the �0.40 log2 units of
the wild type (P= 5.02� 10–3; Figures 3D and
Supplementary S6P, Table 1). The last factor studied,
Fes1, is the nucleotide exchange factor of the Ssa1 and
Ssb1 chaperones (66,67), both of which are associated
with elongating ribosomes. The effect of this mutation
on the active RNA pol II distribution had the opposite
effect (Figures 3D and Supplementary S6Q, Table 1) since
it produced a lower average 30/50 ratio than the wild type
(�0.84 versus �0.47 log2 units, P= 3.17� 10–4). These
results reinforce the connection of these two translation-
related proteins to transcription elongation.

The alterations of the run-on profiles caused by rpb9D do
not involve major changes in the distribution of total
RNA pol II

The genetic analysis carried out with the array of 76 highly
expressed genes indicates that the intragenic profiles of
active transcription do not respond to all the alterations
of the transcriptional machinery, but to a subset of
elongation-related factors. In order to do an in-depth in-
vestigation into rpb9D, which presented the most extreme
alteration in the 30/50 run-on ratio, we repeated the
analysis using the extended array that we had previously
used for characterizing the 30/50 run-on ratios in the wild
type. The results confirmed that the shift in the run-on
ratios produced by rpb9D was highly significant (0.66
log2 units in average, P= 2.54� 10–31) (Figure 4A). The
effect is general (r=0.888), including both the RP (0.80
log2 units in average) and the RiBi genes (0.73 log2 units;
Figure 4A). We also analysed some individual genes in
detail. The results confirmed a stronger decrease of
active RNA pol II density at the 50-end of HXK2 and
HXT1 in rpb9D in relation to the wild type than at the
30 end (Figure 4B). In contrast, we detected neither com-
parable changes in the distribution of total RNA pol II by
ChIP along these two genes (Figure 4B) nor general
changes in the 30/50 ratios of the total RNA pol II for
the genes present in the array. As shown in Figure 4C,
the variation in the ChIP ratios produced by rpb9D was
in the opposite direction to the change in run-on ratios
and much less significant than this. The RP genes were the
exception, since their average 30/50 ratio slightly increased
(0.26 log2 units), unlike the slight decrease noted
(�0.14 log2 units) of non ribosome-related genes (P=
1.34� 10–4; Table 1). This coordinated shift of run-on
and ChIP ratios for the RP genes originated a higher cor-
relation between run-on and ChIP ratios for this regulon,
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Figure 4. (A) Scatter plot of the run-on 30/50 ratios obtained for a wild-type BY4741 strain (X axis) and an rpb9D mutant (Y axis) using the array of
377 genes. The box-and-whiskers diagrams summarize the rpb9D/wild-type differences for the genes belonging to the indicated gene categories. The
effect of rpb9D on RP and RiBi genes, relative to non ribosome-related genes, was challenged with the Student’s two-tails t-test for samples with
unequal variances; P-values are shown underneath. The other details are as in Figure 3B. (B) Comparison of the run-on profile (red) and the RNA
pol II ChIP profile (blue) of the rpb9D mutant (relative to the wild-type profile) in HXK2 and HXT1. Error bars represent standard deviation. (C)
The same as in (A) but for the RNA pol II 30/50 ratios. (D) Scatter plot of the average run-on and ChIP 30/50 ratios of rpb9D corresponding to the
genes represented in the 377 genes array. Linear regressions and their corresponding Pearson’s coefficients are shown.
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whereas the correlation for the rest of the genes did not
increase (non ribosome-related), or even decreased (RiBi)
(compare Figures 1C and 4D). We conclude that rpb9D
globally alters the intragenic distribution of active RNA
pol II by changing the proportion of enzymes that become
transiently arrested at the 50-end of the transcribed region.

DISCUSSION

The intragenic distribution of active RNA pol II
is gene-specific

The use of the run-on technique in combination with
DNA arrays has allowed us to study the distribution of
transcriptionally competent polymerases in a broad set of
yeast genes. The results obtained reveal that the intragenic
distribution of active transcription varies vastly from gene
to gene. CUTs or SUTs overlapping the probes do not
explain this variation, since the number of genes affected
in the array was very low (32 out of 377). Even after
excluding 40 additional genes located in the vicinity of
CUTs and SUTs (<200 bp away from any of the probes
present in the array) the run-on ratios were clearly
gene-specific (Supplementary Figure S4E). The effect of
the tested mutants on the run-on ratios was also unaffect-
ed by the exclusion of CUTs and SUTs overlapping genes
(Supplementary Figure S6R). The intragenic distribution
of active transcription does not correlate extensively with
any of the other parameters that we analysed (length,
G+C content, expression level, presence of introns). It
seems to be an intrinsic feature of each transcription
unit as it is roughly conserved in all the mutants and
under all study conditions (Supplementary Figure S7A).
When we compare the distributions of RNA pol II

determined by run-on and ChIP, we observe a much
more uniform profile by ChIP, with the majority of
genes showing 30/50 ChIP ratios close to 1. The detailed
analysis of individual genes shows an almost constant dis-
tribution of total RNA pol II along their bodies, whereas
their run-on profiles for each gene are markedly different
and show considerable fluctuations along the transcription
units. The more homogenous patterns produced by ChIP
may not be just a consequence of the lower resolution of
this technique since the RP genes (generally short and,
therefore, more sensitive to cross-contamination between
the 30 and 50 ChIP signals) presented the most biased ChIP
ratios. We rather think that the simplest explanation for
this phenomenon is the existence of arrested, transcrip-
tionally inactive polymerases along the transcribed
regions, which do not produce a run-on signal despite
being detected by ChIP.
Although pausing and arrest seem to be common phe-

nomena in each transcription cycle in vivo (68), we show
that the tendency of RNA pol II to become inactively
arrested is variable among genes and likely influenced by
the genomic environment. It is possible that nucleosome
positioning, a genomic feature that is considerably
gene-specific (69), may increase the probability of RNA
pol II becoming arrested. This hypothesis is in good agree-
ment with the conclusions drawn from in vitro experiments

that present a high tendency of RNA pol II to backtrack
in front of a nucleosome (11).

By considering the whole gene as the unit of analysis, we
have recently published that a significant proportion of
the total RNA pol II that is engaged in transcription
under standard growth conditions is not detectable in a
GRO assay (16). We showed that this accumulation of
inactive RNA pol II is especially relevant in the RP
genes (16), which, according to the present work, exhibit
the most 50-biased distribution of total RNA pol II. It is
appealing in this respect that the transcribed regions of the
RP genes show some specific chromatin features,
including a significantly lower 50 nucleosome spacing
than the rest of the genome (70). Transcription through
these highly packaged genes would involve a higher prob-
ability of pausing and arrest and a subsequent 50 bias in
the distribution of total RNA pol II. However, Weiner
et al. (70) have provided evidence of transcriptional
activity modulating chromatin packaging, and not vice
versa. Accordingly, we failed to detect a significant quan-
titative correlation between the 30/50 run-on ratios and the
corresponding ratios of sensitivity to micrococcal nuclease
when we used the data kindly provided by O. Rando
(results not shown). Therefore, if nucleosome positioning
plays a role in restricting RNA pol II activity, additional
chromatin elements should be involved. The genetic
analysis carried out in the second part of this work
sheds some light in this respect (see subsequently).

Gene specificity is not contradictory to coordinated
regulation. The RP genes exhibit an exceptional positive
correlation between ChIP and the run-on ratios in both
the wild type and rpb9D. This fact suggests that, despite
their differences, the intragenic distributions of total and
active RNA pol II can be somehow interdependent and
that there should be a mechanism connecting them. This
mechanism might be characteristic of each regulon. In this
sense, and unlike the RP regulon, the RiBi one shows a
higher ChIP-run-on correlation in the wild type than in
rpb9D, which indicates that Rpb9 plays a more prominent
role in linking the intragenic distributions of total and
active RNA pol II in the RiBi genes. We have previously
shown that the proportion of active versus total RNA pol
II during elongation is differentially controlled in response
to the carbon source in three regulons (RP, RiBi and mito-
chondrial), which represent >10% of yeast genes (16).
Accordingly, the gene-specific profiles of active and total
RNA pol II might be the consequence of the local effects
caused by the regulatory mechanisms controlling tran-
scription at the elongation level.

Transcription elongation factors control the intragenic
distribution of active RNA pol II

We have hereby shown that some single mutations can
have general effects on the intragenic profiles of active
transcription, whereas other mutations, including those
affecting important general transcription factors like
SAGA or the Paf complex, do not significantly affect the
30/50 run-on ratios. All the tested mutations were viable
and, therefore, their average effects on the 30/50 run-on
ratios were modest (1 log2 units at the most; Table 1).
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These moderate alterations of the active RNA pol II
profiles are fully compatible with normal cell growth
under laboratory conditions. W303, for instance, which
has been considered the reference strain in many
gene-expression studies, displays significantly higher 30/50

run-on ratios than BY4741. We have shown that this dif-
ference is likely due to the presence in W303 of a recessive
allele (ssd1-d) that encodes a truncated form of Ssd1
lacking an RNAse II-like domain (42). Ssd1 participates
in mRNA processing (39,40), binds RNA (38) and phys-
ically interacts with the hyperphosphorylated form of the
RNA pol II CTD (71). Our results indicate an important
role of Ssd1 during transcription elongation and help
explain why some gene expression-related phenotypes
are specific of the W303 background (37,41).

The results of the genetic analysis that we have carried
out confirm the involvement of some protein factors in
transcription elongation (Ccr4, Fun12 and Fes1), whose
molecular connection with the transcriptional machinery
is uncertain (55). In other cases, previous knowledge on
the factors function allows approaching the molecular
basis of this phenomenon. This is the case of bre1D and
set1AA, producing a shift in the distribution of active pol
II toward the 50-end of the genes. The deletion of BRE1
abolishes H2B ubiquitynation and, subsequently, H3-K4
di- and trimethylation (18)(63), whereas set1AA causes a
defect in H3-K4 trimethylation without eliminating
dimethylation (64). In contrast, the deletion of SET1,
which abolishes all forms of H3-K4 methylation, does
not produce any significant shift in the intragenic
localization of active RNA pol II. We propose that the
balance between the different forms of H3-K4 methylation
(mono-, di- and tri-methylation) regulates RNA pol II
activity during transcription elongation either directly or
by affecting additional chromatin modifications (72).

The other mutants that produce general shifts in the
30/50 run-on ratios encode general transcription factors
that interact directly with RNA pol II. Of these, the
deletion of the polymerase subunit Rpb9 is particularly
striking. The comparison of the run-on results with
those produced by ChIP indicates the presence of tran-
scriptionally incompetent polymerases in the 50 half of
the genes studied, suggesting a higher tendency of
Rpb9-defective polymerases to become arrested in that
particular region. Such arrested polymerases would need
TFIIS to resume transcription, which is consistent with
the synthetic lethality exhibited by rpb9D and dst1D (73).
However, dst1D does not produce a 30-biased profile of
active transcription, like rpb9D, but a weaker bias
toward the 50-end. This result indicates that wild-type
RNA pol II does not tend to become preferentially
inactive at the 50-end, as it does in the absence of Rpb9,
but inactivates more modestly at the 30-end, where it may
be efficiently compensated by the action of Dst1.

The deletion of Bur2 cyclin-kinase also displaces the
distribution of active RNA pol II toward the 30-end. The
main function of Bur2 is to phosphorylate the Spt5
subunit of yDSIF (45,46). This phosphorylation is essen-
tial for overcoming the early elongation pause. So it is
conceivable that a lack of phosphorylation in Spt5
produces a higher frequency of RNA pol II arrest at the

50-end, hence lowering the run-on signal at this region.
This is in agreement with the results obtained by Chu
et al. (74) in PMA1, where bur2D has been seen to bring
about a decrease in histone H4-K36 trimethylation, a
chromatin mark of transcription elongation, at the 50

of this gene without affecting the total amount of RNA
pol II present in this region. If this hypothesis is true,
and given that spt4D produces a bias of active transcrip-
tion in the opposite orientation, the two subunits of
yDSIF would play distinct complementary roles during
elongation. Although we favour this interpretation, we
cannot rule out that the deletion of Bur2 produces a per-
turbation in the intragenic distribution of active RNA pol
II as it affects the phosphorylation status of the Rpb1
CTD (49).
The last intriguing finding of our genetic analysis of

active RNA polymerase distribution is the marked 50-
bias produced by med2D. The Med2 protein belongs to
the Mediator complex, which was originally described
for its role in the regulation of the pre-initiation-complex
assembly. Following a completely different experimental
approach, we have already linked the Mediator complex
with the elongation phase (55). Human Mediator has also
been connected to post-initiation transcription since it was
found to be involved in the DSIF-dependent activation of
transcription (75). This fact enables a mechanism by which
Mediator might indirectly modulate the intragenic distri-
bution of active RNA pol II.
As part of the general tendency of each gene to maintain

a characteristic 30/50 run-on ratio in all backgrounds and
under all conditions, there is a certain degree of
overlapping among the genes when comparing all the
average ratios obtained for the 18 mutants tested
(Supplementary Figure S7A). As expected, the clustering
analysis of this data recapitulates the functional relation-
ship of some mutants (set1AA and set1D) or their average
effect on the run-on ratios (rpb9D, ccr4D and ssd1D)
(Supplementary Figure S9C). With some minor excep-
tions, all the genes present in the array were influenced
in their 30/50 run-on ratios by the mutants tested, exhibit-
ing a variation of at least 1 log2 units in one of the mutant
strains (Supplementary Figure S7B). Some genes tended to
shift their run-on ratio toward the 30 end in the mutants
analysed, whereas others did so toward the 50-end
(Supplementary Figure S7B). When we plot the average
mutant-wild-type increment in the 30/50 run-on ratio for
each gene versus its 30/50 run-on ratio in the wild type, we
see that most genes exhibiting significantly biased distri-
butions of active RNA pol II in the wild type tend to
equilibrate them in the mutant backgrounds (Figure 5).
We can conclude that the default situation is the
unbiased distribution of active transcription and that tran-
scription elongation factors are collectively involved in
shaping the profile of active RNA pol II along the
transcribed region. Accordingly, gene-specific profiles
would be the result of combining local chromatin with
the action of the transcription elongation machinery in
response to gene-specific regulatory signals. The recent
development of more sensitive high-resolution methods
of genomic run-on (15) should facilitate the test of this
model.

Nucleic Acids Research, 2010 11

 at U
N

IV
E

R
S

ID
A

D
 D

E
 V

A
LE

N
C

IA
 on July 9, 2010 

http://nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org


SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank O. Rando for sharing data, F. Posas,
E. de Nadal and the members of our labs for comments
and advice, and Helen Warburton for English corrections.

FUNDING

Spanish Ministry of Education and Science (BFU2007-
67575-CO3-01/BMC to J.E.P-O. and BFU2007-67575-
CO3-02/BMC to S.C.); Regional Valencian Government
(ACOMP2009/368 to J.E.P.-O.); Regional Andalusian
Government (P07-CVI02623 to S.C.). A.R-G. was
covered by a fellowship from the University of Seville.
Funding for open access charge: Andalusian Government.

Conflict of interest statement. None declared.

REFERENCES

1. Price,D.H. (2008) Poised polymerases: on your mark. . .get
set. . .go! Mol. Cell, 30, 7–10.

2. Zhou,Q. and Yik,J.H. (2006) The Yin and Yang of P-TEFb
regulation: implications for human immunodeficiency virus gene
expression and global control of cell growth and differentiation.
Microbiol. Mol. Biol. Rev., 70, 646–659.

3. Hecht,A. and Grunstein,M. (1999) Mapping DNA interaction
sites of chromosomal proteins using immunoprecipitation and
polymerase chain reaction. Methods Enzymol., 304, 399–414.

4. Hecht,A., Strahl-Bolsinger,S. and Grunstein,M. (1999) Mapping
DNA interaction sites of chromosomal proteins. Crosslinking
studies in yeast. Methods Mol. Biol., 119, 469–479.

5. Komarnitsky,P., Cho,E.J. and Buratowski,S. (2000) Different
phosphorylated forms of RNA polymerase II and associated
mRNA processing factors during transcription. Genes Dev., 14,
2452–2460.

6. Mason,P.B. and Struhl,K. (2005) Distinction and relationship
between elongation rate and processivity of RNA polymerase II
in vivo. Mol. Cell, 17, 831–840.

7. Gilchrist,D.A., Fargo,D.C. and Adelman,K. (2009) Using
ChIP-chip and ChIP-seq to study the regulation of gene
expression: Genome-wide localization studies reveal widespread
regulation of transcription elongation. Methods, 48, 398–408.

8. Exinger,F. and Lacroute,F. (1992) 6-Azauracil inhibition
of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet.,
22, 9–11.

9. Glesne,D.A., Collart,F.R. and Huberman,E. (1991) Regulation of
IMP dehydrogenase gene expression by its end products, guanine
nucleotides. Mol. Cell Biol., 11, 5417–5425.

10. Morillo-Huesca,M., Vanti,M. and Chavez,S. (2006) A simple
in vivo assay for measuring the efficiency of gene
length-dependent processes in yeast mRNA biogenesis. FEBS J.,
273, 756–769.

11. Kireeva,M.L., Hancock,B., Cremona,G.H., Walter,W.,
Studitsky,V.M. and Kashlev,M. (2005) Nature of the nucleosomal
barrier to RNA polymerase II. Mol. Cell, 18, 97–108.

12. Voliotis,M., Cohen,N., Molina-Paris,C. and Liverpool,T.B. (2008)
Fluctuations, pauses, and backtracking in DNA transcription.
Biophys. J., 94, 334–348.

13. Hirayoshi,K. and Lis,J.T. (1999) Nuclear run-on assays: assessing
transcription by measuring density of engaged RNA polymerases.
Methods Enzymol., 304, 351–362.

14. Garcia-Martinez,J., Aranda,A. and Perez-Ortin,J.E. (2004)
Genomic run-on evaluates transcription rates for all yeast genes
and identifies gene regulatory mechanisms. Mol. Cell, 15,
303–313.

15. Core,L.J., Waterfall,J.J. and Lis,J.T. (2008) Nascent RNA
sequencing reveals widespread pausing and divergent initiation at
human promoters. Science, 322, 1845–1848.

16. Pelechano,V., Jimeno-Gonzalez,S., Rodriguez-Gil,A.,
Garcia-Martinez,J., Perez-Ortin,J.E. and Chavez,S. (2009)
Regulon-specific control of transcription elongation across the
yeast genome. PLoS Genet., 5, e1000614.

17. Thomas,B.J. and Rothstein,R. (1989) Elevated recombination
rates in transcriptionally active DNA. Cell, 56, 619–630.

18. Dehe,P.M., Pamblanco,M., Luciano,P., Lebrun,R., Moinier,D.,
Sendra,R., Verreault,A., Tordera,V. and Geli,V. (2005) Histone
H3 lysine 4 mono-methylation does not require ubiquitination of
histone H2B. J. Mol. Biol., 353, 477–484.

19. Rose,M.D., Winston,F. and Hieter,P. (1990) Methods in Yeast
Genetics: A Laboratory Course Manual. Cold Sprong Harbor
Laboratory Press, Cold Sprong Harbor, NY.

20. Alberola,T.M., Garcia-Martinez,J., Antunez,O., Viladevall,L.,
Barcelo,A., Arino,J. and Perez-Ortin,J.E. (2004) A new set of
DNA macrochips for the yeast Saccharomyces cerevisiae: features
and uses. Int. Microbiol., 7, 199–206.

21. Akhtar,A., Faye,G. and Bentley,D.L. (1996) Distinct activated
and non-activated RNA polymerase II complexes in yeast.
EMBO J., 15, 4654–4664.

22. Kohrer,K. and Domdey,H. (1991) Preparation of high molecular
weight RNA. Methods Enzymol., 194, 398–405.

23. Jimeno-Gonzalez,S., Gomez-Herreros,F., Alepuz,P.M. and
Chavez,S. (2006) A gene-specific requirement for FACT during
transcription is related to the chromatin organization of the
transcribed region. Mol. Cell Biol., 26, 8710–8721.

24. Rosaleny,L.E., Ruiz-Garcia,A.B., Garcia-Martinez,J.,
Perez-Ortin,J.E. and Tordera,V. (2007) The Sas3p and Gcn5p

Figure 5. Scatter plot representing the average increment of the 30/50 run-on ratio produced on each gene by the 18 mutation tested (Y-axis) against
the run-on 30/50 ratio exhibited by that gene in the wild-type BY4741 strain (X-axis). Spearmann’s rank correlation �=–0,428; P=8.09� 10–4.

12 Nucleic Acids Research, 2010

 at U
N

IV
E

R
S

ID
A

D
 D

E
 V

A
LE

N
C

IA
 on July 9, 2010 

http://nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org


histone acetyltransferases are recruited to similar genes. Genome
Biol., 8, R119.

25. Berry,G. and Armitage,P. (1994) Statistical Methods in Medical
Research, 3rd ed. Blackwell Science, Oxford.

26. Holstege,F.C., Jennings,E.G., Wyrick,J.J., Lee,T.I.,
Hengartner,C.J., Green,M.R., Golub,T.R., Lander,E.S. and
Young,R.A. (1998) Dissecting the regulatory circuitry of a
eukaryotic genome. Cell, 95, 717–728.

27. Zhang,Z. and Dietrich,F.S. (2005) Mapping of transcription start
sites in Saccharomyces cerevisiae using 50 SAGE. Nucleic Acids
Res., 33, 2838–2851.

28. Xu,Z., Wei,W., Gagneur,J., Perocchi,F., Clauder-Munster,S.,
Camblong,J., Guffanti,E., Stutz,F., Huber,W. and Steinmetz,L.M.
(2009) Bidirectional promoters generate pervasive transcription in
yeast. Nature, 457, 1033–1037.

29. Jorgensen,P., Rupes,I., Sharom,J.R., Schneper,L., Broach,J.R. and
Tyers,M. (2004) A dynamic transcriptional network communicates
growth potential to ribosome synthesis and critical cell size. Genes
Dev., 18, 2491–2505.

30. Al-Shahrour,F., Minguez,P., Tarraga,J., Montaner,D., Alloza,E.,
Vaquerizas,J.M., Conde,L., Blaschke,C., Vera,J. and Dopazo,J.
(2006) BABELOMICS: a systems biology perspective in the
functional annotation of genome-scale experiments. Nucleic Acids
Res., 34, W472–W476.

31. Hartzog,G.A., Wada,T., Handa,H. and Winston,F. (1998)
Evidence that Spt4, Spt5, and Spt6 control transcription
elongation by RNA polymerase II in Saccharomyces cerevisiae.
Genes Dev., 12, 357–369.

32. Wada,T., Takagi,T., Yamaguchi,Y., Ferdous,A., Imai,T.,
Hirose,S., Sugimoto,S., Yano,K., Hartzog,G.A., Winston,F. et al.
(1998) DSIF, a novel transcription elongation factor that
regulates RNA polymerase II processivity, is composed of human
Spt4 and Spt5 homologs. Genes Dev., 12, 343–356.

33. Wada,T., Takagi,T., Yamaguchi,Y., Watanabe,D. and Handa,H.
(1998) Evidence that P-TEFb alleviates the negative effect of
DSIF on RNA polymerase II-dependent transcription in vitro.
EMBO J., 17, 7395–7403.

34. Lindstrom,D.L. and Hartzog,G.A. (2001) Genetic interactions of
Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and
CTD modifying enzymes in Saccharomyces cerevisiae. Genetics,
159, 487–497.

35. Rondon,A.G., Garcia-Rubio,M., Gonzalez-Barrera,S. and
Aguilera,A. (2003) Molecular evidence for a positive role of Spt4
in transcription elongation. EMBO J., 22, 612–620.

36. Kebaara,B., Nazarenus,T., Taylor,R. and Atkin,A.L. (2003)
Genetic background affects relative nonsense mRNA
accumulation in wild-type and upf mutant yeast strains.
CURR. Genet., 43, 171–177.

37. Zhao,Y., McIntosh,K.B., Rudra,D., Schawalder,S., Shore,D. and
Warner,J.R. (2006) Fine-structure analysis of ribosomal protein
gene transcription. Mol. Cell Biol., 26, 4853–4862.

38. Uesono,Y., Toh-e,A. and Kikuchi,Y. (1997) Ssd1p of
Saccharomyces cerevisiae associates with RNA. J. Biol. Chem.,
272, 16103–16109.

39. Fortes,P., Kufel,J., Fornerod,M., Polycarpou-Schwarz,M.,
Lafontaine,D., Tollervey,D. and Mattaj,I.W. (1999) Genetic and
physical interactions involving the yeast nuclear cap-binding
complex. Mol. Cell Biol., 19, 6543–6553.

40. Luukkonen,B.G. and Seraphin,B. (1999) A conditional U5
snRNA mutation affecting pre-mRNA splicing and nuclear
pre-mRNA retention identifies SSD1/SRK1 as a general splicing
mutant suppressor. Nucleic Acids Res., 27, 3455–3465.

41. Stettler,S., Chiannilkulchai,N., Hermann-Le Denmat,S., Lalo,D.,
Lacroute,F., Sentenac,A. and Thuriaux,P. (1993) A general
suppressor of RNA polymerase I, II and III mutations in
Saccharomyces cerevisiae. Mol. Gen. Genet., 239, 169–176.

42. Jorgensen,P., Nelson,B., Robinson,M.D., Chen,Y., Andrews,B.,
Tyers,M. and Boone,C. (2002) High-resolution genetic mapping
with ordered arrays of Saccharomyces cerevisiae deletion mutants.
Genetics, 162, 1091–1099.

43. Woychik,N.A., Lane,W.S. and Young,R.A. (1991) Yeast RNA
polymerase II subunit RPB9 is essential for growth at
temperature extremes. J. Biol. Chem., 266, 19053–19055.

44. Woychik,N.A. and Young,R.A. (1989) RNA polymerase II
subunit RPB4 is essential for high- and low-temperature yeast cell
growth. Mol. Cell Biol., 9, 2854–2859.

45. Wood,A. and Shilatifard,A. (2006) Bur1/Bur2 and the Ctk
complex in yeast: the split personality of mammalian P-TEFb.
Cell Cycle, 5, 1066–1068.

46. Zhou,K., Kuo,W.H., Fillingham,J. and Greenblatt,J.F. (2009)
Control of transcriptional elongation and cotranscriptional
histone modification by the yeast BUR kinase substrate Spt5.
Proc. Natl Acad. Sci. USA, 106, 6956–6961.

47. Yao,S., Neiman,A. and Prelich,G. (2000) BUR1 and BUR2
encode a divergent cyclin-dependent kinase-cyclin complex
important for transcription in vivo. Mol. Cell Biol., 20,
7080–7087.

48. Murray,S., Udupa,R., Yao,S., Hartzog,G. and Prelich,G. (2001)
Phosphorylation of the RNA polymerase II carboxy-terminal
domain by the Bur1 cyclin-dependent kinase. Mol. Cell Biol., 21,
4089–4096.

49. Qiu,H., Hu,C. and Hinnebusch,A.G. (2009) Phosphorylation of
the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment
and Ser2 CTD phosphorylation near promoters. Mol. Cell, 33,
752–762.

50. Kipling,D. and Kearsey,S.E. (1993) Function of the S. cerevisiae
DST1/PPR2 gene in transcription elongation. Cell, 72, 12.

51. Awrey,D.E., Weilbaecher,R.G., Hemming,S.A., Orlicky,S.M.,
Kane,C.M. and Edwards,A.M. (1997) Transcription elongation
through DNA arrest sites. A multistep process involving both
RNA polymerase II subunit RPB9 and TFIIS. J. Biol. Chem.,
272, 14747–14754.

52. Fish,R.N. and Kane,C.M. (2002) Promoting elongation with
transcript cleavage stimulatory factors. Biochim. Biophys. Acta,
1577, 287–307.

53. Bjorklund,S. and Gustafsson,C.M. (2005) The yeast
Mediator complex and its regulation. Trends Biochem. Sci., 30,
240–244.

54. Collart,M.A. (2003) Global control of gene expression in yeast by
the Ccr4-Not complex. Gene, 313, 1–16.

55. Gaillard,H., Tous,C., Botet,J., Gonzalez-Aguilera,C.,
Quintero,M.J., Viladevall,L., Garcia-Rubio,M.L.,
Rodriguez-Gil,A., Marin,A., Arino,J. et al. (2009) Genome-wide
analysis of factors affecting transcription elongation and DNA
repair: a new role for PAF and Ccr4-not in transcription-coupled
repair. PLoS Genet., 5, e1000364.

56. Daniel,J.A. and Grant,P.A. (2007) Multi-tasking on chromatin
with the SAGA coactivator complexes. Mutat Res., 618, 135–148.

57. Timmers,H.T. and Tora,L. (2005) SAGA unveiled. Trends
Biochem Sci., 30, 7–10.

58. Mueller,C.L. and Jaehning,J.A. (2002) Ctr9, Rtf1, and Leo1 are
components of the Paf1/RNA polymerase II complex. Mol. Cell
Biol., 22, 1971–1980.

59. Shi,X., Chang,M., Wolf,A.J., Chang,C.H., Frazer-Abel,A.A.,
Wade,P.A., Burton,Z.F. and Jaehning,J.A. (1997) Cdc73p and
Paf1p are found in a novel RNA polymerase II-containing
complex distinct from the Srbp-containing holoenzyme.
Mol. Cell Biol., 17, 1160–1169.

60. Dehe,P.M. and Geli,V. (2006) The multiple faces of Set1.
Biochem. Cell Biol., 84, 536–548.

61. Krogan,N.J., Dover,J., Khorrami,S., Greenblatt,J.F., Schneider,J.,
Johnston,M. and Shilatifard,A. (2002) COMPASS, a histone H3
(Lysine 4) methyltransferase required for telomeric silencing of
gene expression. J. Biol. Chem., 277, 10753–10755.

62. Wood,A., Krogan,N.J., Dover,J., Schneider,J., Heidt,J.,
Boateng,M.A., Dean,K., Golshani,A., Zhang,Y., Greenblatt,J.F.
et al. (2003) Bre1, an E3 ubiquitin ligase required for recruitment
and substrate selection of Rad6 at a promoter. Mol. Cell, 11,
267–274.

63. Shahbazian,M.D., Zhang,K. and Grunstein,M. (2005)
Histone H2B ubiquitylation controls processive methylation
but not monomethylation by Dot1 and Set1. Mol. Cell, 19,
271–277.

64. Tresaugues,L., Dehe,P.M., Guerois,R., Rodriguez-Gil,A.,
Varlet,I., Salah,P., Pamblanco,M., Luciano,P.,
Quevillon-Cheruel,S., Sollier,J. et al. (2006) Structural

Nucleic Acids Research, 2010 13

 at U
N

IV
E

R
S

ID
A

D
 D

E
 V

A
LE

N
C

IA
 on July 9, 2010 

http://nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org


characterization of Set1 RNA recognition motifs and their role in
histone H3 lysine 4 methylation. J. Mol. Biol., 359, 1170–1181.

65. Choi,S.K., Lee,J.H., Zoll,W.L., Merrick,W.C. and Dever,T.E.
(1998) Promotion of met-tRNAiMet binding to ribosomes
by yIF2, a bacterial IF2 homolog in yeast. Science, 280,
1757–1760.

66. Dragovic,Z., Shomura,Y., Tzvetkov,N., Hartl,F.U. and
Bracher,A. (2006) Fes1p acts as a nucleotide exchange factor for
the ribosome-associated molecular chaperone Ssb1p. Biol. Chem.,
387, 1593–1600.

67. Kabani,M., Beckerich,J.M. and Brodsky,J.L. (2002) Nucleotide
exchange factor for the yeast Hsp70 molecular chaperone Ssa1p.
Mol. Cell Biol., 22, 4677–4689.

68. Darzacq,X., Shav-Tal,Y., de Turris,V., Brody,Y., Shenoy,S.M.,
Phair,R.D. and Singer,R.H. (2007) In vivo dynamics of
RNA polymerase II transcription. Nat. Struct. Mol. Biol., 14,
796–806.

69. Rando,O.J. and Chang,H.Y. (2009) Genome-wide views of
chromatin structure. Annu. Rev. Biochem., 78, 245–271.

70. Weiner,A., Hughes,A., Yassour,M., Rando,O.J. and Friedman,N.
(2010) High-resolution nucleosome mapping reveals transcription-
dependent promoter packaging. Genome Res., 20, 90–100.

71. Phatnani,H.P., Jones,J.C. and Greenleaf,A.L. (2004) Expanding
the functional repertoire of CTD kinase I and RNA polymerase
II: novel phosphoCTD-associating proteins in the yeast proteome.
Biochemistry, 43, 15702–15719.

72. Kim,T. and Buratowski,S. (2009) Dimethylation of H3K4 by Set1
recruits the Set3 histone deacetylase complex to 50 transcribed
regions. Cell, 137, 259–272.

73. Hemming,S.A., Jansma,D.B., Macgregor,P.F., Goryachev,A.,
Friesen,J.D. and Edwards,A.M. (2000) RNA polymerase II
subunit Rpb9 regulates transcription elongation in vivo.
J. Biol. Chem., 275, 35506–35511.

74. Chu,Y., Simic,R., Warner,M.H., Arndt,K.M. and Prelich,G. (2007)
Regulation of histone modification and cryptic transcription by the
Bur1 and Paf1 complexes. EMBO J., 26, 4646–4656.

75. Malik,S., Barrero,M.J. and Jones,T. (2007) Identification of a
regulator of transcription elongation as an accessory factor for
the human Mediator coactivator. Proc. Natl Acad. Sci. USA, 104,
6182–6187.

76. Saeed,A.I., Sharov,V., White,J., Li,J., Liang,W., Bhagabati,N.,
Braisted,J., Klapa,M., Currier,T., Thiagarajan,M. et al. (2003)
TM4: a free, open-source system for microarray data
management and analysis. Biotechniques, 34, 374–378.

14 Nucleic Acids Research, 2010

 at U
N

IV
E

R
S

ID
A

D
 D

E
 V

A
LE

N
C

IA
 on July 9, 2010 

http://nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org

