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ABSTRACT

The study of a few genes has permitted the identification
of three elements that constitute a yeast polyadenyl-
ation signal: the efficiency element (EE), the positioning
element and the actual site for cleavage and poly-
adenylation. In this paper we perform an analysis of
oligonucleotide composition on the sequences
located downstream of the stop codon of all yeast
genes. Several oligonucleotide families appear over-
represented with a high significance (referred to
herein as ‘words’). The family with the highest over-
representation includes the oligonucleotides shown
experimentally to play a role as EEs. The word with the
highest score is TATATA, followed, among others, by
a series of single-nucleotide variants (TATGTA,
TACATA, TAAATA ...) and one-letter shifts (ATATAT).
A position analysis reveals that those words have a
high preference to be in 3’ flanks of yeast genes and
there they have a very uneven distribution, with a
marked peak around 35 bp after the stop codon. Of
the predicted ORFs, 85% show one or more of those
sequences. Similar results were obtained using a
data set of EST sequences. Other clusters of over-
represented words are also detected, namely T- and
A-rich signals. Using these results and previously
known data we propose a general model for the 3’
trailers of yeast mRNAs.

INTRODUCTION

mRNA 3’-end formation in eukaryotic cells involves endo-
nucleolytic cleavage at a specific site of the precursor mRNA
coupled in most cases to polymerisation of a poly(A) tail onto
the upstream cleavage fragment (1,2). This process is an
essential step in eukaryotic mRNA synthesis because the
poly(A) tail functions in mRNA turnover (3) and in translation
4).

Because of the good knowledge of its genetics and bio-
chemistry the yeast Saccharomyces cerevisiae has been used
as a model organism for understanding cellular processes in
eukaryotes. Nevertheless the information about mRNA 3’

formation has been confusing for a long time and many aspects
of it have become understood later in yeast than in higher
eukaryotes. The ability of yeast whole-cell extracts to cleave
extended precursor RNAs endonucleolytically at the same sites
used for poly(A) addition in vivo (5,6) has indicated that,
overall, the 3’-end processing reaction is similar to that of
mammalian cells. Despite the similarities between yeast and
mammals regarding the overall mechanism and the poly-
adenylation factors, the 3’-end sequences which direct the
process show some differences (1). Moreover, the identification
of a consensus signal in yeast has been elusive. Although the
AATAAA hexanucleotide is found in the 3’ region of ~50% of
the yeast genes (7) mutations in this element do not affect the
polyadenylation process. The accurate analysis carried out by
Guo and Sherman (8) in the S.cerevisiae CYCI gene has
permitted the identification of three elements working in
concert, which are not only necessary but also sufficient to
constitute a yeast polyadenylation signal. Analysis of several
polyadenylation signals led to the identification of certain
modifications in the sequences of these elements (reviewed in
9). The far upstream element is the efficiency element (EE),
whose deletion decreases the efficiency of processing. It is a
TA-rich element. Saturation mutagenesis experiments of the
element TAG ... TATGTA, which was the first proposed as a
polyadenylation signal (10), revealed that the hexanucleotide
TAYRTA is essential for this function and that the sequence
TATATA has the best capacity for 3’-end formation.
Moreover, the two T residues at the first and fifth position are
the most essential nucleotides in this sequence (11). The
second element of the polyadenylation signal is an A-rich
positioning element (PE), of which recognition appears to be
closely coupled to cleavage at the nearest downstream PyA
site, usually located 13-27 nucleotides downstream. The
sequences identified so far for this function have been
AAAAAAAA, TTAAGAAC, AAGAA, AATAATGA and
AATAAA, the latter being the strongest signal and possible
consensus (9). Distance between the EE and the PE can vary,
but the efficiency is sensitive to spacing. It is worth noting that
other sequences or a different arrangement of sequences have
been identified for some yeast genes (12—17) and, in fact, very
few yeast genes have been investigated for the analysis of their
polyadenylation signals. Obviously a wider investigation of
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the yeast genes is required in order to discuss the existence of
consensus sequences in yeast.

Having in hand the complete genome sequence and all the
putative ORF locations, it is possible to carry out a complete
analysis of their 3’ flanking sequences in order to detect highly
represented patterns, which could play a role in polyadenylation or
in other processes. The biological function of non-coding
sequences is generally mediated by short conserved sequences.
A common approach to the discovery of short signals in large
sequence sets is the analysis of oligonucleotide representation
(18-20 and references therein). Given the fact that regulatory
signals are often centred on a short and highly conserved core,
over-represented oligonucleotides (called ‘words’ hereafter for
brevity) are likely to exert some biological function. The
crucial problem is to define a valid criterion for a word to be
considered over-represented. Word frequency by itself is a
very poor criterion because oligonucleotide composition of
DNA sequences is strongly biased. First, genomic sequences
already present biases in base composition (A:T richness).
Moreover, non-randomness is observed in nucleotide succession,
probably due to structural constraints [avoidance of large
poly(G) or poly(C) strands], that do not directly reflect biological
features. Special care must thus be taken to evaluate the
specific expected frequency of each word. To date, the most
satisfying statistical model for representation of DNA
sequences is the Markov chain, which estimates expected word
frequencies on the basis of subword frequencies observed in
the same sequence (18,21). The task is then to select words
whose observed frequency significantly differs from expectation.
Several statistics have been used as criteria of over-representation:
representation ratio (i.e. observed/expected occurrences; see
for example 22,23), ‘odds’ ratio (24), likelihood ratio (25),
binomial probability (26) and Z-score (20,27). Z-scores provide
the advantage of taking into account an estimated variance on
occurrence numbers. This parameter is crucial since it has been
demonstrated that self-overlap (e.g. AAAAAA, TATATA)
induces a bias in occurrence probabilities: the average expected
number of occurrences is not affected, but the variance increases
with self-overlap (27). The probability to observe either a low
or high number of occurrences is thus higher for self-overlapping
words, and there is a risk of overestimating the importance of
such words with statistics based on expected occurrences only
(binomial, Poisson). This bias can be corrected by the intro-
duction of a self-overlap coefficient in the calculation of the
estimated variance (27-29).

In this paper we perform an analysis of oligonucleotide
composition on the sequences located downstream of the stop
codon of all yeast genes. Several oligonucleotides appear over-
represented with a high significance, among which are those
shown experimentally to play a role in 3’-end formation. The
word with highest over-representation is TATATA, followed,
among others, by a series of single-nucleotide variants
(TATGTA, TACATA, TAAATA, TATTTA) or displacements
(e.g. ATATAT). Many of these words also show a marked
preference for downstream versus upstream sequences. Position
analysis reveals that those words have a very uneven distri-
bution in the 3’ region, with a marked peak around 35 bp after
the stop codon. Several of the words isolated by this triple analysis
have already been found to function as EEs. We also used our
experimental protocol to analyse a data set of 1352 yeast ESTs
previously studied by Graber et al. (25). We obtained results
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compatible with those of our genomic analysis. Other families
of over-represented words were also detected: an A-rich signal,
corresponding to the positioning element, and a T-rich signal
for which no functional data are available yet. Using these
results and previously known data we propose a general model
for the 3’ trailer of yeast genes.

MATERIALS AND METHODS

Collection of sequence sets

Two complete sets of downstream sequences were collected,
including one sequence for each of the 6217 yeast ORFs. The
first set ranged from position +1 to +200 starting from the last
base of the stop codon, and was used for the detection of over-
represented oligonucleotides and position analysis. An
extended sequence set, ranging from -200 to +400 was
collected from the distribution profiles shown in Figure 3. This
last set thus encompassed systematically 200 bp of coding
sequences on the 5" end. The average distance between an ORF
end and the closest downstream ORF is 547 bp, but a significant
number of genes have a downstream neighbour closer than 400
or even 200 bp. In such cases, downstream regions were
clipped on the 3’ side to avoid including coding sequences
from a downstream neighbour.

For the upstream/downstream comparison, we retrieved two
sequence sets grouping together all intergenic regions located
between two genes that were, respectively, divergently or
convergently transcribed.

Joel Graber kindly provided the sequences surrounding
cleavage sites (25). This set contains 1352 sequences of 230
bases, ranging from —150 to +80 from RNA cleavage sites.
These 1352 cleavage sites are located downstream of 861
genes (some genes have several cleavage sites).

We collected several subsets of downstream sequences
(ranging from +1 to +200 from the stop codon) for the comparison
shown in Figure 5. A first set regrouped 384 questionable
OREFs (as defined by MIPS). Another set contained 764 ORFs
without known homologue. The last set contained the 861
ORFs from Joel Graber, for which there is at least one known
3" EST.

Oligonucleotide analysis

The program oligo-analysis (26) was used to count oligonucleotide
occurrences in the set of 200 bp downstream sequences, for all
oligo sizes between five and eight. Since we did not want to
exclude potential orientation-sensitive signals, occurrences
were counted on a single strand. The two critical parameters
for detection of over-represented oligonucleotides are the
estimation of expected frequencies, and the scoring scheme,
which were defined as follows.

Expected oligonucleotide frequencies were calculated on the
basis of observed subword frequencies, according to a Markov
chain model. For words of length k, one can choose any
Markov order (i.e. the subword length) m between 1 and k — 2.
For instance, for k = 6 and m = 3, one has:

F,,(GATAAG) = [F,, (GATA) x F,, (ATAA) x F
[F, (ATA) x F,, (TAA)].

For a formal description of Markov models, refer to Durbin
etal (21).

(TAAG)I/

obs obs

obs obs
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The expected number of occurrences is obtained by multi-
plying the expected frequency with the number of possible
word positions:

(W)X X5 (L -k + 1),

where L, is the length of the i sequence and S is the number of
sequences.

In a previous analysis of upstream sequences (26), we
calculated occurrence probabilities on basis of the binomial.
This scoring has the advantage of being adequate for small
sequence sets, but raises the problem of over-estimating the
importance of self-overlapping patterns. This bias was not a
concern for the detection of upstream regulatory elements, but
was not acceptable anymore in the present context, since the
few elements experimentally characterised are self-overlapping
(noticeably the EE element TATATA). It has been shown (27)
that self-overlapping does not affect the first moment (expected
occurrences) but increases the second moment (variance), leading
to a higher probability of observing occurrence values distant
from the average. Corrections on the estimated variance have
been introduced for self-overlapping patterns that can be used
in a Z-score.

occexp(w) = Fexp

Z = [occ (W) — occexp(w)]/stdevest(w),
stdev (W) = \/ var,(w),

where w is the oligonucleotide sequence (word), occ (W) is
the number of occurrences observed for w, occ,, (W) is the
number of occurrences expected for w, stdev (W) is an estima-
tion of the standard deviation of occurrences of w, and var,4(w)
is an estimation of the variance of occurrences for w.

The estimated variance (var,y) and self-overlap coefficient
(K,,) are calculated according to Pevzner et al. (28):

Varg, = OCCeXp[ZKOV -1- (2W - l) X 0CcC
Koy =2 s K [V,

oV

exp]’

where s is the pattern length; j is the overlap position,
comprised between 0 and I; kj takes the value 1 if there is an
overlap at position j, 0 otherwise; f(n;) is the residual frequency
for the nucleotide found at position j of the sequence.

As discussed by van Helden et al. (26), the threshold value
must be adapted to the number of possible words, which
depends on the word size. For hexanucleotides, we set the
threshold on Z-score to 3.49, which corresponds to a first-order
risk oo = 0.00024 = 1/4096. With this threshold, one expects no
more than one hexanucleotide to be selected at random in each
data set. In a general way, one should accept a first order risk o
< 1/4X for k-letter words.

Position analysis

We performed a %2 test to assess the statistical significance of
the positional biases (Table 1). For this, we used the set of
200 bp downstream sequences, clipped when required to avoid
any coding sequence. For each pattern, matching positions
were detected and clustered into 20 classes (from 0 to 200, with
a class interval of 10). The number of occurrences in each class
was compared to the expected number of occurrences,
calculated on basis of a flat distribution hypothesis. Due to the
clipping, the number of sequences decreases in distal classes,
and we adapted the expected number of occurrences to the
number of sequences found in each position class.

0CCy,(W,C) = 0CCu (W) X N [C1/Z; N [l

where occ,,(w,c) is the expected number of occurrences for
the word w in the position class ¢, Ng,[c] is the number of
sequences in the position class ¢, and occ (W) is the total
number of occurrences observed for word w in the 200 bp
sequence set.

Table 1. 3’-end signals detected by analysis of all genomic downstream
sequences

Sequence mkv3 %2 Con/div Score Cluster
TATATA 34.9 409.4 2.67 38027 D1
ATATAT 27.0 3244 2.60 22757 D1
TACATA 27.7 185.5 2.65 13649 D1
TATGTA 25.0 138.4 2.65 9193 D1
TAAATA 22.0 122.0 2.12 5679 D1
ATACAT 15.5 100.8 2.38 3726 D1
TGTATA 8.6 153.0 2.24 2963 D1
ATGTAT 11.9 101.1 2.38 2857 D1
GTATAT 8.2 123.0 1.93 1938 D1
ATTTAT 9.8 85.7 1.98 1660 D1
ACATAT 7.7 102.1 1.93 1523 D1
TACGTA 16.3 56.0 1.55 1417 D1
ATATAC 7.4 98.0 1.93 1391 D1
TATACA 7.3 81.3 2.24 1337 D1
TAGATA 11.9 64.1 1.68 1282 D1
ATATGT 7.8 76.4 1.93 1156 D1
ATAGAT 9.9 66.7 1.57 1032 D1
ATAAAT 9.9 52.2 1.98 1029 D1
CATATA 35 140.2 1.97 973 D1
TGTGTA 6.4 84.7 1.40 752 D1
ATGTAC 4.7 51.2 1.66 401 D1
TATTTA 17.7 134.5 2.12 5054 D2
TTATTT 16.7 79.2 1.79 2367 D2
TTTATT 133 74.4 1.68 1654 D2
TTTTTT 16.9 55.3 1.33 1239 D2
TATTAT 5.1 84.9 1.89 815 D2
ACATAA 5.0 51.4 1.70 436 D3
AGAAAA 4.7 51.8 1.10 268 D4

mkv3, Z-scores calculated with third-order Markov chain model; Xz’ from
position analysis; con/div, representation ratio between intergenic regions
separating convergently and divergently transcribed genes; score, product of
the three values; cluster, defined by position analysis. See text for details.

Since we consider 20 classes, there are 19 degrees of
freedom. For hexanucleotides, we selected all the distribution
profiles with % = 50, which corresponds to a first-order risk
o = 1/4096.

Selected words were clustered according to their positional
profile similarities. The similarity between each pair of profiles
was estimated by a correlation coefficient. This coefficient was
used to generate a similarity matrix, which was further used



with OC (Geoff Barton, personal communication) to generate
the similarity trees in Figures 4 and 5, on the basis of hierarchical
cluster analysis (with the means linkage method).

We generated a series of histograms showing the distribution
profile for each over-represented oligonucleotide. This profile
was generated on the basis of the extended sequence set,
ranging from —200 to +400 respective to the ORF end. Negative
coordinates correspond to coding sequences.

Availability

The programs used for this analysis can be freely used by academic
users through a web interface (30) (http://www.ucmb.ulb.ac.be/
bioinformatics/rsa-tools/ ). The complete sets of data and
results discussed in the text are available on the same site.

RESULTS

Downstream sequence collection

Although there is no defined indication of the length of 3’ flank
involved in mRNA polyadenylation/termination, the statistical
analysis of intergenic regions in the yeast genome showed that
326 bp is the mean distance between two genes transcribed
convergently, so it can be deduced that 163 bp is the average
terminator length (31). Accordingly, in the cases experimentally
studied in yeast, sequences necessary for mRNA polyadenyl-
ation/termination were always located within 200 bp down-
stream the stop codon, so we decided to use this length for the
extraction of over-represented patterns. In the cases in which
the next ORF is closer than 200 bp the distance for analysis
was reduced to the intercoding length.

Z-score distributions in random and biological sequences

Markov chain models provide a reliable basis for estimating
the expected word frequencies in large sequence sets. The
Markov chain approach consists of calculating the expected
frequency for each word (k-mer) on basis of the observed
frequencies for its subwords (m-mers, with 1 <m <k —2). On
the basis of the expected and observed number of occurrences,
a Z-value is calculated for each word. Probabilities are then
assigned to each Z-value on basis of the normal distribution.
In order to validate this statistical model, we tested the
normality of Z-value distribution in random sequences. We
generated 50 sets of random sequences, each set comprising
6200 sequences of 200 bp. Sequences were generated on the
basis of a differential nucleotide representation, mimicking
that observed in yeast non-coding sequences [freq(A) = freq(T)
= 0.325, freq(C) = freq(G) = 0.175]. For each word of size
comprising between three and eight nucleotides, occurrences
were counted on a single strand, and the expected number of
occurrences and Z-score were calculated using a Markov chain
model of order k — 3 (Materials and Methods). As already
shown by Leung et al. (20), we observed that Z-scores follow
a normal distribution in random sequences independently of
word size (http://www.ucmb.ulb.ac.be/bioinformatics/rsa-tools/ ).
We analysed the distribution of Z-scores in the set of down-
stream sequences. In contrast to random sequences, the Z-score
distribution in yeast downstream sequences diverges strongly
from a normal curve for very short words (http://www.ucmb.
ulb.ac.be/bioinformatics/rsa-tools/ ). The discrepancy decreases
as word length increases, so that words of size six and over fit
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well the normal curve. This confirms the observation that
Markov models are poor predictors for short word frequencies
(lengths three to five), as had been observed in several viral
genomes (20). As discussed by Leung et al. (20), words with
extreme Z-score values nevertheless often reflect some biological
features. Z-scores calculated from Markov chain models seem
a reliable way to compare representation among oligonucleo-
tides of the same size, but cannot be used to compare over/
under-representation between different word sizes.

Detection of over-represented hexanucleotides with Markov
chain models

We analysed the representation of each oligonucleotide in the
whole set of 3’ flank for the 6217 yeast ORFs. According to
published data, sequences of size five to nine have been
involved as EEs or PEs in some yeast genes. Nevertheless,
most of the consensus sequences proposed were hexamers (9),
therefore we focussed mainly on hexamer analysis.

Besides the word size (k), another important criterion is the
choice of the Markov chain order (m). Too small order choice
leads to a poorly discriminating model, selecting too many
words as significant. The higher the order, the most stringent is
the selection. We performed a systematic analysis of the set of
downstream sequences for hexanucleotides (k = 6), and for
each possible order (m =1, 2, 3 and 4 respectively; http://www.
ucmb.ulb.ac.be/bioinformatics/rsa-tools/ ). The number of
words selected as over-represented depends dramatically on
the Markov order: among the 4096 distinct hexanucleotides, as
many as 592 words are considered over-represented when
choosing a Markov order m = 1 (with o0 = 1/4096), suggesting
that first order Markov chain alone is a poor model for
discriminating biological signals from their background. The
number of selected words decreases when a higher order is
used: 446 words for m = 2, 184 for m = 3, and no more than
39 for m = 4. The highest Markov order selects the words with
the highest confidence, but this may lead to a loss of some
biological signals, as pointed out by Stuckle et al. (29). We
thus selected the order three for further analysis of hexa-
nucleotides.

As shown in Table 1 the most significant word is TATATA.
Many other words among the top ranking are single-base
substitutions from TATATA (TACATA, TATGTA, TATTTA,
TAAATA, .. .), or one-base shifts of these words (ATATAT,
ATACAT, . . .). Besides these variants on TATATA, most
additional patterns are A+T-rich sequences, noticeably
TTTTTT and a limited number of variants with one or two
T—A substitutions.

For a majority of the highest-score hexanucleotides, there is
experimental evidence showing that they play a role in RNA
polyadenylation (reviewed in 9). TATATA is the most active
efficiency element. Irniger and Braus (11) performed a saturation
mutagenesis and measured the activity of all single-base
variants of one efficiency element (TATGTA). Figure 1 shows
that the high Z-score values (>5) correlate with the experimental
measurement of efficiency.

Downstream versus upstream sequences

Some words could be over-represented without being specific
for downstream sequences, but rather reflect some general
biases of the non-coding sequences. In order to define which of
the over-represented patterns are characteristic of downstream
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Figure 1. Polyadenylation efficiency versus over-representation. The y-axis
indicates the experimental value for polyadenylation efficiency (in % with
regard to the efficiency of TATGTA) as reported by Irniger and Braus (11). The
x-axis shows the Z-score values calculated as in Table 1.

signals, we compared hexanucleotide frequencies between
downstream and upstream sequences. A problem may arise
when two genes are transcribed in the same direction, since in
this case the intergenic sequence is at the same time down-
stream from the first gene and upstream from the second one.

In contrast, the intergenic region between two divergently
transcribed genes is upstream of both. At reverse, the inter-
genic region between two convergently transcribed genes is
downstream of both. We thus built two separate data sets,
comprising only the intergenic regions separating divergent
(‘upstream sequence set’) and convergent (‘downstream set’)
genes respectively. Figure 2 plots the comparison of hexa-
nucleotide frequencies between these two sequence sets. Most
of the patterns align pretty well on the diagonal, indicating that
their representation level is similar in downstream and
upstream regions. A limited number of dots depart from the
diagonal in the upper left direction: these patterns are more
represented in downstream sequences. The most strikingly
divergent points correspond to TATATA and ATATAT. Other
patterns from the top of Table 1 are also preferentially
represented in downstream regions (Fig. 2).

We indicated in Table 1 the convergent/divergent ratio for
the over-represented hexanucleotides. Strikingly, the high ratio
values (>2) systematically correspond to EE-like elements.
These patterns are thus not only over-represented but also they
are specific for downstream sequences.

With respect to the overall distribution of words, most dots
that depart from the diagonal are located above it, indicating
that downstream sequences have special sequence features.
Some patterns appear with a ratio lower than 1, but they all
correspond to very low occurrence numbers, and it is known
that the reliability of ratios is bad when the values to compare
are smaller. These patterns can thus not be considered as
upstream-sequence specific on the basis of this ratio.
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Figure 2. Hexanucleotide frequencies in upstream versus downstream sequences. Each dot corresponds to a hexanucleotide. Its position indicates the frequency
observed in the set of intergenic regions separating divergent (y-axis) and convergent (x-axis) genes. The ratio values are indicated in Table 1 for the patterns
selected by the oligo-analysis. Diagonals with slopes 1, 2 and ¥z respectively are drawn.
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B

Figure 3. Clustering of the significant words according to the similarity of their distribution profiles in whole genome downstream analysis (A) or in EST data set

(B). See text for details.

Positional analysis

Biological features of genomes distinguish themselves not only by
their frequencies, but also by their specific concentration in some
locations. We analysed the profile of position of all hexa-
nucleotides within the downstream sequences, and selected
111 words whose distribution shows a significant positional
bias ()* = 50). The most significant words are TATATA and
ATATAT, followed by some single-base variants on
TATATA, basically the same words as had been selected on
basis of their Z-score. The most over-represented words thus
show the highest positional bias.

We combined the results of the above three analyses to select
patterns that were simultaneously over-represented (Z-score >
3.49), biased in position (y? = 50) and preferentially found in
downstream sequences (convergent/divergent ratio = 1). This
triple condition reduced the number of patterns to 28 (Table 1).
In order to separate the different biological signals, we
clustered the words according to the similarity in their
positional profile. For each pair of words, we calculated a
correlation coefficient between the respective distribution
curves, and performed a cluster analysis to establish a
similarity tree (Fig. 3A).

Interestingly, although the clustering is based on the position
profile only, words with similar sequences appear clustered
together, reinforcing the hypothesis of their common function.
Two main clusters appear in the tree: the D1 (TATATA-like)
and D2 (TTTTTT-like) elements. Two additional patterns,
ACATAA (D3) and AGAAAA (D4) are selected as singletons.
These two words appear, however, among the least significant
of the list (Table 1), having a positional bias just above the
threshold. For these reasons, we consider them as false
positives and exclude them from the list of putative 3’ signals.

Among each of the remaining clusters, we filtered out the
patterns that were single-base shifts from a more significant
pattern (e.g. ATATAT from TATATA), and drew the average
distribution profiles of the remaining words (Fig. 4A and B).
These profiles were drawn on a larger range (-200 to +400
from the stop codon), overlapping the coding sequences over
200 bp, in order to highlight differences between downstream
and coding sequences. D1 patterns show a strong peak around
+35 (Fig. 4A and B). The peak spans approximately between
+10 and +125 and it is asymmetric with a smooth slope
towards downstream. Two words, TAAATA and TAGATA,
also show a sharp peak at —3, due to the fact that they include
the stop codon. D2 also shows a peak, but less pronounced and
located more distally (around +55 from the stop codon).

EST data analysis

During the preparation of this manuscript, a paper by Graber
et al. (25) was published, performing a computational analysis
to extract 3’-end signals from S.cerevisiae sequences. Their
approach differed from ours in two aspects: the statistical
methodology, and the data set. On the basis of EST data, these
authors localised 1352 cleavage sites in the genome, and
extracted the neighbouring sequences. Their statistical
treatment relies on an order one Markov chain, followed by an
iterative filtering to reduce the number of selected patterns.
Our results with the whole genome ORF set partly overlap but
differ in some points from those of Graber et al. (25). We thus
wondered whether this comes from the differences in method-
ology or in the data sets. Joel Graber kindly provided us with
his sequences, on which we performed the same analysis as
described above for downstream sequences. We selected the
patterns (Table 2) that fulfill the triple condition of over-
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representation, biased distribution and preference for down-
stream versus upstream sequences (for this last parameter we
use the data obtained in the whole genome analysis). We clustered
together the selected words according to their distribution
profiles. Figure 3B shows the distributions of the word clusters
extracted from these sequences.

Signal E1 includes TATATA as well as many single-base
substitutions and single-base shifts, that are characterised by a
prominent peak between —50 and —30 relative to the cleavage
site. This cluster strongly overlaps with the signal D1 extracted
from downstream sequences, and with the signal element I in
Graber et al. (25).

Signal E2 has some words in common with D2. These words
all contain many Ts so we think they represent a single signal
that we call, thereafter, T-rich signal. These words show a
bimodal distribution, with a strong peak at the cleavage site,
and a second upstream peak, around —60 from the cleavage
site, separated by a valley at —25. The relative importance of
both peaks is variable between the words (not shown) but the
minimum is always coincident. This signal corresponds
approximately to the combination of signals IIl and IV of
Graber et al. (25).

Signal E3 contains a series of A-rich words that show an
acute peak 25 bp upstream of the cleavage site, and a sensible
valley at the cleavage site location (—10 to +20). We include in
this cluster the word AAAAAA, although it appears isolated in
the profile similarity tree (Fig. 3B). Indeed, AAAAAA shows
the same position profile, with an additional downstream hill,
starting at position +20. Signal E3 was not isolated from the
analysis of all downstream sequences performed above, but is
similar to Graber’s signal II (25). Because of the A-richness of
all its words we call it A-rich.

Signal E4 contains a single word, TTACGT, whose statis-
tical significance is just above the thresholds for the three tests
(Table 2). We consider it as a false positive and discard it from
further analysis.

In spite of the overlaps, our signals differ from Graber ones:
we have some additional words (due to the systematic
clustering approach), and some other words that they isolated
have been filtered out by our procedure. These words are
generally single-base shifts from some more significant word,
and their filtering out probably comes from the fact that we use
a higher order Markov chain model. Another difference is that
signal E2 has a two-peak profile different from the one
obtained by Graber ez al. (25).

In order to better compare these results with the ones from
whole genome analysis we also measured the profiles of
signals E1-E4 from the stop codon. The graph for E1 is,
basically, identical to that obtained for D1 in genome analysis.
The graph for E2 is similar to that of D2 and the graphs for E3
and E4 do not show any bias in their profiles (not shown).
These results demonstrate that the EST data set behaves
similarly to the whole of the yeast genes.
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Signal counts in downstream sequences

If the signals extracted by our analysis are important for
polyadenylation and/or mRNA maturation, one expects to find
them in most yeast genes. We counted the number of
occurrences of the respective signals in the set of 6217 200 bp
downstream sequences. We discarded the patterns that were
single-base shifts from a more significant pattern, to avoid
counting the same signal twice. The remaining words are high-
lighted in bold in Tables 1 and 2. The TATATA-like signals
are found in the vast majority of genomic ORFs (85% for
signal D1, 90% for signal E1). The T- and A-rich signals are
slightly less frequent, but still they are found in about two-
thirds of downstream sequences. We measured in the same
way the occurrences in different subsets of these ORFs. The
first subset comprises 384 questionable ORFs. Interestingly,
the percentage of all signals is much lower for these ORFs
(50%) than for the complete set. The questionability of these
ORFs is thus confirmed by the analysis of their 3’ flanking
sequences. In contrast, when selecting the subset of genes for
which a 3" EST was known [those from Joel Graber’s dataset
(25)], all signals are found in higher abundance than in the
complete set: no less than 96% of these ORFs contain at least
one occurrence of signal E1, and 85% contain E2. The last
subset tested comprises the ORFs for which there is no known
homologue in sequence databases. This subset does not differ
significantly from the complete set. Figure 4C shows the
number of occurrences of the respective signals per gene, and
highlights the differences between the sequence sets.

DISCUSSION

Even before completion of the yeast genome, Guo et al. (32)
started from the knowledge of the EE pattern, and counted its
occurrences within the set of yeast downstream sequences
available at that time. They showed that TATATA has a much
higher frequency in downstream sequences than in coding
sequences. We extended this study to all possible oligo-
nucleotides, and performed a statistical estimation of their
over-representation in the complete set of downstream
sequences. We combined three statistical tests to detect
putative signals on the basis of complementary criteria:
(i) over-representation, using a Markov chain model; (ii) pref-
erential location in downstream versus upstream sequences;
(iii) positional bias. We used probabilistic models to determine
the threshold of over-representation (Z-scores) and positional
bias (y?). All words that fulfilled simultaneously the conditions
on the three tests were then clustered according to their
positional profile, leading to a restricted number of signals,
each containing several words. We applied this analysis to two
sequence sets. A set of 6217 downstream sequences, spanning
200 bp downstream the stop codon of all yeast genes, led to the
isolation of two signals: D1 and D2. Another set of 1352
sequences surrounding cleavage sites, obtained from EST data
(25), allowed us to isolate three signals (E1, E2 and E3). There

Figure 4. (Opposite) (A) Position profiles in the —200 to +400 region from the stop codon of the over-represented patterns in Table 1, clustered according the tree
obtained in A1 and A2 or for the —150 to +70 region from the poly(A) site of the over-represented patterns in Table 2, clustered according the tree obtained in (B)
(A3—AS5). (B) Averaged profiles for every signal from (A). (C) Representation of the putative signals in different sets of downstream sequences. The y-axis indicates
the number of occurrences per downstream sequences and the x-axis the percentage of genes having that number of occurrences in their 200 bp downstream sequence.
Note the strong difference between the questionable ORFs (green curves) and the other sets of genes, especially sensitive for signals D1 and E1.
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Table 2. EST data set analysis

Table 2. Continued

Sequence mkv3 X2 Con/div Score Cluster Sequence mkv3 c? Con/div Score Cluster
TATATA 154 889.1 2.67 36591 El TCTATT 4.6 53.5 1.14 277 E2
ATATAT 12.7 604.3 2.60 19911 El TAATTG 4.0 53.4 1.09 234 E2
TATGTA 14.2 414.3 2.65 15598 El AAATAA 10.3 191.0 1.79 3518 E3
TACATA 13.7 325.0 2.65 11777 El AATAAA 8.8 206.9 1.68 3058 E3
TAAATA 104 417.6 2.12 9192 El AAAAAA 7.5 137.7 1.33 1367 E3
TGTATA 7.7 387.9 2.24 6650 El AATTAA 5.2 113.2 1.49 879 E3
TATTTA 6.9 243.0 2.12 3565 El AATAGA 3.6 76.6 1.14 309 E3
ATGTAT 53 225.9 2.38 2860 El AGTTAA 3.6 56.6 1.03 211 E3
TAAGTA 9.0 194.5 1.63 2842 El TTACGT 4.0 51.6 1.18 244 E4
ACATAT 5.8 222.1 1.93 2467 El
See Table 1 for legend and text for details.
CATATA 4.4 261.7 1.97 2264 El
ATACAT 6.6 140.7 2.38 2204 El
TACGTA 10.9 112.8 1.55 1899 E1
ATATAC 43 228.0 1.93 1871 El . T .
is a strong similarity between signals D1 and E1, as well as
ATATGT 54 165.8 1.93 1740 El between signals D2 and E2.
TAGATA 7.3 109.0 1.68 1331 El The first signal (D1 and E1) contains a series of TATATA-like
ATAAAT 3.9 163.7 1.98 1280 El words. Several substitutions are found at the third and fourth
TTAAAT 59 1161 176 1213 El nucleotides. th all S}Jbstltutlons are allowed, but only a few
ones at specific positions. Moreover, except for TAcgTA,
TATACA 37 1428 2.4 17 El substitutions at different positions are not combined. The
TGTGTA 4.8 173.9 1.40 1162 El signal specificity is thus better described by a list of words
TAATTA 3.9 156.3 1.62 987 El (those isolated by our analysis. and shoyvn ip Table 1) than by a
GTATGT %0 633 193 974 El degenerated consensus. Besides their high Z-score, these
‘ i ‘ TATATA-like sequences are also characterised by a strong
ATCTAT 6.7 86.8 1.57 906 E1 bias towards downstream positions in yeast gene flanks and by
TATCTA 5.9 77.1 1.68 763 El a strong peak around +35 bp after the stop codon, corre-
ACATAC 48 633 1.93 531 El sponding on average to a peak at —40 from the poly(A) site. All
these properties coincide with those expected for a general
GTATAC 37 106.5 1.43 369 El polyadenylation EE in yeast.
AAATAG 5.2 83.7 1.14 494 El The presence of many single-base shifts from the TATATA-like
TAGTTA 5.7 61.0 1.33 461 El words (e.g. ATATAT, ATGTAT) may reflect that the actual
TGTACA 36 742 L67 448 £l size of .tht? EE consensus .WOI"d is longer. thag Six lett§rs. We
made similar analyses with words of size five to nine and
ATGTGT 41 62.0 1.47 371 El always found high significance for (TA), and (AT), words
ATAGAT 4.0 57.0 1.57 353 El (http://www.ucmb.ulb.ac.be/bioinformatics/rsa-tools/ ). The
GTAAAT 3.7 64.5 1.46 347 El existence of repeated or longer TATATA-like elements in
PTATTT 8.0 145.6 179 2082 B2 some genes functloqlng as EE. has been documented
(13,32,33). The mutational analysis (11) also suggests that
TTTATT 8.4 88.8 1.68 1250 E2 longer TA repeats can improve the activity of the EE.
ATTATT 5.0 110.8 1.81 999 E2 According to this we suggest that six letters is the minimum
TTAATT 57 98.1 1.49 831 E2 length for an EE but that longgrr. or repeated words are also
common and, perhaps, more efficient.
TTTCTT 6.3 126.4 1.03 815 E2 . . . .
For a signal sequence to carry out a biological function some
TTTICT 3.6 1111 1.10 687 E2 kind of recognition by other molecules is required. This is
TCATTT 38 93.8 1.36 478 E2 exactly what happens with the EE in the yeast S.cerevisiae.
TTCATT 6.5 51.8 1.35 453 E2 Yeast polyadenylation requires the interaction between protein
TTATTA 47 s13 1 88 249 - factors and RNA sequences. Five factors, CFIA, CFIB, CFII,
’ ’ ) PFI and PAP, are needed in yeast for accurate pre-mRNA
TTTTGT 54 63.7 L15 391 E2 cleavage and polyadenylation in vitro (reviewed in 1). It has
TAGTTT 38 81.2 1.23 381 E2 been shown that the CFII subunit Cft2p can be cross-linked to
TTATTC 51 64.1 116 377 B2 mRNA, and requires for this the EE (24). Moreover, CFII
enhances the binding of Hrplp (the only component of CFIB)
TATTCT 4.1 75.0 1.16 355 E2

to the RNA precursor. This binding also requires the EE, and
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Figure 5. Model for the organisation of yeast 3’ mRNA trailers. Figures on the right represent the percentage of yeast ORFs having at least one of the corresponding
signals (indicated as boxes). Distances from each signal to the stop codon and to poly(A) site are marked.

plays an important role in the selection of poly(A) site (35).
Our results suggest that the EEs are slightly degenerated
sequences, both in sequence and length, and provide a list of
putative variants. Because it has been documented in natural
cases (9,34 and references therein) as well as in synthetic
constructions (11) it seems that TATATA is the most efficient
and common EE in yeast. This does not mean, however, that
some variants of these sequence or even different sequences
cannot act as EE. Some of these cases have been described,
i.e. TRPI, ARO4, TRP4, GCN4 (9 and references therein). Our
analysis can only find sequences that are very common and
significantly biased but other less frequent sequences or not
biased might prove efficient as well. However, we observed a
remarkable linear correlation (Fig. 1) between Z-score and the
experimental measurement of efficiency (11). The only exception
is TAAGTA, which has a Z-score >5 but is inefficient. However,
this word has a weaker positional bias and convergent/divergent
ratio than the other ones in its group, so that it is suppressed
from the selection in signal D1, and appears with a weaker
global score in signal E1. Globally, it thus seems that the most
efficient elements are the most over-represented.

We have no clear explanation for the frequent occurrence of
the second kind of signal, made of T-rich words (signals D2
and E2). This signal is less frequent but still very common (65-72%
of the ORFs). It shows a relatively wide peak at +55 from the
stop codon and two peaks from the poly(A) site: the first one is
located over the poly(A) site, as was previously shown (25),
and the second peak 60 bp upstream. The failure to discriminate
two peaks in downstream sequences (Fig. 4A) is probably due
to the variability in the distance between stop codon and
poly(A) site. The respective peaks could exert different functions.
It has been shown that Rnal5p, a subunit of the CF1A factor,
has higher affinity for U-rich RNA (discussed in 1). Also, the
coincidence of the second peak with the poly(A) site suggests
arole for it in the definition of cutting site.

The existence of sharp peak at —25 from the poly site for the
A-rich cluster (E3) suggests that it can be also a feature of
yeast 3’ trailers. This result was also found by Graber er al.
(25). They suggested that these words are similar to those
proposed as PEs. No clear consensus sequence has been established
for the PE. The preferred position for the PE is 20-30 nucleotides
upstream of the poly(A) site (1), which coincides very well
with these results. It has been found mainly downstream but
sometimes upstream of the EE (9,34). This signal was not
detected from the whole genome analysis because the A-rich

words were discarded due to their low %2 result in position
analysis. However, most of them have Z-scores higher than 14
(not shown), which means that those sequences are highly
over-represented as well. The representation of those putative
PEs is not as high as for EEs but it is still found in a high
proportion (63%) of downstream sequences.

It is striking that four out of the six words of the A-rich signal
(E3) are the reverse complement of words of the T-rich signal
(E2). Assuming that the A-rich signal could be a PE, this function
could be exerted through base-pairing with the surrounding T-rich
signals. Experimental work should be done to test this hypo-
thesis. However, A- and T-rich signals seem to be found
independently from each other in the downstream sequences,
as measured by a Pearson dependence test (not shown). In
contrast, a clear correlation exists between putative EEs and
the other signals: sequences having an EE-like sequence are
more likely to have a T-rich sequence as well. Similarly, A-rich
signals are significantly more frequent in sequences possessing
an EE-like element.

Our analysis of EST data coincides partially with that done
by Graber et al. (25). The same signals are isolated, but the
word composition differs. We think that the list of words
extracted by our triple analysis probably reflects more accurately
the variability of the signals, due to some improvements in the
statistical approach: use of a third-order Markov chain;
position bias calculated with 2 statistics; choice of thresholds
taking into account the number of possible patterns. Profiling
from the stop codon allows us to compare and mutually
validate the results obtained with the two different sets of data:
whole set of downstream sequences and EST data. The use of
the stop codon as a reference indicates that the preferred
location of the word elements is also related with the distance
from the end of the ORF. This fact has never been pointed out
before. Our analysis thus suggests that EEs and, to a lesser
extent, T-rich elements, have a preferred distance from the end
of the translated sequence.

The existence of an optimum distance for EEs from both
ends of the mRNA trailer means that the standard poly(A)
typical signal for yeast spans no more than 80 bp with similar
distances both from the stop codon and from the poly(A) site
(Fig. 5). This result is coherent with the experimental data (9)
and with the statistical analysis of the mRNA trailer length
carried out by Graber ef al. (25). This length is shorter than the
average termination distance calculated by Dujon (31). This
can be due in part to the space needed by RNA polymerase II to
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terminate transcription after the poly(A) site (1). Alternatively, it
is possible that the intergenic region between convergent ORFs
includes, in many cases, non-functional spaces.
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