
C
ar

d
if

f
H

P
C

 T
ra

in
in

g
&

 E
d

u
ca

ti
o

n
 C

en
tr

e

Introduction to Fortran 90
An introduction Course for

Novice Programmers

Student Notes

Rob Davies

Cardiff

Alan Rea

Belfast

Dimitris Tsaptsinos

SEL - HPC

Version 1.0

Cardiff, London and Belfast HPC T&E Centres i

9 Introduction

9 Programming in general
9 History

10 ANSI Standard
10 Compilation
11 Coding conventions

13 Variables and Statements

13 Variables
14 Naming Convention
14 Specification or declaration
15 Parameters
15 Implicit Declaration
15 KIND type
16 Portability
17 Type conversion
17 Arithmetic expressions
18 Comments
18 Program Layout
19 Derived Data Types
19 Definition and specification
20 Accessing Components
21 Exercises

23 Character Processing

23 Character Type
23 Character Constants
24 Character Variables
24 Character manipulation
24 Concatenation
25 Substrings
25 Intrinsic Functions
26 Exercises

29 Logical & comparison expressions

29 Relational operators
30 Logical expressions
31 Character Comparisons
31 Portability Issues
32 Exercises

35 Arrays

35 Terminology
35 Arrays and elements

An Introduction to Fortran 90

ii Fortran 90 student notes

36 Array properties
36 Specifications
37 Array Sections
37 Individual elements
38 Sections
39 Vector Subscripts
39 Array storage
40 Array Assignment
40 Whole array assignment
40 Array section assignment
41 Renumbering
41 Elemental intrinsic procedures
41 Zero-sized arrays
42 Arrays and derived types
43 Initialising arrays
43 Constructors
43 Reshape
44 DATA statement
44 WHERE
45 Array intrinsic functions
45 Example of reduction
46 Example of inquiry
46 Example of construction
46 Example of location
47 Exercises

51 Control statements

51 Conditional statements
51 IF statement and construct
53 SELECT CASE construct
53 GOTO
54 Repetition
54 DO construct
55 Transferring Control
56 Nesting
56 Exercises

59 Program units

59 Program structure
60 The main program
60 Procedures
61 Actual and dummy arguments
62 Internal procedures
62 External procedures
63 Procedure variables

Cardiff, London and Belfast HPC T&E Centres iii

63 SAVE
63 Interface blocks
64 Procedures arguments
64 Assumed shape objects
65 The INTENT attribute
65 Keyword arguments
66 Optional arguments
66 Procedures as arguments
67 Recursion
67 Generic procedures
68 Modules
69 Global data
69 Module procedures
70 PUBLIC and PRIVATE
71 Generic procedures
71 Overloading operators
72 Defining operators
72 Assignment overloading
73 Scope
73 Scoping units
73 Labels and names
74 Exercises

77 Interactive Input and Output

78 Simple Input and Output
78 Default formatting
79 Formated I/O
79 Edit Descriptors
80 Integer
80 Real - Fixed Point Form
80 Real - Exponential Form
81 Character
81 Logical
82 Blank Spaces (Skip Character Positions)
82 Special Characters
82 Input/Output Lists
83 Derived DataTypes
83 Implied DO Loop
83 Namelist
84 Non-Advancing I/O
85 Exercises

87 File-based Input and Output

87 Unit Numbers
88 READ and WRITE Statements

An Introduction to Fortran 90

iv Fortran 90 student notes

88 READ Statement
89 WRITE Statement
89 OPEN Statement
90 CLOSE statement
90 INQUIRE statement
91 Exercises

93 Dynamic arrays

93 Allocatable arrays
93 Specification
93 Allocating and deallocating storage
94 Status of allocatable arrays
95 Memory leaks
96 Exercises

97 Pointer Variables

97 What are Pointers?
97 Pointers and targets
97 Specifications
98 Pointer assignment
99 Dereferencing

100 Pointer association status
100 Dynamic storage
101 Common errors
101 Array pointers
103 Derived data types
103 Linked lists
103 Pointer arguments
104 Pointer functions
106 Exercises

107 Intrinsic procedures

107 Argument presence enquiry
107 Numeric functions
108 Mathematical functions
108 Character functions
109 KIND functions
109 Logical functions
109 Numeric enquiry functions
109 Bit enquiry functions
109 Bit manipulation functions
110 Transfer functions

Cardiff, London and Belfast HPC T&E Centres v

110 Floating point manipulation functions
110 Vector and matrix functions
110 Array reduction functions
111 Array enquiry functions
111 Array constructor functions
111 Array reshape and manipulation functions
111 Pointer association status enquiry functions
111 Intrinsic subroutines

113 Further reading

Introduction

Cardiff, London and Belfast HPC T&E Centres 9

1 Introduction

This course is designed for beginning programmers who may have little or no experi-
ence of computer programming and who wish to take advantage of the new Fortran
standard.

1.0.1 Programming in general

A program is the tool a user employs to exploit the power of the computer. It is writ-
ten using the commands and syntax of a language which may be interpreted (via a
compiler) by the computer hardware. This course outlines the commands and syntax
of the Fortran 90 language.

A program consists of a sequence of steps which when executed result in a task being
carried out. Execution means that the computer is able to interpret each step (instruc-
tion), interpretation refers to understanding what is required and instructing the
hardware to carry it out. Each instruction might require a calculation to be performed,
or a decision to be selected, or some information to be stored or retrieved. The nature
of the instruction depends on what programming language is used. Each program-
ming language has its own set of statements.

1.1 History
Fortran (mathematical FORmula TRANslation system) was originally developed in
1954 by IBM. Fortran was one of the first languages to allow the programmer to use
higher level (i.e. architecture independent) statements rather than a particular
machine’s assembly language. This resulted in programs being easier to read, under-
stand and debug and saved the programmer from having to work with the details of
the underlying computer architecture.

In 1958 the second version was released with a number of additions (subroutines,
functions, common blocks). A number of other companies then started developing
their own versions of compilers (programs which translate the high level commands
to machine code) to deal with the problem of portability and machine dependency.

In 1962 Fortran IV was released. This attempted to standardize the language in order
to work independent of the computer (as long as the Fortran IV compiler was availa-
ble!)

In 1966 the first ANSI (American National Standards Institute) standard (Fortran 66)
was released which defined a solid base for further development of the language.

In 1978 the second ANSI standard (Fortran 77) was released which standardized
extensions, allowed structured programming, and introduced new features for the IF
construct and the character data type.

The third ANSI standard (Fortran 90) was released in 1991, with a new revision
expected within 10 years.

An Introduction to Fortran 90

10 Fortran 90 student notes

1.2 ANSI Standard
Fortran 90 is a superset of Fortran 77, that is programs written in Fortran 77 may be
compiled and run as Fortran 90 programs. However Fortran 90 is more than a new
release of Fortran 77. The Fortran 90 standard introduces many new facilities for array
type operations, new methods for specifying precision, free form, recursion, dynamic
arrays etc. Although the whole of Fortran 77 is included in the Fortran 90 release, the
new ANSI standard proposes that some of the Fortran 77 features are ‘depreciated’.
Depreciated features are likely to be classed as ‘obsolete’ in subsequent releases and
removed from Fortran 90.

At present an ANSI standard Fortran 77 program should compile successfully with
any Fortran 90 compiler without change. However the structure of a Fortran 90 pro-
gram can be significantly different from that of its Fortran 77 equivalent. Program-
mers should beware of mixing the two styles, and of consulting Fortran 77 text books
for advice. It is recommended that programmers new to Fortran not consult any For-
tran 77 books.

A Fortran 90 compiler is required to report any non-conforming code (i.e. the use of
statements or variables which are illegal under the rules set out by the ANSI stand-
ard). As well as reporting errors a Fortran 90 compiler is required to provide a reason
for reporting the error. This should help programmers to write correct code.

As mentioned, Fortran 90 has been augmented with a number of new features to take
advantage of modern computing needs and developments; developments such as the
recent importance of dynamic data structures and the introduction of parallel archi-
tectures.

1.3 Compilation
Once the Fortran 90 program has been designed and entered as source code into a file
(usually with the suffix .f90) then the following steps are possible:

• Compilation - This is initiated by the programmer, by typing:

f90 filename.f90

(or something similar) its purpose is to translate the high-level statements
(source code) into intermediate assembly code, and from there to machine
(object) code. The compiler checks the syntax of the statements against the

Source code

Executable code

Compiler

Assembler

Link editor

Assembly code

Object code

Libraries

Introduction

Cardiff, London and Belfast HPC T&E Centres 11

standard (write rather than write will give an error) and the semantics of the
statements (misuse of a variable, etc.). This step generates the object code ver-
sion which is stored in a file of the same name but different extension (usually o
on UNIX systems).

• Linking - This might be initiated by the compiler, its purpose is to insert any
code that is required from a library or other pre-compiled file. This generates the
executable code version which again is stored in a file with a different extension
(on a UNIX system the default name is a.out).

• Execution - This is initiated by the programmer/user, by typing the name of the
executable file. Its purpose is to run the program to get some answers. During
execution the program might crash if it comes across an execution error (the
most common execution error is an attempt to divide by zero).

Note that logical errors (multiply rather than add) can not be checked by the compiler
and it is the responsibility of the programmer to identify and eliminate such errors.
One way to do so is by testing against data with known results but for more complex
programs testing can not take into consideration all possible combinations of inputs
therefore great care must be taken during the initial design. Identifying errors at the
design phase is cheaper and easier.

1.4 Coding conventions
In these notes all examples of code are written in courier font, e.g.

PROGRAM hi
! display a message
WRITE(*,*) 'Hello World!'

END PROGRAM hi

As an aid to following the code examples, the convention followed throughout these
notes (recommended by NAG) is:

• All keywords and intrinsic procedure names (i.e. those commands and func-
tions that are a part of the standard) are in upper case, everything else is in lower
case.

• To help with the reading of code, the body of program units are indented by two
columns, as are INTERFACE blocks, DO loops, IF blocks, CASE blocks, etc.

• The name of a program, subroutine or function is always included o their END
statements.

• In USE statements, the ONLY clause is used to document explicitly all entities
which are accessed from that module.

• In CALL statements and function references, argument keywords are always
used for optional arguments.

Variables and Statements

Cardiff, London and Belfast HPC T&E Centres 13

2 Variables and Statements

2.1 Variables
It is usual for people to associate a name or phrase with a piece of information. For
example, the phrase “today’s date” has an associated numeric value which varies day
by day. This is similar to the concept of a program variable; a program variable is
some name (chosen by the programmer) which uniquely identifies an object (piece of
data) stored in memory.

For example, a program may identify the following values:

7
96.4
3.14159

by these variable names:

daysinweek
temperature
pi

It is common for the value of a variable to change while a program runs but it is not
required (e.g. the value of temperature might well change but pi is unlikely to).
Variable names are usually a word, phrase, acronym, etc. which is written as one
word (see Naming Convention below). Note that it is good programming practice to
use variable names that are reminiscent of the information being referred to.

It is important for a computer to identify the data type it has stored. There are several
forms of numeric data, namely:

• Integers: may only have discrete, whole values (e.g. -3124, -960, 10, 365, etc.).

• Reals: may have a fractional part and have a greater range of possible values (e.g.
10.3, -8.45, 0.00002, etc.).

• Complex numbers: have both a real and imaginary part (e.g. 3-2i, -5+4i, etc.).

Integers are more accurate for discrete values and are processed fastest, but reals are
necessary for many calculations. Complex numbers are necessary for some scientific
applications.

As well as numerical data, Fortran programs often require other types of data. Single
letters, words and phrases may be represented by the character data type, while the
logical values ‘true’ and ‘false’ are represented by the logical data type (details later).

Finally, It is possible not to use a variable to represent data but to used the value
explicitly. For example, instead of using pi, a programmer might choose to write
3.14159. Such values are known as literal constants.

An Introduction to Fortran 90

14 Fortran 90 student notes

2.1.1 Naming Convention

In a Fortran program, variable names must correspond to a naming convention. The
naming convention permits names of between 1 and 31 alphanumeric characters (the
26 letters a...z, the 10 numerals 0...9 and _ the underscore character) with the
restrictions that the first character must be a letter.

Note that there is no case sensitivity in Fortran, the lower and uppercase versions of a
character are treated as equivalent, therefore name, Name, NaMe and NAME all refer to
the same object.

Unlike some programming languages in which certain words are reserved and may
only be used by the programmer in precisely defined contexts, Fortran has no
reserved words. However the programmer should take care when naming variables
and try not to use any words which form part of the language.

• Valid variable names: x, x1, mass, cost, day_of_the_week

• Valid variable names (but do not use!): real, integer, do, subroutine, pro-
gram

• Invalid: ten.green.bottles, 1x, a thing, two-times, _time

In these course notes, all words which have a defined meaning in the Fortran lan-
guages are given in uppercase and the user defined objects are given in lowercase.

2.2 Specification or declaration
All variable used in a program must have an associated data type, such as REAL
INTEGER or COMPLEX, which is usually identified at the start of the program. This is
referred to as declaring or specifying a variable, for example:

REAL :: temperature, pressure
INTEGER :: count, hours, minutes

declares five variables, two which have values that are real numbers and three that
have integer values.

The variable declaration statement may also be used to assign an initial value to vari-
ables as they are declared. If an initial value is not assigned to a variable it should not
be assumed to have any value until one is assigned using the assignment statement.

REAL :: temperature=96.4
INTEGER :: days=365, months=12, weeks=52

The general form of a variable declaration is:

type [,attributes...] :: variable list

Where type may be one of the following, intrinsic data types:

INTEGER
REAL
COMPLEX
CHARACTER
LOGICAL

and attribute... is an optional list of ‘keywords’, each separated by a comma,
used to further define the properties of variables:

ALLOCATABLE INTENT(...) PARAMETER PUBLIC
DIMENSION(...) INTRINSIC POINTER SAVE
EXTERNAL OPTIONAL PRIVATE TARGET

Variables and Statements

Cardiff, London and Belfast HPC T&E Centres 15

CHARACTER and LOGICAL data types are discussed in separate sections, while the
attributes will be described as required throughout these notes.

2.2.1 Parameters

The term parameter in Fortran is slightly misleading, it refers to a value which will
not change during a program’s execution. For example the programmer is likely to
want the value of pi to be unaltered by a program. Therefore pi may be defined:

REAL, PARAMETER :: pi=3.141592

REAL specifies the data type while the PARAMETER attribute further defines the varia-
ble pi. All parameters must be given a value in their declaration statement (in this
case 3.141592). Parameters may also be defined for other data types, for example:

INTEGER, PARAMETER :: maxvalue=1024
INTEGER, PARAMETER :: repeatcount=1000

It is an error to try to redefine the value of a parameters while a program executes.

2.2.2 Implicit Declaration

Fortran 90 permits real and integer variables to be typed and declared implicitly, that
is used in a program without using a declaration statement. The implicit declaration
facility is provided to comply with earlier definitions of the Fortran language and can
cause programming problems unless handled carefully.

It is possible, and advisable, to disable this feature by including the statement:

IMPLICIT NONE

at the start of each program. This forces a programmer to declare all variables that are
used, and means that some potential errors may be identified during compilation.

If implicit typing is permitted then variables are have a data type according to the ini-
tial letter of their name: those beginning with I, J, K, L, M and N being integers; and
those beginning A to H and O to Z being reals.

2.3 KIND type
Each data type has one or more values of a KIND type parameter associated with it.
Data types with different KIND type values use a different number of bytes to store
information. This means that numeric data types with different KIND type parameters
have a different range of possible values and/or different levels of numerical accu-
racy.

For example, the NAG compiler (used in the development of this course) has three
values of the KIND type parameter for the INTEGER type (KIND=1, 2 or 3); 3 is the
default. Variables are declared with the desired precision by using the KIND attribute:

type(KIND = kind_type_value) [, attributes...] :: variable list

For Example:

INTEGER :: a !default KIND=3
INTEGER(KIND=3) :: b !default
INTEGER(KIND=1) :: c !limited precision -127 <= c <= 127
INTEGER(2) :: d !KIND= is optional
INTEGER :: e=1_2 !e=1 and is of kind type 2

An Introduction to Fortran 90

16 Fortran 90 student notes

Both INTEGER, and LOGICAL data types have several possible KIND type values, each
of which uses less memory than the default (which in the case of INTEGER types leads
to smaller possible range of values - so beware!). These alternative KIND values are
usually used only when data storage is at a premium. It is unusual for the CHARAC-
TER data type to have more than one KIND value.

The REAL (and COMPLEX) data type has two KIND values. The default (KIND=1) has a
lower level of precision than (KIND=2). (The two values of KIND are analogous to For-
tran 77’s single and double precision variables.) It is common place to use a REAL of
KIND=2 to store higher levels of precision and/or when a large range of values are
anticipated, i.e.:

REAL :: a !default KIND=1
REAL(KIND=2) :: b, c !larger range and/or precision
COMPLEX(KIND=2) :: d !larger range and/or precision

The exact level of precision and possible range of values can be checked by using
intrinsic functions (these are self contained, often used blocks of code included in the
language to help the programmer). The intrinsic functions RANGE(), HUGE(), PRE-
CISION(), etc. all give information about the limits of variables of the different KIND
types. Below are some examples from the NAG compiler:

INTEGER :: a !default KIND=3
INTEGER(KIND=2) :: b
REAL :: c !default KIND=1
REAL(KIND=2) :: d !larger range and/or precision

HUGE(b) !largest number = 32767
HUGE(c) !largest number = 3.4028235E+38
HUGE(d) !largest number = 1.7976931348623157*10**308

RANGE(a) !largest exponent = 9
RANGE(d) !largest exponent = 307

PRECISION(c) !precision (in digits) = 6
PRECISION(d) !precision (in digits) = 15

2.3.1 Portability

The number and value(s) of all KIND parameters depend on the compiler being used.
You should be aware that explicitly using a value (like (KIND=3)) in a program may
not work (or worse give unexpected errors) when using different compilers. For
example some compilers use KIND=1,2 and 3 for the INTEGER data type while oth-
ers use KIND=1,2 and 4.

One way around having to edit programs for different KIND values is to use the
SELECTED_REAL_KIND() and SELECTED_INTEGER_KIND() intrinsic functions.
For integers SELECTED_INTEGER_KIND() is supplied with the maximum exponent
of the data to be stored (i.e 10r where r is the range), the function returns the associ-
ated KIND type parameter for that compiler. For reals SELECTED_REAL_KIND() is
supplied with both the range and the decimal precision and again returns the associ-
ated KIND value.

INTEGER, PARAMETER :: k2 = SELECTED_REAL_KIND(10,200)
REAL(KIND=k) :: a !range= 10**200, 10 decimal places
INTEGER, PARAMETER :: k5 = SELECTED_INTEGER_KIND(5)
INTEGER(KIND=k5) :: b !range= 10**5

If the compiler cannot support the requested range and/or level of precision the
SELECTED_type_KIND() functions return a value of -1, and the program will not
compile.

Variables and Statements

Cardiff, London and Belfast HPC T&E Centres 17

2.3.2 Type conversion

When assigning one variable type to another (or variables of the same type but with
different KIND types), care must be taken to ensure data remains consistent. When
assigning data to different types (e.g. assigning reals to integers) or when assigning
data to different kind types (e.g. assigning a 4 byte INTEGER to a single byte INTE-
GER), there is the potential for information to be lost. There are a number of intrinsic
functions which handle the conversion of data in a reliable and consistent fashion. For
example,

INTEGER :: total=13, num=5, share
share = total/num !total/num=2.6, share=2
share = INT(total/num) !total/num=2.6, share=2

The result of total/num is a real number, therefore this is an example of a REAL
being assigned to an INTEGER. Note the value assigned to share will be truncated
(not rounded to the nearest!). The intrinsic function INT() converts its argument (i.e.
the result of total/num) into an integer, and is assumed to be present whenever a
numeric non-integer is assigned to a variable of INTEGER type.

Other data types have similar type conversion functions; REAL() converts the argu-
ment to type REAL, CMPLX() converts its argument to type COMPLEX (often truncat-
ing the imaginary part). It is possible to convert data from CHARACTER to INTEGER
(and vice versa) using the intrinsic functions like IACHAR() and ACHAR(), see later.

To allow the conversion between different KIND types (as well as different data types)
each of the conversion function may be supplied with a KIND type value which is to
be the KIND type of the converted data. For example:

INTEGER, PARAMETER :: k2=SELECTED_INT_KIND(2)
INTEGER :: long !default kind=3
INTEGER(KIND=K2) :: short
REAL(KIND=2) :: large
long = 99
short = INT(long, KIND=k2) !convert 99 to INTEGER(KIND=k2)
large = REAL(short, KIND=2) !convert 99 to REAL(KIND=2)

Beware! When converting data from one type to another the variable receiving the
data must be capable of storing the value (range and/or precision). If not error can
occur:

INTEGER(KIND=1) :: short !-127 <= short <= 127
INTEGER :: long=130 !-32767 <= long <= 32767
short = long !error
short = INT(long, KIND=1) !still an error

2.4 Arithmetic expressions
Numerical variables, parameters and literal constants may be combined using the
operators + (addition), - (subtraction), * (multiplication), / (division) and ** (expo-
nentiation), and assigned using the assignment operator =. For example:

estimate_cost = cost * number
actual_cost = cost * number + postage
sum = 10 + 3
circumference = 2 * pi * radius

The arithmetic expression may also include brackets which should be used to clarify
the required sequence of operations in an expression. For example:

y = 1+x/2

An Introduction to Fortran 90

18 Fortran 90 student notes

might be interpreted as either ‘add 1 to x and divide the result by 2’ or ‘add one to half
of x’. The use of brackets can make this clear:

y = 1+(x/2)
y = (1+x)/2

Any expression which appears inside brackets is always evaluated first. In expres-
sions which contain more than one operator the operations are carried out (working
from the left to right in the expression) in an order which is determined by the operator
precedence. Operators are evaluated in the following order:

• Bracketed expressions, (...).

• Exponentiation, **.

• Multiplication and/or division, * or /.

• Addition and/or subtraction, + or -.

Operators of equal precedence are evaluated working from left to right across the
expression, e.g.

area = pi*radius**2 !pi*radius*radius
area_not = (pi*radius)**2 !pi*radius * pi*radius

2.5 Comments
All programs should have a textual commentary explaining the structure and mean-
ing of each section of the program. All characters appearing on a line to the right of
the ! character are ignored by the compiler and do not form any part of the executable
program. The text appearing after a ! character is referred to as a comment and this
feature should be used to explain to the reader of a program what the program is try-
ing to achieve. This is particularly important if the program will have to be altered
sometime in the future.

area = pi*radius*radius !Calculate the area of circle

Comments are also used to inhibit the action of statements that are used to output
intermediate values when testing a program but which may be required again. The
following statement is said to be ‘commented out’ and is not executed.

! WRITE (6,*) temp, radius*radius

2.6 Program Layout
A sample program:

PROGRAM circle_area
IMPLICIT NONE
!reads a value representing the radius of a circle,
!then calculates and writes out the area of the circle.

REAL :: radius, area
REAL, PARAMETER :: pi=3.141592

READ (5,*) radius
area = pi*radius*radius !calculate area
WRITE (6,*) area

END PROGRAM circle_area

There are a number of points to note in this program:

Variables and Statements

Cardiff, London and Belfast HPC T&E Centres 19

• The program starts with a program statement in which the program is given a
name, i.e. circle_area. The program is terminated with an END PROGRAM
statement (which is also named). All statements in the program are indented to
improve readability.

• There is an explanation of the program, both at the start and in the main body of
code, in the form of comment statements. Again this improves readability.

• The IMPLICIT NONE statement comes first in the program followed by variable
declarations. The variable declarations are grouped together and appear before
all executable statements such as assignments statements and input/output
statements.

• Blank lines are used to emphasize the different sections of the program, again
for readability.

In general programs should be laid out with each statement on one line. However,
there is an upper limit of 132 characters per line, (depending on the editor used it is
often more convenient to keep to a maximum of 80 characters per line) a statement
which exceeds the line limit may be continued on the next line by placing an amper-
sand & at the end of the line to be continued. The line should not be broken at an arbi-
trary point but at a sensible place.

WRITE (6,*)temp_value, pi*radius*radius, &
length, breadth

More than one statement may be placed on one line using a semicolon(;) as a state-
ment separator.

length=10.0; breadth=20.0; area=length*breadth

This is not recommended as it can lead to programs which are difficult to read - a
statement may be overlooked.

2.7 Derived Data Types
2.7.1 Definition and specification

In many algorithms there are data objects which can be grouped together to form an
aggregate structure. This might be for readability, convenience or sound program-
ming reasons. A circle, for example may have the following properties:

radius
area

A programmer may define special data types, known as derived data types, to create
aggregate structures. A circle could be modelled as follows:

TYPE circle
INTEGER :: radius
REAL :: area

ENDTYPE circle

This would create a template which could be used to declare variables of this type

TYPE(circle) :: cir_a, cir_b

A derived data type may be constructed from any number or combination of the
intrinsic data types (or from other already defined derived data types). The general
form of the TYPE statement is:

An Introduction to Fortran 90

20 Fortran 90 student notes

TYPE :: name
component definition statements
...

END TYPE [name]

TYPE(name) [,attribute] :: variable list

Note that the type name is optional on the ENDTYPE statement but should always be
included to improve program clarity.

Just like the intrinsic data types, the components of a derived data type may be given
an initial value. For example:

TYPE (circle) :: cir=circle(2,12.57)

The derived type is so named because it is derived from the intrinsic types, such as
REAL and INTEGER. However derived types may be used in the definition of other
derived types. For example, if a type, point, is defined by:

TYPE point
REAL :: x, y

ENDTYPE point

then the previously defined type, circle, could be modified to include a spacial
position:

TYPE circle
TYPE (point) :: centre
INTEGER :: radius
REAL :: area

ENDTYPE circle

Including one statement inside another block of statements is called nesting.

2.7.2 Accessing Components

The elements of a derived type may be accessed by using the variable name and the
element name separated by the % character, as follows:

cir_a%radius = 10.0
cir_a%area = pi * cir_a%radius**2

If a derived type has an element which is a derived type then a component may be
accessed as follows:

cir_a%position%x = 5.0
cir_a%position%y = 6.0

Components of a derived type may appear in any expressions and statements that
their data type allow. It is also possible to assign one instance of a derived type to
another instance of the same derived type. The = operator is the only operator that
may be applied to a derived type variable, all other operations require the program-
mer to explicitly access component by component.

cir_a%radius = cir_b%radius
cir_a%area = cir_b%area
cir_a%position%x = cir_b%position%x
cir_a%position%y = cir_b%position%y
cir_a = cir_b !shorthand for all the above

cir_a = cir_b * 2 !illegal

Variables and Statements

Cardiff, London and Belfast HPC T&E Centres 21

2.8 Exercises
1. Write a program which declares variables to hold the following data:

(a) an integer set to zero.
(b) an integer set to minus one.
(c) 64.0

(d) -1.56x1012 (this should be written as -1.56E12)
Check the program by writing out variables to the screen.

2. Which of the following are invalid names in Fortran 90 and why?

abignumber thedate A_HUGE_NUMBER
Time.minutes 10times Program
1066 X HELP!
f[t] no way another-number

3. Given the following variable declarations and assignments evaluate the subse-
quent expressions and state the value and type of each result. Check your
results by writing a program to write out the results of the expressions. Finally,
insert brackets to clarify the meaning of these expressions according to operator
precedence.

REAL :: x=10.0 y=0.01, z=0.5
INTEGER :: i=10, j=25, k=3

i + j + k * i
z * x / 10 + k
z * k + z * j + z * i
i * y - k / x + j
x / i / z

4. Write definitions of derived types, together with initial values, which represent
the following:
(a) a point with x, y and z coordinates.
(b) a time in hours, minutes and seconds.
(c) a date in day, month and year.
(d) a time comprised of the two types above.

5. Write a program which will read in two real numbers representing the length
and breadth of a rectangle, and will print out the area calculated as length times
breadth. (Use a derived type to represent the rectangle and its area.)

6. Write a program which will read in five integers and will output the sum and
average of the numbers.

Note: the values held by a program variable can be read from and written to
the screen using the READ() and WRITE() statements (which are explained
later in the course), i.e.

READ(*,*) variable1 [, variable2]
WRITE(*,*) variable1 [, variable2]

Character Processing

Cardiff, London and Belfast HPC T&E Centres 23

3 Character Processing

3.1 Character Type
In the previous chapter the intrinsic numeric types REAL and INTEGER were intro-
duced, a third intrinsic type CHARACTER is presented in this section. This type is used
when the data which is being manipulated is in the form of single characters and
strings (words or sentences) rather than numbers. Character handling is very impor-
tant in numeric applications as the input or output of undocumented numbers is not
very user friendly.

In Fortran characters may be treated individually or as contiguous strings. Strings
have a specific length and individual characters within the string are referred to by
position, the left most character at position 1, etc. As with numeric data the program-
mer may specify literal constants of intrinsic type character as described below.

3.2 Character Constants
The example below is taken from a program which calculates the area of a circle, the
program reads in a value for the radius and writes out the area of the circle. Without
prompts the user‘s view of such a program is very bleak, that is there is no indication
of what the input is for or when it should be supplied nor is there an explanation of
the output. By including some character constants (or literals) in the output the user’s
view of the program can be greatly enhanced, for example

WRITE (*,*) ‘Please type a value for the radius of a circle’
READ (*,*) radius
area = pi*radius*radius
WRITE (*,*) ‘The area of a circle of radius ‘, radius, &

‘ is ‘, area

The characters which appear between pairs of apostrophes are character constants
and will appear on screen as

Please type a value for the radius of a circle
12.0
The area of a circle of radius 12.0 is 452.38925

The double quote character may also be used to define character literals. If a string of
characters is to contain one of the delimiting characters (apostrophes or double
quotes) then the other may be used. However if the string is to contain both delimit-
ing characters or a programmer wishes to always define strings using the same char-
acter then the delimiter may appear in a string as two adjacent apostrophes or double
quotes. These are then treated as a single character.

“This string contains an apostrophe ‘.”
‘This string contains a double quote “.‘
“This string contains an apostrophe ‘ and a double quote ““.”

This would appear in output as

An Introduction to Fortran 90

24 Fortran 90 student notes

This string contains an apostrophe ‘.
This string contains a double quote “.
This string contains an apostrophe ‘ and a double quote “.

3.3 Character Variables
The declaration of character variables is similar to that for REAL and INTEGER varia-
bles. the following statement declares two character variables each of which can con-
tain a single character

CHARACTER :: yesorno, sex

A value may be assigned to a character variable in the form of a literal constant thus

yesorno = ‘N’
sex = ‘F’

However character variables are more frequently used to store multiple characters
known as strings. For example to store a person’s name the following declarations
and assignments may be made

CHARACTER(LEN=12) :: surname, firstname
CHARACTER(LEN=6) :: initials, title
title = ‘Prof.‘
initials = ‘fjs‘
firstname = ‘Fred‘
surname = ‘Bloggs‘

Notice that all the strings were defined as being long enough to contain the literal con-
stants assigned. Variables which have unused characters are space filled at the end. If
the variable is not large enough to contain the characters assigned to it then the left-
most are used and the excess truncated, for example

title = ‘Professor‘

would be equivalent to

title = ‘Profes‘

The general form of a character declaration is:

CHARACTER [(LEN=)] [,attributes] :: name

3.4 Character manipulation
3.4.1 Concatenation

The arithmetic operators such as + and - should not be used with character variables.
The only operator for character variables is the concatenation operator //. This may
be used to join two strings as follows

CHARACTER (len=24) :: name
CHARACTER (len=6) :: surname
surname = ‘Bloggs’
name = ‘Prof ‘//‘ Fred ‘//surname

As with character literals if the expression using the // operator exceeds the length of
the variable the right-most characters are truncated and if too few characters are spec-
ified the right-most characters are filled with spaces.

Character Processing

Cardiff, London and Belfast HPC T&E Centres 25

3.4.2 Substrings

As the name suggests substrings are sections of larger character strings. The charac-
ters in a string may be referred to by position within the string starting from character
1 the left-most character.

CHARACTER (LEN=7) :: lang
lang = ‘Fortran’
WRITE (6,*) lang(1:1), lang(2:2), lang(3:4), lang(5:7)

would produce the following output

Fortran

The substring is specified as (start-position : end-position). If the value for start-posi-
tion is omitted 1 is assumed and if the value for end-position is omitted the value of
the maximum length of the string is assumed thus, lang(:3) is equivalent to lang(1:3)
and lang(5:) is equivalent to lang(5:7).

The start-position and end-position values must be integers or expressions yielding
integer values. The start-position must always be greater than or equal to 1 and the
end-position less than or equal to the string length. If the start-position is greater than
the maximum length or the end-position then a string of zero length is the result.

3.4.3 Intrinsic Functions

Functions will be dealt with in more depth later in the course, however it is conven-
ient to introduce some functions at this early stage. An intrinsic function performs an
action which is defined by the language standard and the functions tabulated below
relate to character string. These intrinsic functions perform a number of commonly
required character manipulations which programmers would otherwise have to write
themselves:

• LEN(string) returns the length of a character string

• INDEX(string,sustring) finds the location of a substring in another string,
returns 0 if not found.

• CHAR(int) converts an integer into a character

• ICHAR(c) converts a character into an integer

• TRIM(string) returns the string with the trailing blanks removed.

The conversion between characters and integers is based on the fact that the available
characters form a sequence and the integer values represent the position within a
sequence. As there are several possible character sequences and these are machine
dependent the precise integer values are not discussed here. However, it is possible to
state that regardless of the actual sequence the following are possible:

INTEGER :: i
CHARACTER :: ch

...
i=ICHAR(CHAR(i))
ch=CHAR(ICHAR(ch))

Below is an example of how intrinsic functions may be used:

CHARACTER(len=12) :: surname, firstname
INTEGER :: length, pos

...
length = LEN(surname) !len=12
firstname = ‘Walter‘

An Introduction to Fortran 90

26 Fortran 90 student notes

pos = INDEX(firstname, ‘al‘) !pos=2
firstname = ‘Fred‘
pos = INDEX(firstname, ‘al‘) !pos=0
length = LEN(TRIM(firstname)) !len=4

3.5 Exercises
1. Given the following variable declaration and initialization:

CHARACTER(len=5) :: vowels=‘aeiou‘

what are the substrings specified below?
(a) vowels(1:1)
(b) vowels(:2)
(c) vowels(4:)
(d) vowels(2:4)

2. Given the following variable declaration and initialization:

CHARACTER(len=27) :: title=‘An Introduction to Fortran.’

define substrings which would specify the character literals below?
(a) to
(b) Intro
(c) Fortran.

3. Using the variable title defined above write a program using intrinsic func-
tions, which would:
(a) find the location of the string duct
(b) find the length of the string
(c) extract and concatenate substrings to produce the string Fortran, An
Introduction to.

In all cases, output the results.
4. Design a derived data type which contains the following details relating to

yourself: surname, forename, intials, title and address. The address should be a
further derived type containing house number, street, town/city and country.

5. Write a program which will request input corresponding to your name and
address as defined in the text and which will output your name and address in
two forms as follows:

Mr. Joseph Bloggs,
12, Oil Drum Lane,
Anytown,
United Kingbom

JF Bloggs, 12 Oil Drum Lane, Anytown

Logical & comparison expressions

Cardiff, London and Belfast HPC T&E Centres 29

4 Logical & comparison
expressions

4.1 Relational operators
A logical variable, denoted with the keyword LOGICAL to define its type, can take one
of two logical values (.TRUE. or .FALSE.) which are used to record Boolean infor-
mation about the variable. Recall that declaring logical variables takes the following
form:

LOGICAL [, attribute] :: variable

Logical variable may be assigned a value either explicitly or via a logical expression,
for example:

LOGICAL :: guess, date
LOGICAL, PARAMETER :: no = .false.
INTEGER :: today_date
...
guess = .true.
date = (today_date==5)

if today_date has previously been assigned a value and that value is 5 then date
holds .TRUE., otherwise .FALSE.. The relational operator == may be read as ‘equal
to’, thus today_date==5 is read as ‘is today_date equal to 5?’. Below are a list of
the relational operators together with their meaning:

< less than,
<= less than or equal to,
> greater than,
>= greater than or equal to,
== equal to,
/= not equal to.

Below are some examples of how the relational operators can be used:

LOGICAL :: test
INTEGER :: age, my_age
CHARACTER(LEN=5) :: name
...
test = 5 < 6 !True
test = 5 > 6 !False
test = 5 == 6 !False
test = 5 /= 6 !True
test = 5 <= 6 !True
test = 5 >= 6 !False
...
test = age > 34 !a variable compared with a constant
test = age /= my_age !two variables are compared

An Introduction to Fortran 90

30 Fortran 90 student notes

test = 45 == my_age !a variable can appear in any side
test = name == 'Smith' !characters are allowed
test = (age*3) /= my_age !expressions are allowed

4.2 Logical expressions
Expressions containing logical variables and/or relational operators may be com-
bined into logical expressions using the following operators:

.AND. logical intersection,

.OR. logical union,

.NOT. logical negation,

.EQV. logical equivalence,

.NEQV. logical non-equivalence,

The logical intersection operator .AND., requires two expressions or variables and
gives a .TRUE. result only if both expressions are true, otherwise evaluates to
.FALSE.. Consider the following example:

LOGICAL :: test, employed=.true.
INTEGER :: age=50
...
test = employed .AND. (age<45) !test=.false.

There are two sub-expressions here, one .TRUE. the other .FALSE. hence the result
is .FALSE..

The logical union operator .OR. requires two expressions or variables and gives the
value .TRUE. if either one of the expressions is true, and .FALSE. otherwise. Con-
sider the following example:

LOGICAL :: test
CHARACTER(LEN=10) :: name = ‘James’
...
test = (name='Dimitris') .OR. (name='James') !test=.true.

The logical negation operator .NOT. is used to invert the logical value of an expres-
sion, i.e. .TRUE. becomes .FALSE. and vice versa. For example:

INTEGER :: big=100, small=2
LOGICAL :: test
...
test = .NOT. (big>small) !test=.false.
test = .NOT. test !test=.true.

where the statement enclosed by the (optional) brackets is assigned a value which in
turn is inverted.

The logical equivalence operator .EQV. is used to check if all variables or expressions
have the same logical value (can be either .TRUE. or .FALSE.). If both values are the
same the whole expression evaluates to .TRUE., otherwise it evaluates to .FALSE..
For example:

LOGICAL :: test
...
test = (5*3>12) .EQV. (6*2>8) !test=.true.
test = (5*3<12) .EQV. (6*2<8) !test=.true.

both statements evaluate to .TRUE. because the sub-expressions in each statement
take the same logical values.

Logical & comparison expressions

Cardiff, London and Belfast HPC T&E Centres 31

The logical non-equivalence operator .NEQV. is used to evaluate expressions to
.TRUE. only if one of the expressions has a different logical value to the other(s), oth-
erwise evaluates to .FALSE.. For example:

LOGICAL :: test
...
test = (5*3>12) .NEQV. (6*2>13) !test=.true.
test = (5*3>12) .NEQV. (6*2<13) !test=.false.

the first expression has one true and one false component and therefore evaluates to
.TRUE., the second expression has two true components and therefore evaluates to
.FALSE..

When comparing REAL with INTEGER values the compiler will convert the integer to
type REAL. Comparing REAL with REAL values must be performed with caution;
rounding errors in the precision of a REAL variable may mean that two REAL numbers
should never be equated. It is advisable to test their difference rather than their actual
values, i.e.

REAL :: a=100.0, b
LOGICAL :: equal
b = 2*50.0
equal = (a==b) !potential error
equal = (a-b)<0.0005 !good programming practice

4.3 Character Comparisons
Certain rules have to be obeyed when comparing characters or character strings, (Is A
greater than B?) Most importantly when one of the character strings has a shorter
length, it is padded with blanks (right side). The comparison is character by character

The comparison starts from the left side The comparison terminates either when a dif-
ference has been found or the end of the string has been reached. If no difference is
found the character strings are the same, otherwise the comparison terminates with
the first encountered difference. Comparing character strings depends on the collating
sequence of the machine used. The ASCII collating sequence has the following rules:

blank 0 < 1 < 2 ... < 9 A < B < ... < Z a < b < ... < z

that is blank before digits before a to z before A to Z. The rest of characters have no
defined position and are machine dependant. The ASCII character set is the most
commonly used collating sequence. Note that the Fortran standard does not define if
upper case characters come before or after lower case characters.

The earlier a character comes in the collating sequence the smaller value it has. Hence,
a blank is always smaller than a digit or a letter. An example:

'Alexis' > 'Alex'

The right string is shorter, hence 'Alex' becomes 'Alex ' The first 4 letters are the same
- no difference has been found so search continues character i is greater than ‘blank’ -
comparison terminates and the result is .TRUE. because the blank comes before the
letter i in the collating sequence!

4.3.1 Portability Issues

The collating sequence is machine dependable. Intrinsic functions for string compari-
son are available which are based on the universal ASCII collating sequence:

LGT(string1, string2) !greater than or equal to
LGE(string1, string2) !greater than

An Introduction to Fortran 90

32 Fortran 90 student notes

LLE(string1, string2) !less than or equal to
LLT(string1, string2) !less than

Because the collating sequence might differ from machine to machine the above
intrinsic functions (based on the ASCII collating sequence) should be used to compare
strings. More intrinsic functions are available. For example intrinsic functions that
identify the position of a character in a sequence in the ASCII or machine collating
sequence. Some of them are presented through the exercise sections.

4.4 Exercises
1. Given the values below, what is the value of each of the following expressions?

Write a program to test your answers.

INTEGER :: age=34, old=92, young=16
age /= old
age >= young
age = 62
(age==56 .AND. old/=92)
(age==56 .OR. old/=92)
(age==56 .OR. (.NOT.(old/=92)))
.NOT. (age==56 .OR. old/=92)

2. What are the logical values of the following expressions?

15 > 23
(12+3) <= 15
(2>1) .AND. (3<4)
((3>2) .AND. (1+2)<3) .OR. (4<=3)
((3>2) .AND. (1+2)<3) .EQU. (4<=3)

3. Simplify the following expressions using different logical operators:

.NOT. (a<b .AND. b<c)

.NOT. (a<b .EQV. x<y)

4. Determine the logical value of each of the following expressions. Write a pro-
gram to test your answers.

CHARACTER(LEN=4) :: name = ’Adam’
name > ’Eve’
“ADAM” > name
’M1’ < ’M25’
’version_1’ > ’version-2’
’ more’ < ’more’
LGT("Adam","adam")
LLT("Me",’me’)
LLT(’me’,"me?"

Arrays

Cardiff, London and Belfast HPC T&E Centres 35

5 Arrays

5.1 Terminology
5.1.1 Arrays and elements

Previous chapters introduced simple data types, such as INTEGER, REAL and CHAR-
ACTER, and derived data types. In this chapter a means of organising and structuring
data called an array is introduced. An array is a collection of data, all of the same type,
whose individual elements are arranged in a regular pattern.

There are 3 possible types of arrays (based on how the array is to be stored in mem-
ory):

• Static arrays - are the most common type and have their size fixed when the ar-
ray is declared. The number of elements in the array cannot be altered during
the program’s execution. This can be inflexible in certain circumstances (to
change the array sizes parts of the program must be edited and the whole re-
compiled) and can be wasteful in terms of storage space (since the largest possi-
ble array sizes might be declare and may be only partly used).

• Semi-dynamic arrays - have their size determined on entering a sub-program.
Arrays can be created to match the exact size required but can only be used with-
in that particular sub-program. In Fortran 90 such arrays are either assumed
shape, or automatic arrays.

• Dynamic arrays - the size and therefore the amount of storage used by a dynam-
ic array can be altered during execution. This is very flexible but may slow run-
time performance and lack any bounds checking during compilation. In
Fortran90 such arrays are called allocatable arrays.

The reasons for using an array are:

• Easier to declare (one variable name instead of tens or even thousands).

• Easier to operate upon (because of whole array operations the code is closer to
underlying mathematical form).

• Flexible accessing (it is easy operate on various sections (or parts) of an array in
different ways).

• Easier to understand the code (notational convenience).

• Inherent data parallelism (perform a similar computation on many data objects
simultaneously - if the program is running on a parallel machine).

• Optimization opportunities (for compiler designers).

Below is an example of an array containing eight integer elements:

5 7 13 24 0 65 5 22

Element

An Introduction to Fortran 90

36 Fortran 90 student notes

Each element has a subscript (or index) to identify its place in the array. Assuming that
the subscript starts at 1 then:

• the first element of the array is 5 with an index of 1

• the second element of the array is 7 with an index of 2

• the last element of the array is 22 with an index of 8

5.1.2 Array properties

The rank (or dimension) of an array refers to the number of subscripts needed to locate
an element within that array. A scalar variable has a rank of zero (i.e. needs no sub-
scripts because it only has one; an array with a rank of one is called a vector; an array
with a rank of 2 is called a matrix.

Consider again the following arrays:

The upper array is a vector since it is one-dimensional while the lower array is a
matrix since it is two-dimensional. At most an array may have seven dimensions.

The term bounds refers to the lowest and highest subscript in each dimension. The vec-
tor above has a lower bound of 1 and a higher bound of 8, whereas the matrix has
bounds of 1 and 2 in the first dimension and 1 and 4 in the second dimension.

The extent of an array refers to the number of elements in a dimension. Hence the
above vector has an extent of 8, whereas the above matrix has an extent of 2 and 4 in
each dimension.

The shape of an array is a vector (i.e. an array!) containing the extents of an array.
Hence the above vector has a shape of (8) whereas the matrix has a shape of (2,4).

The term size refers to the total number of elements of an array, which simply is the
product of extents. The size of an array may be zero (see later). Both the vector and
matrix above have a size of 8.

Arrays that have the same shape are said to conform. This is the condition for whole
array or array section operations. The above examples do not conform with one
another. All arrays conform with scalar values.

5.2 Specifications
Like other variables arrays are specified with a specific data type (INTEGER, REAL,
derived type, etc.). For static arrays, the rank (up to a maximum of 7) and the bounds
(upper and lower) in each dimension are declared. Declaring the lower bound is
optional. If the lower bound is not specified Fortran90 assumes that the index begins
with 1.

Alternate and equivalent forms used to declare an array are as follows:

type, DIMENSION(bound) [, attribute] :: name
type [, attribute] :: name (bound)

where [, attribute] allows for the declaration of other type attributes, if required.

5 7 13 24 0 65 5 22

5 7 13 24

0 65 5 22

Subscript 1,1

Subscript 8

Subscript 2,4

Subscript 1

Arrays

Cardiff, London and Belfast HPC T&E Centres 37

The following declarations are equivalent. Both declare an integer array a with 6 ele-
ments; a real array b with 10 elements and a 2-dimensional logical array yes_no.

INTEGER, DIMENSION(6) :: a
REAL, DIMENSION(0:9) :: b
LOGICAL, DIMENSION(2,2) :: yes_no

INTEGER :: a(6)
REAL :: b(0:9)
LOGICAL :: yes_no(2,2)

Use the DIMENSION attribute form when several arrays of the same bounds and type
need to be declared. Use second form when several arrays of different types and/or
bounds need to be declared. A third form is a mixture of the two above, as shown
below:

type, DIMENSION(bound1) [, attribute] :: a, b(bound2)

where a takes the ‘default’ bounds bound1, but b takes another explicitly defined
value bound2.

A mixture of the three forms are allowed in the same program. Some further examples
are shown below:

INTEGER, DIMENSION(8) :: x, y, z(16)
REAL :: alpha(1:3), beta(4:9)
REAL, DIMENSION(0:5,12:45,6) :: data
CHARACTER(len=10) :: names(25)

The first statement declares x and y to have 8 elements each and z to have 16 ele-
ments. The second statement declares two arrays of the same type but with different
bounds. The third statement declares a rank 3 array. The last statement declares an
array which has 25 elements, each element being a character string of length 10.

It is possible to include arrays as components of a derived data type and to declare
arrays of derived data types, for example:

TYPE(point)
REAL :: position(3)

TYPE(point)
TYPE(point) :: object(10)

The type point is comprised of 3 real numbers, while the array object consists of 10
items of data, each consisting of 3 real numbers.

5.3 Array Sections
5.3.1 Individual elements

Individual elements and sections of an array are uniquely identified through sub-
scripts, one per rank separated by commas. This subscript is an integer value (or an
expression whose result is an integer value)

REAL, DIMENSION(8) :: a
INTEGER, DIMENSION(5,4) :: b
...
a(5) !fifth element
b(4,2) !element at intersection of the 4th row and 2nd column.

An Introduction to Fortran 90

38 Fortran 90 student notes

Subscripts (e.g. (i,j)) refers to the element at the intersection of row i and column
j, where i and j have integer values between the upper and lower bounds for their
respective dimensions.

Using expressions (e.g. (2*k)) refers to an element whose subscript is the result of
the multiplication. The result of an expression must be an integer within the declared
bounds. It is an error to refer to a subscript beyond (either above or below) the range
of an array’s bounds.

5.3.2 Sections

As well as identifying individual elements it is possible to reference several elements
(called a section) with the same statement. Accessing a section of an array requires the
upper and lower bounds of the section to be specified together with a stride (for each
dimension). This notation is called a subscript triplet:

array ([lower]:[upper][:stride], ...)

where lower and upper default to the declared extents if missing, and stride
defaults to 1.

REAL, DIMENSION(8) :: a
INTEGER, DIMENSION(5,4) :: b
INTEGER :: i=3
...
a(3:5) !elements 3, 4, 5
a(1:5:2) !elements 1, 3, 5
b(1:2,2:i) !elements (1,2) (2,2) (1,3) and (2,3)
b(i,1:4:2) !elements 1 and 3 of the third row
b(2:4,1) !elements 2, 3 and 4 of the first column

The bounds in a subscript triplet can take any (integer) values. Using Subscript tri-
plets is a compact and convenient way of referencing arbitrary sections of an array.

Some more complex array section are given below. Note how the upper and lower
subscripts may be omitted:

REAL, DIMENSION(0:5) :: c
INTEGER, DIMENSION(4:5) :: d

c(:) !whole array
c(:3) !elements 0,1,2,3

a(5) b(4,2)

a(1:5:2)

b(1:2,2:3)

a(3:5)

b(3,1:4:2) b(2:4

Arrays

Cardiff, London and Belfast HPC T&E Centres 39

c(::2) !elements 0,2 and 4
d(:,4) !all elements of the fourth column.
d(::2,:) !all elements of every other row

5.4 Vector Subscripts
Vector subscripts are integer arrays of rank 1 and take the form:

(/ list /)

where list is a list of subscripts, in any order, to be referenced. Consider the follow-
ing example:

REAL, DIMENSION(9) :: a
INTEGER, DIMENSION(3) :: random

random=(/6,3,8/) !set values for random
a(random)=0.0 !a(6)=a(3)=a(8)=0.0
a((/7,8,9/))=1.2 !a(7)=a(8)=a(9)=1.2

For the vector subscript to be valid, list may not contain a value outside the bounds of
an array in which it is used to identify elements

Care must be taken not to duplicate values in a vector subscript when used in the LHS
of an expression. This would result in several values being written to the same array
element:

REAL, DIMENSION(5) :: a
INTEGER, DIMENSION(3) :: list
list=(/2,3,2/)
a(list)=(/1.1, 1.2, 1.3/) !illegal - element 2 set twice
a((/0,2,4/)) = 0.0 !illegal - subscript out of bounds

5.5 Array storage
The physical storage: How an array is stored in memory depends on the computer
implementation. This is usually of little interest to a programmer.

The array element ordering: It is wrong to assume that two elements of an array are next
to each other (in memory) just because their indices differ by a single value. However
it is possible to imagine multi-dimensional arrays stored as a linear sequence of the
array elements by counting through the ranks, lowest rank changing first. In this way
matrices may be thought of as being stored column-wise. It is important to keep this
in mind when manipulating and initialising multi-dimensional arrays.

Consider the following example:

c(:)

c(:3)

c(::2)

d(:,4)

d(::2,:)

An Introduction to Fortran 90

40 Fortran 90 student notes

REAL, DIMENSION(3, 5) :: a

The array a is stored in memory as a linear sequence, as shown.

5.6 Array Assignment
5.6.1 Whole array assignment

Whole array operations are used when the elements of an array need to be assigned
with the same value (i.e. a scalar) or when coping the values of one array to another.
In the former the scalar is broadcasted to all the elements of the array. In the latter
array elements are equated, one with another. In all cases the operands in the array
expression must conform. Consider the following example:

REAL, DIMENSION(100) :: a, b, c
REAL : d(10,10) = 0.0
b = 2*a+4
a = 2.0
c = b*a
c = d !illegal - arrays do not conform

The first assignment involves an array expression on the right hand side. Since a and
b conform it is a valid statement. Each element of b takes the corresponding value of a
multiplied by 2, plus 4.

The second assignment involves a scalar on the right hand side, (recall that scalars
conform with arrays of all shapes. Each element of a takes the value of 2.

The third assignment involves an array product on the right hand side. Since a and b
conform then their product can be evaluated, the product is an element by element
multiplication (not a matrix multiplication!). The result is another array which con-
forms with c, therefore each element of c is the product of the corresponding ele-
ments in a and b.

5.6.2 Array section assignment

Just as whole arrays may appear in expressions, so to can array sections. Again all
array sections in an expression must conform to one another. Consider the following
example:

REAL, DIMENSION(10) :: alpha, beta
REAL :: gamma(20)
...
alpha(1:5) = 2.0 !first 5 elements all 2.0
alpha(6:) = 0.0 !last 5 elements all 0.0
...
beta(1:10:2) = alpha(1:5)/6 !conforming array sections
alpha(2:10) = alpha(1:9)
gamma(11:20) = beta

1,1 2,1 3,1 1,2 ... 3,5

1,1

2,1

3,1

1,2

2,2

3,2

1,5

2,5

3,5

...

Arrays

Cardiff, London and Belfast HPC T&E Centres 41

The last three statements all have conforming array sections of various sizes (5, 9 an 10
element respectively). The first of these sets every other element of beta to the first five
elements of alpha (beta(1)=alpha(1), beta(3)=alpha(2), etc.). The second
shows a powerful operation using arrays where values are shifted automatically and
without the need of DO loops. Elements 2,3,...10 of alpha take the value of elements
1,2,...9, thereby shifting values along in the array. The last assignment demonstrates
another important concept. Whereas the arrays beta and gamma do not conform, the
section of gamma used in the expression does conform with beta, hence the expres-
sion is a valid statement.

5.6.3 Renumbering

It is important to remember that the elements in an array section always have a lower
bound of 1 in each dimension. Regardless of the subscript of the element(s) in the
original array, elements of a section are renumbered so that indices are consecutive (in
each dimension) beginning at 1. Renumbered is automatic.

INTEGER :: nums(10), i
nums = (/ 1,3,5,7,9,2,4,6,8,0 /)
...
i = MAXLOC(nums) !i=5, element 9 is maximum
i = MAXLOC(nums(1:5)) !i=5, last element in section =9
i = MAXLOC(nums(3:8)) !i=3, third element in section =9
i = MAXLOC(nums(::2)) !i=3, third element in section =9

In the above example, the element with the value 9 is always the maximum element in
the array or section. However its index changes due to a renumbering of the section

5.6.4 Elemental intrinsic procedures

Elemental procedures are specified for scalar arguments, but may take array argu-
ments. Consider the following example:

REAL :: num, root
REAL, DIMENSION(3,3) :: a
INTEGER ::length(5)
CHARACTER(LEN=7) :: c(5)
...
root = SQRT(num)
a = SQRT(a)
length = LEN(TRIM(c)) !length=6

The function SQRT() returns the square root of its argument. If the argument is a sca-
lar variable, a single value is returned. If the argument is an array, an array of square
roots is returned. Hence, every element of a is substituted by the square root of the
existing value.

The third assignment finds the string length for each element of c and rejects any trail-
ing blanks. Hence, if c(1) is ‘Alexis ‘ the TRIM() function returns ‘Alexis ‘ (i.e.
minus the trailing blank), the length of which is 6.

Many of the intrinsic functions (including the mathematical functions) may take
arrays, array sections or simple scalar variables as arguments.

5.7 Zero-sized arrays
Fortran 90 allows arrays to have zero size. This occurs when the lower bound is
greater than the upper bound. A zero-sized array is useful because it has no element
values, holds no data, but is valid and always defined. Zero-sized arrays allow the

An Introduction to Fortran 90

42 Fortran 90 student notes

handling of certain situations without the need of extra code. As an example consider
the following situation:

INTEGER :: a(5)=(/1,2,1,1,3/)
...
a(1:COUNT(a==1))=0 !a=(/ 0,0,0,1,3 /)
a(1:COUNT(a==4))=1 !a unchanged

The first statement initialises a using a constructor (see below). The function
COUNT() returns the number of elements which have a value equal to 1 and 4 respec-
tively. The first statement sets a(1:3) to zero, but the second does nothing (because
no element of a has the value 4, and the array section a(1:0) is of zero-size).

Allowing for zero-sized arrays means that if an array or section has no elements the
statement becomes a ‘do nothing’ statement and the programmer is saved from hav-
ing to deal with the problem.

5.8 Arrays and derived types
As well as specifying arrays of intrinsic data types, it is also possible to include array
specifications as part of a derived data type. This makes it easier to group together
several (or many) instances of data. Recall the definition of the derived data type
circle:

TYPE(circle)
INTEGER :: radius
REAL :: area

END TYPE circle

Previously, a second derived type called position was used to store the real coordi-
nates of the circles centre; position had two real numbers as components. It is possi-
ble to replace the use of the derived type position by a real array:

TYPE(circle)
REAL, DIMENSION(2) :: pos
INTEGER :: radius
REAL :: area

END TYPE circle

Here pos(1) holds say an x coordinate while pos(2) holds a y coordinate. Arrays
can be used when the number of components becomes to large (or just inconvenient).
Array components are referenced in much the same way as other components:

TYPE(circle) :: first
...
first%pos(1) !element 1 of pos
first%pos(1:) !whole array (section)

Just as several (or many) instances of an intrinsic data type may be grouped together
as a single array, so it is possible to group together instances of derived data types. For
example:

TYPE(circle), DIMENSION(100) :: all_circles
...
all_circles(1)%radius !radius of circle 1
all_circles(51:100)%radius !radius of last half of circles
all_circles(1:100:2)%area !area of every other circle
all_circles(:)%pos(1) !x coords of every circle
all_circles%pos !all coords of all circles
all_circles(10)%pos(:) !both coords of circle 10

Arrays

Cardiff, London and Belfast HPC T&E Centres 43

An array of a derived data type and/or an array component of a derived type have
the same requirements (i.e. conformance in expressions, etc.) and restrictions as other
arrays in Fortran 90. For example:

TYPE(circle), DIMENSION(100) :: cir
...
cir(1:10) = cir(91:100) !sections of derived type conform
cir(i)%pos = cir(i-1)%pos(:) !arrays of reals conform
cir%pos(1:2) = cir(1:2)%pos !error, cir=cir(1:2) non-conforming

Care must be taken to ensure that any labelling of array sections is applied to the cor-
rect part of an expression.

5.9 Initialising arrays
5.9.1 Constructors

Constructors are used to initialise 1-dimensional arrays which require fixed values at
the start of a program. A constructor is a list enclosed in parentheses and back-slash.
The general form is:

array = (/ list /)

where list can be one of the following:

• a list of values of the appropriate type:

INTEGER :: a(6)=(/1,2,3,6,7,8/)

• variable expression(s)

REAL :: b(2)=(/SIN(x),COS(x)/)

• array expression(s)

INTEGER :: c(5)=(/0,a(1:3),4/)

• implied DO loops (see later)

REAL :: d(100)=(/REAL(i),i=1,100/)

The constructor can be used during declaration as shown above or in a separate state-
ment. Arrays with a rank of two or more should not be initialise with a simple con-
structor, but instead should use a combination of constructor(s) and the RESHAPE()
function (see below).

5.9.2 Reshape

The RESHAPE() function is to be used for the initialisation or assignment of multi-
dimensional arrays, i.e., arrays with rank greater than 1. It can be used on a declara-
tion statement or in a separate statement. The format is:

RESHAPE (list, shape [,PAD] [,ORDER])

where list is a 1-dimensional array or constructor containing the data, and shape a
1-dimensional array or vector subscript containing the new shape of the data. PAD is
an array containing data to be used to pad out the data in list to the required shape.
ORDER can be used to change the order in which data is reshaped.

The size of the array determines the dimension of the new array. The elements deter-
mine the extent of each dimension. Consider the following example:

An Introduction to Fortran 90

44 Fortran 90 student notes

INTEGER, DIMENSION(3,2) :: a
a=RESHAPE((/0,1,2,3,4,5/),(/3,2/)) !put values into a

RESHAPE() will generate a rank 2 array with extents 3 and 2 from the list of values in
the constructor. Since this array conforms with the array a, whole array assignment is
used to give each element of a the required value. Unless the ORDER argument is used
values from the constructor will be returned in array element order, i.e. a(1,1)=0,
a(2,1)=1, a(3,1)=2, a(1,2)=3, etc...

5.9.3 DATA statement

Use the DATA when other methods are tedious and/or impossible. For example for
more than one array initialisation or for array section initialisation.

The format is:

DATA variable / list / ...

For example see following:

INTEGER :: a(4), b(2,2), c(10)
DATA a /4,3,2,1/
DATA a /4*0/
DATA b(1,:) /0,0/ DATA b(2,:)/1,1/
DATA (c(i),i=1,10,2/5*1/ DATA (c(i),i=2,10,2)/5*2/

The first DATA statement uses a list by value where the value for each array element is
explicitly declared. The second DATA statement uses a list by whole array where 4 is
the size of the array and 0 is the required value. Do not confuse with the multiplica-
tion operator. The third and fourth statements use a list by section where the first row
takes values 0 and 0 and the second row takes the values of 1 and 1.

The last two statements use a list by implied DO loops (see later) where the odd
indexed elements are assigned the value 1 and the even indexed elements take the
value of 2.

Remember that:

• a DATA statement can split in more than one line but each line must have a DATA
keyword.

• may be used for other variables as well as arrays.

5.10 WHERE
A WHERE statement is used to control which elements of an array are used in an
expression, depending on the outcome of some logical condition. It takes a statement
or a construct form. The WHERE statement allows the expression on an element by ele-
ment basis only if a logical condition is true. The syntax is as follows:

WHERE (condition) expression

Consider the following situation:

INTEGER :: a(2,3,4)
WHERE(a<0) a = 0
WHERE(a**2>10) a = 999
WHERE(a/=0) a = 1/a

The first WHERE statement results in all negative values of a being set to zero, the non-
negative values remain intact. The second WHERE statement results in elements of
data being set to 999 if their square is greater than ten. The third statement calculates

Arrays

Cardiff, London and Belfast HPC T&E Centres 45

the reciprocal of each element of data, except those with a value of zero (hence avoid-
ing the error ‘divide by zero’).

The WHERE construct allows array assignment(s) (again on an element by element
basis) only if a logical condition is true, but may provide alternative array assign-
ment(s) if false. The syntax is as follows:

WHERE (condition)
block1

[ELSEWHERE
block2]

ENDWHERE

Look at the following section of code.

INTEGER :: btest(8,8)
...
WHERE (btest<=0)

btest = 0
ELSEWHERE

btest = 1/btest
ENDWHERE

All negative valued elements of btest are set to zero and the rest take their reciprocal
value. A WHERE statement or construct is one way of avoiding ‘divide by zero’ errors
at run-time.

5.11 Array intrinsic functions
Several intrinsic procedures are available in Fortran90. Their role is to save time and
effort when programming. They can be divided into 7 sections for:

• Vector and matrix multiplication.

• Reduction.

• Inquiry.

• Construction.

• Reshape.

• Manipulation.

• Location.

5.11.1 Example of reduction

The intrinsic function ALL() has the form:

ALL(condition)

and determines whether all elements in an array satisfy the condition. The result is the
logical value .TRUE. if all elements satisfy the condition and .FALSE. otherwise.

LOGICAL :: test, test2, test3
REAL, DIMENSION(3,2) :: a
a = RESHAPE((/5,9,6,10,8,12/), (/3,2/))
...
test = ALL(a>5) !false
test2 = ALL(a<20) !true
test3 = ALL(a>=5 .AND. test2) !true

An Introduction to Fortran 90

46 Fortran 90 student notes

The first statement returns .false. since the first element is equal to 5 and not
greater. The second statement returns .true. since all elements have a value less
than 20. The third statement returns .true.since all element have a value 5 or
greater and the value of test2 is .true..

5.11.2 Example of inquiry

The intrinsic function SIZE() has the form:

SIZE(array [, DIM])

and returns the extent of an array for the specified dimension (specified by the argu-
ment DIM). If the dimension is missing SIZE() returns the total number of elements
in the array.

REAL, DIMENSION(3,2) :: a
num=Size(a) !num=6
num=Size(a,DIM=1) !num=3
num=Size(a,DIM=2) !num=2

The value given to the DIM argument specifies the dimension, DIM=1 returns the
number of rows, DIM=2 the number of columns, etc.

5.11.3 Example of construction

The intrinsic function SPREAD() has the form:

SPREAD(array, DIM, NCOPIES)

and replicates the given array by adding a dimension, where DIM stands for dimen-
sion and NCOPIES for number of copies.

REAL, DIMENSION(3) :: a=(/2,3,4/)
REAL, DIMENSION(3,3) :: b,c
b=SPREAD(a, DIM=1, NCOPIES=3)
c=SPREAD(a, DIM=2, NCOPIES=3)

The first SPREAD statement replicates array a three times on the row dimension. The
second SPREAD statement replicates array a three times on the column dimension.

5.11.4 Example of location

The intrinsic function MAXLOC() has the form:

MAXLOC(array, [mask])

determines the location of the element which has the largest value in an array and sat-
isfies the optional mask. A mask is a logical array (or condition involving an array)

DIM=2 DIM=1

2 3 4

2 3 4

2 3 4

b

3 3 3

2 2 2

4 4 4

c

Arrays

Cardiff, London and Belfast HPC T&E Centres 47

which conforms to array. The only elements of array which take part in the search
for the maximum valued elements are those which correspond to .TRUE. elements in
the mask.

REAL :: a(5)=(/2,8,5,3,4/)
num = MAXLOC(a) !num=2
num = MAXLOC(a(2:4)) !num=1, note renumbering
num = MAXLOC(a, MASK=a<5) !num=5

The first statement returns 2 since this is the position of the highest number on the list.
The second MAXLOC() statement returns the value 1 since this is the position of the
highest valued element in the array section. Remembering that elements in array sec-
tion statements are renumbered with one as the lower bound in each dimension. The
third MAXLOC() statement returns 5 since this is the position of the highest number
on the list when numbers greater than 5 are excluded by the mask.

5.12 Exercises
1. Consider the following array:

INTEGER, DIMENSION(3,3) :: a
a = RESHAPE((/ 1, 2, 5, 8, 6, 7, 5, 0, 0 /), (/3,3/))

What is the value of element a(2,1); a(3,2); a(1,2); a(2,3). Write a program to dis-
play all required values.

2. Given the following declarations:

REAL, DIMENSION(1:10,1:20) :: a
REAL, DIMENSION(10,-5:10) :: b
REAL, DIMENSION(0:5,1:3,6:9) :: c
REAL, DIMENSION(1:10,2:15) :: d

What is the rank, size, bounds, and extents of a, b, c and d? Write a program
which uses the intrinsic functions SIZE(), LBOUND(), UBOUND() and
SHAPE() to display the required information.

3. Declare an array for representing a chessboard (a board of 8x8), indicating a
white square with .false., and a black square with .true..

4. Given the following declarations:

REAL, DIMENSION(-1:5,3,8) :: alpha=1.0
REAL, DIMENSION(-3:3,0:2,-7:0) :: beta=0.0

Are the two arrays conformable? Write a program including the statement b=a
to confirm your answer.

5. Given the array declaration below which of the following references are valid?
Write a program to view to output of the valid references.

REAL :: a(0:5,3)=1.0

a(2,3) a(6,2) a(0,3) a(5,6) a(0,0)
a(2:,:4) a(0,3:1) a(0,1:3:-1)a(::2, 1) a(:,0:5:6)

6. What is the array element order of the following array?
INTEGER, DIMENSION(-1:1,2,0:1) :: alpha

7. Declare and initialise the array (using RESHAPE()) beta with the following
elements

a MASK=a<5

2 8 5 3 4 T F F T T

2 3 4

MAXLOC()

MAXLOC()

An Introduction to Fortran 90

48 Fortran 90 student notes

5 6 1
4 2 2
0 5 3

8. Using vector subscripts declare a rank 1 array zeta with 30 elements and place
the following values in the array:
a) 1.0 to the 1st and 2nd elements.
b) 2.0 to the 10th, 12th, 14th and 16th elements.
c) 3.0 to 24th, 25th, 27th and 22th element.

9. For the following array declarations, which of the following statements are
valid (i.e. for which of the following are the array expressions conforming?)
Test your answer by writing a program.

REAL, DIMENSION(50) :: alpha
REAL, DIMENSION(60) :: beta
alpha = beta
alpha(3:32) = beta(1:60:2)
alpha(10:50) = beta
alpha(10:49) = beta(20:59)
alpha = beta(10:59)
alpha(1:50:2) = beta
beta = alpha
beta(1:50) = alpha

10. Initialise an array of rank one and extend 10 with the values 1 to 10 using
a) a constructor with the list of values
b) a constructor with the DO Loop

11. An array of rank one and extent 50 has been declared and needs to be initial-
ised with the values of -1 (first element), 1 (last element) and 0 (rest of ele-
ments). Which of the following constructor structures are valid (if any)?

alpha = (/-1,(0,i=2,49),1/)
alpha = (/-1,(0,i=1,48),1/)
alpha = (/-1,(0,i=37,84),1/)
alpha = (/-1,48*0,1/)

12. If alpha has been declared and initialised as follows

INTEGER, DIMENSION(-5:0) :: alpha=(/2,18,5,32,40,0/)

What is the result of:
a) MAXLOC(alpha)
b) MAXLOC(alpha,MASK=alpha/=40)

13. Determine what the following array constructor does and then simplify the
constructor:

REAL, DIMENSION(1000,1000) :: data
data = (/((data(i,j)+10.34,j=1,1000),i=1,1000) /)

14. Write a WHERE statement (or construct) which:
a) only changes the sign of the elements of array that are negative.
b) replicates every non-zero element of an array beta by its reciprocal and every
zero element by 1.

15. The number of permutations of n objects, taken r at a time is:

Write a program which sets up a rank one array to hold the values 1,2,3,...,10.
Using the intrinsic function PRODUCT() (which returns the product of all array
elements passed to it) and various array sections, calculate:
a) The number of permutations n=5 people may pose for a photo standing in

Pn r()
n!

n r–〈 〉 !
-------------------=

Arrays

Cardiff, London and Belfast HPC T&E Centres 49

r=1 rows.
b) the number of permutations n=8 students may sit in a row of r=4 front row
desks

Control statements

Cardiff, London and Belfast HPC T&E Centres 51

6 Control statements

Fortran 90 has three main types of control construct:

• IF

• CASE

• DO

Each construct may be nested one within another, and may be named in order to
improve readability of a program.

6.1 Conditional statements
In everyday life decisions are based on circumstances. For example, the decision to
take an umbrella depends on whether it is raining or not. Similarly, a program must
be able to select an appropriate action according to circumstances. For instance, to
take different actions based on experimental results.

Selection and routing control through the appropriate path of the program is a very
powerful and useful operation. Fortran 90 provides two mechanisms which enable
the programmer to select alternative action(s) depending on the outcome of a (logical)
condition.

• The IF statement and construct.

• The select case construct, CASE.

6.1.1 IF statement and construct

The simplest form of the IF statement is a single action based on a single condition:

IF(expression) statement

Only if expression (a logical variable or expression) has the value .TRUE. is state-
ment executed. For example:

IF(x<0.0) x=0.0

Here, if x is less than zero then it is given a new value, otherwise x retains it’s previ-
ous value. The IF statement is analogous to phrases like ‘if it is raining, take an
umbrella’.

The structure of an IF construct depends on the number of conditions to be checked,
and has the following general form:

[name:]IF (expression1) THEN
block1

ELSEIF (expression2) THEN [name]
block2

...
[ELSE [name]

An Introduction to Fortran 90

52 Fortran 90 student notes

block]
ENDIF [name]

Where expression# is a logical variable or expression.

The construct is used when a number of statements depend on the same condition.
For example, ‘if it rains then take a coat and take an umbrella’. This time a THEN part
is required. Notice that an END IF (or ENDIF) statement is required to indicate the end
of a conditional block of statements.

LOGICAL :: rain
INTEGER :: numb=0, ncoat
...
IF (rain) THEN

ncoat = 1
numb = numb+1

ENDIF

If rain is .TRUE. the block of statements are executed and control passes to the next
statement after ENDIF, otherwise the block of statements is skipped and control
passes directly to the next statement after ENDIF.

More complex situation can occur when performing alternative actions depending on
a single condition. For instance, the previous examples does not make a distinction
between levels of rainfall. The example above can be rephrased as ‘if there is light rain
then take a coat otherwise (else) take a coat and an umbrella’.

REAL :: inches_of_rain
INTEGER :: numb=0, ncoat
...
IF(inches_of_rain>0.05) THEN !heavy rain

ncoat = 1
numb = numb+1

ELSE !light rain
ncoat = 1

ENDIF

Notice the use of the ELSE part separating different options and that each block may
contain one or more statements. The second block of statements acts as a set of
‘default’ statements for when the condition is not satisfied. The passing of control fol-
lows the same rules as mentioned above.

There are situations when alternative actions depend on several conditions. For exam-
ple, a discount applied to a purchase may vary depending on the number of items
purchased, the larger the purchase the larger the discount; i.e.

REAL :: cost, discount
INTEGER :: n !number of items

...
IF (n>10) THEN !25% discount on 11 or more

discount = 0.25
ELSEIF (n>5 .AND. n<=10) THEN !15% discount on 6-10 items

discount = 0.15
ELSEIF (n>1 .AND. n<=5) THEN !15% discount on 2-5 items

discount = 0.1
ELSE !no dicount for 1 item

discount = 0.0
ENDIF
cost = cost-(cost*discount)
WRITE(*,*) ‘Invoice for ’, cost

Notice the use of the ELSEIF to add further conditions to the block (other discount
bands in this case). The ELSE statement acts as a default in order to cover other even-
tualities. Again, the same rules concerning passing of control apply.

Control statements

Cardiff, London and Belfast HPC T&E Centres 53

IF constructs can be labelled. Naming constructs can be useful when one is nested
inside another, this kind of labelling makes a program easier to understand, for exam-
ple:

outer: IF(x==0) THEN
...

ELSE outer
inner: IF(y==0.0) THEN

...
ENDIF inner

ENDIF outer

6.1.2 SELECT CASE construct

The SELECT CASE construct provides an alternative to a series of repeated IF ...
THEN ... ELSE IF statements. The general form is:

[name:] SELECT CASE(expression)
 CASE(value) [name]

block
 ...
 [CASE DEFAULT

block]
 END SELECT [name]

The result of expression may be of a CHARACTER, LOGICAL or INTEGER; value
must be of the same type as the result of expression and can be any combination of:

• A single integer, character, or logical depending on type.

• min : max any value between the two limits.

• min: any value from a minimum value upwards.

• :max any value up to a maximum value.

CASE DEFAULT is optional and covers all other possible values of the expression not
already covered by other CASE statements. For example:

INTEGER :: month

season:SELECT CASE(month)
CASE(4,5) !months 4 and 5

WRITE(*,*) ‘Spring’
CASE(6,7) !months 6 and 7

WRITE(*,*) ‘Summer’
CASE(8:10) !months 8,9 and 10

WRITE(*,*) ‘Autumn’
CASE(11,1:3,12) !months 1,2,3,11,12

WRITE(*,*) ‘Winter’
CASE DEFAULT !integer not in range 1-12

WRITE(*,*) ‘not a month’
END SELCET season

The above example prints a season associated with a given month. If the value of the
integer month is not in the range 1-12 the default case applies and the error message
‘not a month’ is printed, otherwise one of the CASE statements applies. Notice that
there is no preferred order of values in a CASE statement.

6.1.3 GOTO

The GOTO statement can be used to transfer control to another statement, it has the
form:

An Introduction to Fortran 90

54 Fortran 90 student notes

GOTO label

The GOTO statement simply transfers control to the statement, skipping any state-
ments in between. For example:

...
IF(x<10) GOTO 10
...

10 STOP

The GOTO statement should be avoided where ever possible, programs containing
such statements are notoriously hard to follow and maintain. The STOP statement ter-
minates a program.

6.2 Repetition
An important feature of any programming language is the ability to repeat a block of
statements. For example, converting a character from upper to lower case (or visa
versa) can be done in a single executable statement. In order to convert several charac-
ters (in say a word or sentence) one has to either repeat the statement or re-execute the
program. Using a loop construct it is possible to restructure the program to repeat the
same statement as many times as required.

6.2.1 DO construct

In Fortran 90 it is the DO loop (or construct) which enables the programmer to repeat a
a block of statements. The DO construct has the general form:

[name:] DO [control clause]
block

END DO [name]

The DO construct may take two forms:

• A count controlled DO loop.

• A ‘forever’ DO loop.

A count controlled loop uses a control clause to repeat a block of statements a prede-
fined number of times:

[name:] DO count = start, stop [,step]
block

END DO [name]

The control clause is made up of the following:

• count is an integer variable and is used as the 'control'.

• start is an integer value (or expression) indicating the initial value of count.

• stop is an integer value (or expression) indicating the final value of count.

• step is an integer value (or expression) indicating the increment value of
count. The step is optional and has a default value of 1 if omitted.

On entering the loop count will take the value start, the second time round (after
executing the statements in block) count will have the value start+step (or
start+1 if step is missing) and so on until the last iteration when it will take the

Control statements

Cardiff, London and Belfast HPC T&E Centres 55

value stop (or an integer value no greater than stop). The number of times the state-
ments will be executed can be calculated from:

It is possible for stop to be less than start and for step to be negative. In this case
the loop counts backwards (note this is in contrast to array sections which have zero
size if the upper bound is ever below the lower bound!) If stop is smaller than start
and step is positive then count will take the value zero and the statement(s) will not
be executed at all. The value of count is not allowed to change within the loop. For
example:

INTEGER :: i, j, k
all: DO i=1,10

WRITE(*,*) i !write numbers 1 to 10
ENDDO all

nil: DO j=10,1
WRITE(*,*) j !write nothing

ENDDO nil

even: DO k=10,2,-2
WRITE(*,*) k !write even numbers 10,8,6,4,2

END DO even

In the absence of a control clause the block of statements is repeated indefinitely.

[name:] DO
block

ENDDO [name]

The block of statements will be repeated forever, or at least until somebody stops the
program. In order to terminate this type of loop the programmer must explicitly
transfer control to a statement outside the loop.

6.2.2 Transferring Control

The EXIT statement is a useful facility for transferring control outside a DO loop
before the END DO is reached or the final iteration is completed. After an EXIT state-
ment has been executed control is passed to the first statement after the loop. For
example:

INTEGER :: value=0, total=0
...
sum: DO

READ(*,*) value !read in a number
IF (value==0) EXIT sum !if nothing to add, exit loop
total = total + value !calculate running total

END DO sum

The CYCLE statement transfers control back to the beginning of the loop to allow the
next iteration of the loop to begin (thereby skipping the rest of the current iteration).
For example:

INTEGER :: int
...
name: DO

READ(*,*) int !read in a number
IF (int<0) CYCLE name !if negative, read in another
...

ENDDO name

iterations stop step start–+() step()⁄=

An Introduction to Fortran 90

56 Fortran 90 student notes

The name of the loop can be omitted from an EXIT or CYCLE statement. However
confusion can arise from multiple and nested (i.e. one inside another) DO loops, EXIT
and CYCLE statements, therefore naming loops is highly recommended.

Where loops are nested, unnamed EXIT and CYCLE statements refer to the inner most
loop in which they sit. It is possible to pass control from any inner loop to any outer
loop by specifying the loop name. As an example consider the following:

outer: DO i=1,10
inner1: DO

IF(x<0) EXIT !exit loop inner1
IF(x==0) EXIT outer !exit loop outer
...

ENDDO inner1

inner2: DO
IF(x<0) CYCLE !cycle loop inner2
IF(x==0) CYCLE inner1 !illegal
...

ENDDO inner2
...

ENDDO outer

6.3 Nesting
Placing one block construct inside another (IF-THEN statements inside DO loops, etc.)
is possible, but the inner block(s) must by completely within the outer block(s). It is
illegal to overlap nested statements. For example:

main: IF(sum>100) THEN
inner: DO i=1,n

...
ENDIF main

ENDDO inner !illegal, inner must be within main

This is generally true of all constructs, i.e. DO loops, IF-THEN-ELSEIF and CASE con-
structs. The maximum level of nesting (constructs inside constructs inside con-
structs...) is compiler dependant. In the case of the NAG compiler this level is 20 for
DO loops and 30 for CASE constructs.

6.4 Exercises
1. Write a program which reads in a single character and returns a character

according to the following conditions:
- if an upper case letter is entered it returns the lower case equivalent.
- if a lower case letter is entered it returns the upper case equivalent.
- if a non-letter is entered it does absolutely nothing.

Hint: In the ANSI collating sequence upper and lower case letters differ by 32;
So to convert from upper to lower use the character-to-integer (IACHAR())
and integer-to-character (ACHAR()) ANSI based function as follows:

CHARACTER(LEN=1) :: charin, charout
charout = ACHAR(IAHAR(charin)+32) !upper to lower
charout = ACHAR(IAHAR(charin)-32) !lower to upper

2. A company pays its employees weekly according to the following rules:
- No person works for more than 60 hours.

Control statements

Cardiff, London and Belfast HPC T&E Centres 57

- Overtime is paid for more than 40 hours.
- Overtime rate is a time and a half of the basic rate.
- Basic rate can not exceed £15.

Write a program which reads the employee's number of hours worked. If the
hours worked exceed 60, print an appropriate error message. Otherwise print
the expected payment.

3. Given the power (watts) and the voltage (volts) the current (amps) drawn in a
circuit can be found from: Current=(Power)/(Voltage).
Write a program that calculates the current given the power of a device
(remember that the voltage is 240v in the UK) and displays the most suitable
cable for use. Consider 3 suitable cables (up to 5 amps, up to 13 amps, and up to
30 amps). In case a suitable cable can not be found the program should print an
appropriate message.

4. Predict the values loop takes and the value loop has after termination of each
of the following DO constructs. Your predictions may be tested by writing a pro-
gram which reads in the values used in the loop control clause (start, stop and
step) as input.
(a) DO loop=5, 3, 1
(b) DO loop=-6, 0
(c) DO loop=-6, 0, -1
(d) DO loop=-6, 0, 1
(e) DO loop=6, 0, 1
(f) DO loop=6, 0, -1
(g) DO loop=-10, -5, -3
(h) DO loop=-10, -5, 3

5. Write a program which prints a multiplication table (i.e. 1n=?, 2n=?,... 12n=?).
Allow the user to determine which table (value of n) they require.

6. Write a program to calculate and display the size of A0 to A6 papers in both
mm and inches. Use following formula:

Where n is the size of the paper 0 to 6, and one inch=2.54cm.

7. Write a program to produce the Fibonacci sequence. This sequence starts with
two integers, 1 and 1. The next number in the sequence is found by adding the
previous two numbers; for example, the 4th number in the series is the sum of
the 2nd and the 3rd and so on. Terminate when the nth value is greater than
100.

8. The increase in temperature dT of a chemical reaction can be calculated using:

where T is the temperature in centigrade, and t is the time in seconds. Write a
program which prints the temperature of such a reaction at 1 minute intervals,
The initial temperature is supplied by the user and the above equations should
be re-calculated once every second. The program should terminate when the
temperature reaches twice the initial temperature.

Height cm() 2
1 4⁄() n 2⁄()–()

=

Width cm() 2
1 4⁄()– n 2⁄()–()

=

dT 1 kt–()exp–=

k q–()exp=

q 2000 T 273.16+()⁄=

Program units

Cardiff, London and Belfast HPC T&E Centres 59

7 Program units

7.1 Program structure
A single Fortran 90 program can be made up of a number of distinct program units,
namely procedures (internal, external and module) and modules. An executable pro-
gram consists of one main program, and any number (including zero) of other pro-
gram units. It is important to realise that the internal details of each program unit is
separate from other units. The only link between units is the interface, where one unit
invokes another by name. The key to writing programs through program units is to
ensure that the procedure interfaces are consistent.

The following illustrates the relationship between the different types of program
units:

Dividing a program into units has several advantages:

• Program units can be written and tested independently.

• A program unit that has a well defined task is easier to understand and main-
tain.

• Once developed and tested modules and external procedures can be re-used in

Main

Module
procedures

Module

External

Internal
procedures

program

procedure

An Introduction to Fortran 90

60 Fortran 90 student notes

other programs (allowing the programmer to build up personal libraries).

• Some compilers can better optimise code when in modular form.

7.2 The main program
All programs have one (and only one) main program. A program always begins exe-
cuting from the first statement in the main program unit, and proceeds from there.
The general form of the main program unit is:

PROGRAM [name]
[specification statements]
[executable statements]
...

[CONTAINS
internal procedures]

END [PROGRAM [name]]

The PROGRAM statement marks the beginning of the main program unit while the END
PROGRAM statement not only marks the end of the unit but also the end of the pro-
gram as a whole. The name of the program is optional but advisable. The CONTAINS
statement serves to identify any procedures that are internal to the main program
unit. (Internal procedures are dealt with later on in this chapter.) When all executable
statements are complete, control is passed over any internal procedures to the END
statement.

A program can be stopped at any point during its execution, and from any program
unit, through the STOP statement:

STOP [label]

where label is an optional character string (enclosed in quotes) which may be used
to inform the user why and at what point the program has stopped.

7.3 Procedures
Procedures are a type of program unit, and may be either subroutines or functions.
Procedures are used to group together statements that perform a self-contained, well
defined task. Both subroutines and functions have the following general form:

procedure name [(argument list)]
[specification statements]
[executable statements]
...

[CONTAINS
internal procedures]

END procedure [name]

where procedure may be either SUBROUTINE or FUNCTION.

There are several different types of procedure:

• Internal - inside another program unit.

• External - self contained (possibly in languages other than Fortran 90).

• Module - contained within a module.

To use a procedure (regardless of type) requires a referencing statement. Subroutines
are invoked by the CALL statement while functions are referenced by name:

CALL name [(argument list)]

Program units

Cardiff, London and Belfast HPC T&E Centres 61

result = name [(argument list)]

In both cases control is passed to the procedure from the referencing statement, and is
returned to the same statement when the procedure exits. The argument list are zero
or more variables or expressions, the values of which are used by the procedure.

7.3.1 Actual and dummy arguments

Procedures are used to perform well defined tasks using the data available to them.
The most common way to make data available to a procedure is by passing it in an
argument list when the procedure is referenced.

An argument list is simply a number of variables or expressions (or even procedure
names - see later). The argument(s) in a referencing statement are called actual argu-
ments, while those in the corresponding procedure statement are call dummy argu-
ments. Actual and dummy argument are associated by their position in a list, i.e the
first actual argument corresponds to the first dummy argument, the second actual
argument with the second dummy argument, etc. The data type, rank, etc. of actual
and dummy arguments must correspond exactly.

When a procedure is referenced data is copied from actual to dummy argument(s),
and is copied back from dummy to actual argument(s) on return. By altering the value
of a dummy argument, a procedure can change the value of an actual argument.

• A subroutine is used to change the value of one or more of its arguments; for ex-
ample:

REAL, DIMENSION(10) :: a, c
...
CALL swap(a,c)

SUBROUTINE swap(a,b)
REAL, DIMENSION(10) :: a, b, temp
temp = a
a = b
b = temp

END SUBROUTINE swap

The subroutine swap exchanges the contents of two real arrays.

• A function is used to generate a single result based on its arguments, for exam-
ple:

REAL :: y,x,c
...
y = line(3.4,x,c)

FUNCTION line(m,x,const)
REAL :: line
REAL :: m, x, const
line = m*x + const

END FUNCTION line

The function line calculates the value of y from the equation of a straight line.
The name of the function, line, is treated exactly like a variable, it must be
declared with the same data type as y and is used to store the value of the func-
tion result.

Note that in both examples, the name of a dummy argument may be the same as or
different from the name of the actual argument.

An Introduction to Fortran 90

62 Fortran 90 student notes

7.3.2 Internal procedures

Program units (the main program, external procedures and modules) may contain
internal procedures. They are gathered together at the end of a program unit after the
CONTAINS statement. A unit ‘hosts’ any procedures that are contained within it. Inter-
nal procedures may not themselves contain other internal procedures and thus cannot
include the CONTAINS statement.

Internal procedures may only be referenced by their host and other procedures inter-
nal to the same host, although internal procedures may invoke other (external and
module) procedures.

For example:

PROGRAM outer
REAL :: a, b, c
...
CALL inner(a)
...

CONTAINS

SUBROUTINE inner(a) !only available to outer
REAL :: a !passed by argument
REAL :: b=1.0 !redefined
c = a + b !c host association

END SUBROUTINE inner

END PROGRAM outer

The program outer contains the internal subroutine inner. Note that variables
defined in the host unit remain defined in the internal procedure, unless explicitly
redefined there. In the example, although a, b and c are all defined in outer:

• The value of a is passed by argument to a redefined variable (dummy argument)
also called a. Even though they hold the same value, the variables a are different
objects.

• Like a, the variable b is redefined in the subroutine and so is a different object to
b in the host program. The value of b is not passed by argument or by host as-
sociation.

• c is a single object, common to both outer and inner through host association.

In order to prevent redefining a variable by mistake, it is good practice to declare all
variables used in a procedure.

7.3.3 External procedures

External procedures are self contained program units (subroutines or functions) that
may contain (i.e. host) internal procedures. For example:

PROGRAM first
REAL :: x
x = second()
...

END PROGRAM first

FUNCTION second() !external
REAL :: second

... !no host association
END FUNCTION second

Program units

Cardiff, London and Belfast HPC T&E Centres 63

External procedures have no host program unit, and cannot therefore share data
through host association. Passing data by argument is the most common way of shar-
ing data with an external procedure. External procedures may be referenced by all
other types of procedure.

7.4 Procedure variables
Any variables declared in a procedure (what ever its type) are referred to as local to
that procedure, i.e. generally they cannot be used outside of the procedure in which
they are declared. Dummy variables are always local to a procedure.

Variables declared inside a procedure usually only exist while the procedure in ques-
tion is executing:

• Whenever a procedure is referenced, variables declared in the procedure are
‘created’ and allocated the required storage from memory.

• Whenever a procedure exits, by default variables declared in the procedure are
‘destroyed’ and any storage they may have used is recovered.

This ‘creation’ and ‘destruction’ of procedures variables means that by default, no
variable declared inside a procedure retains is value from one call to the next. This
default can be overcome to allow local variables to retain their values from call to call.

7.4.1 SAVE

The SAVE attribute forces the program to retain the value of a procedure variable from
one call to the next. Any variable that is given an initial value in its declaration state-
ment has the SAVE attribute by default. For example:

FUNCTION func1(a_new)
REAL :: func1
REAL :: a_new
REAL, SAVE :: a_old !saved
INTEGER :: counter=0 !saved

...
a_old = a_new
counter = counter+1

END FUNCTION func1

The first time the function func1 is referenced, a_old has an undefined value while
counter is set to zero. These values are reset by the function and saved so that in any
subsequent calls a_old has the value of the previous argument and counter is the
number of times func1 has previously been referenced.

Note: it is not possible to save dummy arguments or function results!

7.5 Interface blocks
Interfaces occur where ever one program unit references another. To work properly a
program must ensure that the actual arguments in a reference to a procedure are con-
sistent with the dummy arguments expected by that procedure. Interfaces are
checked by the compiler during the compilation phase of a program and may be:

• explicit - as with references to internal and module procedures, where the com-
piler can see the details of the call and procedure statements.

• implicit - as with references to external procedures, here the compiler assumes
the details of the call and procedure statements correspond.

An Introduction to Fortran 90

64 Fortran 90 student notes

Where ever possible interfaces should be made explicit. This can be done through the
interface block:

INTERFACE
interface statements

END INTERFACE

The interface block for a procedure is included at the start of the referencing program
unit. The interface statements consist of a copy of the SUBROUTINE (or FUNCTION)
statement, all declaration statements for dummy arguments and the END SUNROU-
TINE (or FUNCTION) statement. For example:

PROGRAM count
INTERFACE

SUBROUTINE ties(score, nties)
REAL :: score(50)
INTEGER :: nties

END SUBROUTINE ties
END INTERFACE
REAL, DIMENSION(50):: data
...
CALL ties(data, n)
...

END PROGRAM count

SUBROUTINE ties(score, nties)
REAL :: score(50)
INTEGER :: nties
...

END SUBROUTINE ties

The interface block in the program count provides an explicit interface to the subrou-
tine ties. If the count were to reference other external procedures, their interface
statements could be placed in the same interface block.

7.6 Procedures arguments
7.6.1 Assumed shape objects

One of the most powerful aspects of using a procedure to perform a task is that once
written and tested the procedure may be used and reused as required (even in other
programs).

Since it is often the case that a program may wish to pass different sized arrays or
character strings to the same procedure, Fortran 90 allows dummy arguments to have
a variable sizes. Such objects are call assumed shape objects. For example:

SUBROUTINE sub2(data1, data3, str)
REAL, DIMENSION(:) :: data1
INTEGER, DIMENSION(:,:,:) :: data3
CHARACTER(len=*) :: str
...

The dummy arguments data1 and data3 are both arrays which have been declared
with a rank but no size, the colon ‘:’ is used instead of a specific size in each dimen-
sion. Similarly str has no explicit length, it adopts the length of the actual argument
string. When the subroutine sub2 is called, all three dummy arguments assume the
size of their corresponding actual arguments; all three dummy arguments are
assumed shape objects.

Program units

Cardiff, London and Belfast HPC T&E Centres 65

7.6.2 The INTENT attribute

It is possible, and good programming practice, to specify how a dummy argument
will be used in a procedure using the INTENT attribute:

• INTENT(IN) - means that the dummy argument is expected to have a value
when the procedure is referenced, but that this value is not updated by the pro-
cedure.

• INTENT(OUT) - means that the dummy argument has no value when the pro-
cedure is referenced, but that it will given one before the procedure finishes.

• INTENT(INOUT) - means that the dummy argument has an initial value that
will be updated by the procedure.

For example:

SUBROUTINE invert(a, inverse, count)
REAL, INTENT(IN) :: a
REAL, INTENT(OUT) :: inverse
INTEGER, INTENT(INOUT) :: count

inverse = 1/a
count = count+1

END SUBROUTINE invert

The subroutine invert has three dummy arguments. a is used in the procedure but is
not updated by it and therefore has INTENT(IN). inverse is calculated in the sub-
routine and so has INTENT(OUT). count (the number of times the subroutine has
been called) is incremented by the procedure and so requires the INTENT(INOUT)
attribute.

7.6.3 Keyword arguments

Instead of associating actual argument with dummy arguments by position only, it is
possible to associate with a dummy argument by name. This can help avoid confusion
when referencing a procedure and is often used when calling some of Fortran 90’s
intrinsic procedures. For example:

SUBROUTINE sub2(a, b, stat)
INTEGER, INTENT(IN) :: a, b
INTEGER, INTENT(INOUT):: stat
...

END SOBROUTINE sub2

could be referenced using the statements:

INTEGER :: x=0
...
CALL sub2(a=1, b=2, stat=x)
CALL sub2(1, stat=x, b=2)
CALL sub2(1, 2, stat=x)

The dummy variable names act as keywords in the call statement. Using keywords,
the order of arguments in a call statement can be altered, however keywords must
come after all arguments associated by position:

CALL sub2(1, b=2, 0) !illegal
CALL sub2(1, stat=x, 2) !illegal

When using keyword arguments the interface between referencing program unit and
procedure must be explicit. Note also that arguments with the INOUT attribute must
be assigned a variable and not just a value, stat=0 would be illegal.

An Introduction to Fortran 90

66 Fortran 90 student notes

7.6.4 Optional arguments

Occasionally, not all arguments are required every time a procedure is used. Therefore
some arguments may be specified as optional, using the OPTIONAL attribute:

SUBROUTINE sub1(a, b, c, d)
INTEGER, INTENT(INOUT):: a, b
REAL, INTENT(IN), OPTIONAL :: c, d
...

END SUBROUTINE sub1

Here a and b are always required when calling sub1. The arguments c and d are
optional and so sub1 may be referenced by:

CALL sub1(a, b)
CALL sub1(a, b, c, d)
CALL sub1(a, b, c)

Note that the order in which arguments appear is important (unless keyword argu-
ments are used) so that it is not possible to call sub1 with argument d but no argu-
ment c. For example:

CALL sub1(a, b, d) !illegal

Optional arguments must come after all arguments associated by position in a refer-
encing statement and require an explicit interface.

It is possible to test whether or not an optional argument is present when a procedure
is referenced using the logical intrinsic function PRESENT. For example:

REAL :: inverse_c

IF(PRESENT(c)) THEN
inverse_c = 0.0

ELSE
inverse_c = 1/c

ENDIF

If the optional argument is present then PRESENT returns a value .TRUE. In the above
example this is used to prevent a run-time error (dividing by zero will cause a pro-
gram to ‘crash’).

7.6.5 Procedures as arguments

It is possible to use a procedure as an actual argument in a call another procedure. Fre-
quently it is the result of a function which is used as an actual argument to another
procedure. For example:

PROGRAM test
INTERFACE

REAL FUNCTION func(x)
REAL, INTENT(IN) ::x

END FUNCTION func
END INTERFACE
...
CALL sub1(a, b, func(2))
...

END PROGRAM test

REAL FUNCTION func(x)!external
REAL, INTENT(IN) :: x
func = 1/x

Program units

Cardiff, London and Belfast HPC T&E Centres 67

END FUNCTION func

When the call to sub1 is made the three arguments will be a, b and the result of func,
in this case the return value is 1/2. The procedure that is used as an argument will
always execute before the procedure in whose referencing statement it appears
begins. Using a procedure as an argument requires an explicit interface.

Note that the specification statement for the function func identifies the result as being
of type REAL, this is an alternative to declaring the function name as a variable, i.e.

REAL FUNCTION func(x)
REAL, INTENT(IN) :: x
func = 1/x

END FUNCTION func

and

FUNCTION func(x)
REAL :: func
REAL, INTENT(IN) :: x
func = 1/x

END FUNCTION func

are equivalent.

7.7 Recursion
It is possible for a procedure to reference itself. Such procedures are called recursive
procedures and must be defined as such using the RECURSIVE attribute. Also for
functions the function name is not available for use as a variable, so a RESULT clause
must be used to specify the name of the variable holding the function result, for exam-
ple:

RECURSIVE FUNCTION factorial(n) RESULT(res)
INTEGER, INTENT(IN) :: n
INTEGER :: res

IF(n==1) THEN
res = 1

ELSE
res = n*factorial(n-1)

END IF
END FUNCTION factorial

Recursion may be one of two types:

• Indirect recursion - A calls B calls A...

• Direct recursion - A calls A calls A...

both of which require the RECURSIVE attribute for the procedure A.

Recursive procedures require careful handling. It is important to ensure that the pro-
cedure does not invoke itself continually. For example, the recursive procedure fac-
torial above uses an IF construct to either call itself (again) or return a fixed result.
Therefore there is a limit to the number of times the procedure will be invoked.

7.8 Generic procedures
It is often the case that the task performed by a procedure on one data type can be
applied equally to other data types. For example the procedure needed to sort an
array of real numbers into ascending order is almost identical to that required to sort

An Introduction to Fortran 90

68 Fortran 90 student notes

an array of integers. The difference between the two arrays is likely to be the data type
of the dummy arguments.

For convenience, Fortran 90 allows two or more procedures to be referenced by the
same, generic name. Exactly which procedure is invoked will depend on the data type
(or rank) of the actual argument(s) in the referencing statement. This is illustrated by
some of the intrinsic functions, for example:

The SQRT() intrinsic function (returns the square root of its argument) can be given a
real, double precision or complex number as an argument:

• if the actual argument is a real number, a function called SQRT is invoked.

• if the actual argument is a double precision number, a function called DSQRT is
invoked.

• if the actual argument is a complex number, a function called CSQRT is invoked.

A generic interface is required in order to declared a common name and to identify
which procedures can be referred to by the name. For example:

INTERFACE swap

SUBROUTINE iswap(a, b)
INTEGER, INTENT(INOUT) :: a, b

END SUBROUTINE iswap

SUBROUTINE rswap(a, b)
REAL, INTENT(INOUT) :: a, b

END SUBROUTINE rswap

END INTERFACE

The interface specifies two subroutines iswap and rswap which can be called using
the generic name swap. If the arguments to swap are both real numbers then rswap is
invoked, if the arguments are both integers iswap is invoked.

While a generic interface can group together any procedures performing any task(s) it
is good programming practice to only group together procedures that perform the
same operation on a different arguments.

7.9 Modules
Modules are a type of program unit new to the Fortran standard. They are designed to
hold definitions, data and procedures which are to be made available to other pro-
gram units. A program may use any number of modules, with the restriction that each
must be named separately.

The general form of a module follows that of other program units:

MODULE name
[definitions]
...

[CONTAINS
module procedures]

END [MODULE [name]]

In order to make use of any definitions, data or procedures found in a module, a pro-
gram unit must contain the statement:

USE name

at its start.

Program units

Cardiff, London and Belfast HPC T&E Centres 69

7.9.1 Global data

So far variables declared in one program unit have not been available outside of that
unit (recall that host association only allows procedures within the same program unit
to ‘share’ variables).

Using modules it is possible to place declarations for all global variables within a
module and then USE that module. For example:

MODULE global
REAL, DIMENSION(100) :: a, b, c
INTEGER :: list(100)
LOGICAL :: test

END MODULE global

All variables in the module global can be accessed by a program unit through the
statement:

USE global

The USE statement must appear at the start of a program unit, immediately after the
PROGRAM or other program unit statement. Any number of modules may be used by a
program unit, and modules may even use other modules. However modules cannot
USE themselves either directly (module A uses A) or indirectly (module A uses mod-
ule B which uses module A).

It is possible to limit the variables a program unit may access. This can act as a ‘safety
feature’, ensuring a program unit does not accidentally change the value of a variable
in a module. To limit the variables a program unit may reference requires the ONLY
qualifier, for example:

USE global, ONLY: a, c

This ensures that a program unit can only reference the variables a and c from the
module global. It is good programming practice to USE ... ONLY those variables
which a program unit requires.

A potential problem with using global variables are name clashes, i.e. the same name
being used for different variables in different parts of the program. The USE statement
can overcome this by allowing a global variable to be referenced by a local name, for
example:

USE global, state=>test

Here the variable state is the local name for the variable test. The => symbol asso-
ciates a different name with the global variable.

7.9.2 Module procedures

Just as variables declared in a module are global, so procedures contained within a
module become global, i.e. can be referenced from any program unit with the appro-
priate USE statement. Procedures contained within a module are called module proce-
dures.

Module procedures have the same form as external procedures, that is they may con-
tain internal procedures. However unlike external procedures there is no need to pro-
vide an interface in the referencing program unit for module procedures, the interface
to module procedures is implicit.

Module procedures are invoked as normal (i.e. through the CALL statement or func-
tion reference) but only by those program units that have the appropriate USE state-

An Introduction to Fortran 90

70 Fortran 90 student notes

ment. A module procedure may call other module procedures within the same
module or in other modules (through a USE statement). A module procedure also has
access to the variables declared in a module through ‘host association’. Note that just
as with other program units, variables declared within a module procedure are local
to that procedure and cannot be directly referenced elsewhere.

One of the main uses for a module is to group together data and any associated proce-
dures. This is particularly useful when derived data types and associated procedures
are involved. For example:

MODULE cartesian
TYPE point

REAL :: x, y
END TYPE point

CONTAINS
SUBROUTINE swap(p1, p2)
TYPE(point), INTENT(INOUT):: p1
TYPE(point), INTENT(INOUT):: p2
TYPE(point) :: tmp

tmp = p1
p1 = p2
p2 = tmp

END SUBROUTINE swap
END MODULE cartesian

The module carteasian contains a declaration for a data type called point. car-
tesian also contains a module subroutine which swaps the values of its point data
type arguments. Any other program unit could declare variables of type point and
use the subroutine swap via the USE statement, for example:

PROGRAM graph
USE cartesian
TYPE(point) :: first, last
...
CALL swap(first, last)
...

END PROGRAM graph

7.9.3 PUBLIC and PRIVATE

By default all entities in a module are accessible to program units with the correct USE
statement. However sometimes it may be desirable to restrict access to the variables,
declaration statements or procedures in a module. This is done using a combination of
PUBLIC and/or PRIVATE statements (or attributes).

The PRIVATE statement/attribute prevents access to module entities from any pro-
gram unit, PUBLIC is the opposite. Both may and be used in a number of ways:

• As a statement PUBLIC or PRIVATE can set the default for the module, or can
be applied to a list of variables or module procedure names.

• As an attribute PUBLIC or PRIVATE can control access to the variables in a dec-
laration list.

MODULE one
PRIVATE !set the default for module
REAL, PUBLIC :: a
REAL :: b
PUBLIC :: init_a

CONTAINS
SUBROUTINE init_a() !public
...

Program units

Cardiff, London and Belfast HPC T&E Centres 71

SUBROUTINE init_b() !private
...

END MODULE one

7.9.4 Generic procedures

It is possible to reference module procedures through a generic name. If this is the
case then a generic interface must be supplied. The form of the interface block is as
follows:

INTERFACE generic_name
MODULE PROCEDURE name_list

END INTERFACE

where name_list are the procedures to be referenced via generic_name, for exam-
ple a module containing generic subroutines to swap the values of two arrays includ-
ing arrays of derived data types would look like:

MODULE cartesian
TYPE point

REAL :: x, y
END TYPE point

INTERFACE swap
MODULE PROCEDURE pointswap, iswap, rswap

END INTERFACE
CONTAINS

SUBROUTINE pointswap(a, b)
TYPE(point) :: a, b
...

END SUBROUTINE pointswap

!subroutines iswap and rswap

END MODULE cartesian

7.10 Overloading operators
Referencing one of several procedures through a generic interface is known as over-
loading; it is the generic name that is overloaded. Exactly which procedure is invoked
depends on the arguments passed in the invoking statement. In a similar way to the
overloading of procedure names, the existing operators (+, -, *, etc.) may be over-
loaded. This is usually done to define the effects of certain operators on derived data
types.

Operator overloading is best defined in a module and requires an interface block of
the form:

INTERFACE OPERATOR(operator)
interface_code

END INTERFACE

where operator is the operator to be overloaded and the interface_code is a
function with one or two INTENT(IN) arguments. For example:

MODULE strings
INTERFACE OPERATOR (/)

MODULE PROCEDURE num
END INTERFACE

CONTAINS

An Introduction to Fortran 90

72 Fortran 90 student notes

INTEGER FUNCTION num(s, c)
CHARACTER(len=*), INTENT(IN) :: s
CHARACTER, INTENT(IN) :: c

num = 0
DO i=1,LEN(s)

IF(s(i:i)==c) num=num+1
END DO

END FUNCTION num
END MODULE strings

Usually, the / operator is not defined for characters or strings but the module strings
contains an interface and defining function to allow a string to be divide by a charac-
ter. The result of the operation is the number of times the character appears in the
string:

USE strings
...
i = ‘hello world’/’l’ !i=3
i = ‘hello world’/’o’ !i=2
i = ‘hello world’/’z’ !i=0

7.11 Defining operators
As well as overloading existing operators, it is possible to define new operators. This
is particularly useful when manipulating derived data types. Any new operator(s)
have the form.name. and their effect is defined by a function. Just as with over-
loaded operators, the defining function requires an INTERFACE OPERATOR block and
one or two non-optional INTENT(IN) arguments, for example:

MODULE cartesian
TYPE point

REAL :: x, y
END TYPE point
INTEFACE OPERATOR (.DIST.)

MODULE PROCEDURE dist
END INTERFACE

CONTAINS
REAL FUNCTION dist(a, b)
TYPE(point) INTENT(IN) :: a, b

dist = SQRT((a%x-b%x)**2 + (a%y-b%y)**2)
END FUNCTION dist

END MODULE cartesian

The operator .DIST. is used to find the distance between two points. The operator is
only defined for the data type point, using it on any other data type is illegal. Just as
with overloaded operators, the interface and defining function are held in a module. It
makes sense to keep the derived data type and associated operator(s) together.

Any program unit may make use of the data type point and the operator .DIST. by
using the module cartesian, for example:

USE cartesian
TYPE(point) :: a, b
REAL :: distance

...
distance = a .DIST. b

7.12 Assignment overloading
It is possible to overload the meaning of the assignment operator (=) for derived data
types. This again requires an interface, this time to a defining subroutine. The subrou-

Program units

Cardiff, London and Belfast HPC T&E Centres 73

tine must have two, non-optional arguments, the first must have INTENT(INOUT) or
INTENT(OUT); the second must have INTENT(IN). For example:

MODULE cartesian
TYPE point

REAL :: x, y
END TYPE point
INTEFACE ASSIGNMENT(=)

MODULE PROCEDURE max_point
END INTERFACE

CONTAINS
SUBROUTINE max_point(a, pt)
REAL, INTENT(OUT) :: a
TYPE(point), INTENT(IN) :: pt

a = MAX(pt%x, pt%y)
END SUBROUTINE max_point

END MODULE cartesian

Using the module cartesian allows a program unit to assign a type point to a type
real. The real variable will have the largest value of the components of the point varia-
ble. For example:

USE cartesian
TYPE(point) :: a = point(1.7, 4.2)
REAL :: coord

...
coord = a !coord = 4.2

7.13 Scope
7.13.1 Scoping units

The scope of a named entity (variable or procedure) is that part of a program within
which the name or label is unique. A scoping unit is one of the following:

• A derived data type definition.

• An interface block, excluding any derived data type definitions and interface
blocks within it.

• A program unit or internal procedure, excluding any derived data type defini-
tions and interfaces.

All variables, data types, labels, procedure names, etc. within the same scoping unit
must have a different names. Entities with the same name, which are in different scop-
ing units, are always separate from one another.

7.13.2 Labels and names

All programs and procedures have their own labels (e.g. see FORMAT statements
later). Therefore it is possible for the same label to appear in different program units
or internal procedures without ambiguity. The scope of a label is the main program or
a procedure, excluding any internal procedures.

The scope of a name (for say a variable) declared in a program unit is valid from the
start of the unit through to the unit’s END statement. The scope of a name declared in
the main program or in an external procedure extends to all internal procedures
unless redefined by the internal procedure. The scope of a name declared in an inter-
nal procedure is only the internal procedure itself - not other internal procedures.

An Introduction to Fortran 90

74 Fortran 90 student notes

The scope of a name declared in a module extends to all program units that use that
module, except where an internal procedure re-declares the name.

The names of program units are global and must therefore be unique. The name of a
program unit must also be different from all entities local to that unit. The name of an
internal procedure extends throughout the containing program unit. Therefore all
internal procedures within the same program unit must have different names.

The following shows an example of scoping units:

MODULE scope1 !scope 1
... !scope 1
CONTAINS !scope 1

SUBROUTINE scope2() !scope 2
TYPE scope3 !scope 3
... !scope 3
END TYPE scope3 !scope 3
INTERFACE !scope 3

... !scope 4
END INTERFACE !scope 3
REAL :: a, b !scope 3

10 ... !scope 3
CONTAINS !scope 2

FUNCTION scope5() !scope 5
REAL :: b !scope 5
b = a+1 !scope 5

10 ... !scope 5
END FUNCTION !scope 5

END SUBROUTINE !scope 2
END MODULE !scope 1

7.14 Exercises
1. Write a program with a single function to convert temperatures from Fahren-

heit to Centigrade. In the body of the main program read in the temperature to
be converted, and output the result. The actual calculation is to be done in a
function.
a) Write an internal function which requires no actual arguments, but which
uses host association to access the value to be converted. The result of the func-
tion is the converted temperature.
b) Write an external function which requires the temperature to be converted to
be passed as a single argument. Again the function result is the converted tem-
perature. Do not forget to include an interface block in the main program.
Use the following formula to convert from Fahrenheit to Centigrade:

2. Write a program with a single subroutine to sort a list of integer numbers into
order. In the main program read a list of random integers (about 5) into an
array, call the subroutine to perform the sort, and output the array.
a) Write an internal subroutine which requires no actual arguments, but which
uses host association to access the array to be sorted.
b) Write an external subroutine which requires that the array to be sorted be
passed as an argument. The external subroutine will require an interface block.
Use the following selection sort algorithm to sort the values in an array a:

INTEGER :: a(5), tmp
INTEGER :: j, last, swap_index(1)

Centigrade Fahrenheit 32–() 5 9⁄()×=

Program units

Cardiff, London and Belfast HPC T&E Centres 75

last = SIZE(a)
DO j=1, last-1

swap_index = MINLOC(a(j:last))
tmp = a(j)
a(j) = a((j-1)+swap_index(1))
a((j-1)+swap_index(1)) = tmp

END DO

The selection sort algorithm passes once through the array to be sorted, stop-
ping at each element in turn. At each element the remainder of the array is
checked to find the element with the minimum value, this is then swapped
with the current array element.

3. Write a program which declares three rank one, real arrays each with 5 ele-
ments and that uses array constructors to set a random value for each element
(say between 1 and 20) for each array. Write an internal subroutine which finds
the maximum value in an array (use the MAX and MAXVAL intrinsic function)
and reports and SAVEs that value. Call the subroutine once for each array, the
final call should report the maximum value from all arrays.

4. Change the subroutine in written in 3 to accept arrays of any size (if you have
not already done so). Test the new subroutine by calling it with three arrays,
each of different size.

5. Write a program which declares an rank 1, integer array and use a constructor
to set values for each element in the range -10 to 10. The program will pass the
array as an argument to an external subroutine, along with two optional argu-
ments top and tail.
The subroutine is to replace any values in the array greater than top with the
value of top; similarly the subroutine replaces any values lower than tail
with tail. The values of top and tail are read in by the main program. If
either top or tail is absent on call then no respective action using the value is
taken. (Remember it is good programming practice to refer to all optional argu-
ments by keyword.)

6. Write a module to contain the definition for a derived data type point, which
consists of two real numbers representing the x an y coordinates of that point.
Along with this declaration, include a global parameter representing the origin
at (0.0,0.0).
The module should also contain a function to calculate the distance between
two arbitrary points (this is done earlier in the notes, as an operator). Write a
program to read in an x and y coordinate and calculate its distance from the ori-
gin.

7. Using the selection sort algorithm in question 2 write a module containing two
subroutines, one which sorts real arrays the other which sorts integer arrays
(both of rank one). The module should provide a generic interface to both sub-
routines. Check the module and the generic interface by writing a program that
uses the module.

Interactive Input and Output

Cardiff, London and Belfast HPC T&E Centres 77

8 Interactive Input and Output

This chapter deals with the interaction between a user and the program via the stand-
ard input and output devices, namely the keyboard and screen. Data can be stored
and represented in several different ways; programs store data in binary form (called
unformatted data) while programmers and program users perfer to work with charac-
ters (or formatted data). Almost all interactive input and output (I/O) uses characters
and hence formatted data.

When data is read into a program, the characters are converted to the machine’s
binary form. Similarly, data stored in a binary form is converted when written to the
screen. The layout or formatting of data can be specified by a programmer or take the
default format used in Fortran 90. A subset of the formatting facilities is presented
later, the full set is rarely used.

The process of I/O can be summarised as:

The internal hexadecimal representation of a real number may be

BE1D7DBF

which is difficult to understand (and hence of limited use when written to screen) but
corresponds to the real value 0.00045. This may be formatted and written as any or all
of:

0.45E-03
4.5E-04
0.000450

where E## stands for exponent and is equivilent to x10##.

This conversion of the internal representation to a user readable form is known as for-
matted I/O and choosing the exact form of the characters is referred to as formatting.

KeyboardScreen

Binary Computer

Character

representation

representation
WRITE(*,*) READ(*,*)

An Introduction to Fortran 90

78 Fortran 90 student notes

8.1 Simple Input and Output
A user may assign values to variables using the READ statement. A user will also wish
to know the results generated by the program, these will usually be displayed on a
screen using the WRITE statement.

To read in a value to say, a variable called radius, the following statement would be
suitable:

READ(*,*) radius

and the value of the variable area would be displayed on the screen by:

WRITE(*,*) area

The general form of the READ and WRITE statements are:

READ([UNIT=]unit, [FMT=]format) variable list
WRITE([UNIT=]unit, [FMT=]format) variable list

unit is an integer associated with the screen or a file (see later) and format describes
how the data should look. When reading from the keyboard unit can be either 5 or *;
when writing to the screen unit can be either 6 or *.

READ(5,*) length, breadth
WRITE(UNIT=6,*) temperature, pressure, mass
WRITE(*,*) pi*radius**2, 2.0

Several variables (or expressions) may be specified on one READ or WRITE statement.

READ(5,*) length, breadth
WRITE(6,*) temperature, pressure, mass
WRITE(*,*) pi*radius**2, 2.0

8.1.1 Default formatting

When reading and writing to and from screen a Fortran program automatically con-
verts data to the required form; characters for the screen, binary for machine use.

INTEGER :: i, j
REAL :: data(3)
...
READ(*,*) i
WRITE(*,*) i, j, data

The *s allow a program to use I/O defaults. The first * represents a location (e.g. ‘read
from the standard input’) while the second * represents the default format of the vari-
ables which changes from data type to data type. This form of outputting data is
quick, simple and convinient.

READ (*,*)

Read from keyboard

Use default format

WRITE (*,*)

Write to screen

Use default format

Interactive Input and Output

Cardiff, London and Belfast HPC T&E Centres 79

8.2 Formated I/O
The FORMAT statement may be used to read or write data in a form other than the
default format. A FORMAT statement is a labelled statement referenced by a WRITE or
READ statement within the same program unit by specifying the label number, for
example:

READ(*,100) i, j
WRITE(*,100) i, j
READ(*,FMT=200) x, y
WRITE(*,200) x, y
...

100 FORMAT (2I8) !2I8 is an edit descriptor
200 FORMAT (2F10.6) !2F10.6 is an edit descriptor

Formatting is sometimes known as I/O editing. The I/O is controlled using edit
descriptors (explianed later). The general form of a FORMAT statement is:

label FORMAT (flist)

where label is an identifying number (unique to that part of the program) and
flist is a list of edit descriptors which include one or more of:

I, F, E, ES, EN, D, G, L, A, H, T, TL, TR,
X, P, BN, BZ, SP, SS, S, /, :, ’, and ,(comma)

In these notes only the following will be covered

I, F, E, ES, EN, A, X, /, :, ’, and ,(comma)

since many of the edit descriptors cover advanced features, such as output of binary
number, etc. and are of limited general use.

The labelled FORMAT statement may be replaced by specifying the format descriptor
list as a character string directly in the WRITE or READ statement, as follows:

INTEGER :: i, j
REAL :: x, y, z
...
READ (*,’(2I8)’) i, j
WRITE (*,’(3F12.6)’) x, y, z

This has the advantage of improved clarity, i.e. the reader does not have to look at two
statements which may not be consecutive in the source listing to determine the effect
of the I/O statement.

8.3 Edit Descriptors
Edit descriptors specify exactly how data should be converted into a character string
for an output device or internal file, or converted from a character string on an input
device or internal file. In the descriptions below, the key letters have the following
meaning:

• a -repeat count.

• w -width of field - total number of characters.

• m -minimum number of digits.

• d -digits to right of decimal point.

• e -number of digits in exponent.

An Introduction to Fortran 90

80 Fortran 90 student notes

Many edit descriptors can be prefixed by a repeat count and suffixed with a field-
width, i.e. the total number of digets. Thus in the two examples given above, 2I and
3F10.6 could be described as two integers and three floating-point real numbers. The
fieldwidths of the of the numbers are the default fro the integers and 10 for the reals (a
description follows).

In general, if w is larger than the number of digets required to represent the number
leading spaces are added. If w is too small to represent the number then on output w
asterisks are printed and on input the leftmost w digits are read (truncating the
number so beware!).

The I/O statement will use as many of the edit descriptors as it requires to process all
the items in the I/O list. Processing will terminate at the next edit descriptor which
requires a value from the I/O list.

8.3.1 Integer

The edit descriptor I is used to control the format of integers and can have the form
Iw or Iw.m. Several integers may be read/written in the same format by including a
repeat count, i.e. aIw or aIw.m. For example:

INTEGER :: itest=1234567 !number to write
...
WRITE(*,*) itest ! 1234567
WRITE(*,’(I6)’) itest !******
WRITE(*,’(I10)’) itest ! 1234567
WRITE(*,’(I10.9)’) itest ! 001234567
WRITE(*,’(2I7)’) itest, 7654321 !12345677654321
WRITE(*,’(2I8)’) itest, 7654321 ! 1234567 7654321

I10.9 specifies a total of 10 characters (including a minus sign if appropriate) with a
minimum of 9 digits hence the output appears with additional, leading zeros.

8.3.2 Real - Fixed Point Form

The edit descriptor F is used to control the format of real (and complex) numbers
where a fixed decimal point notation is required. It has the form Fw.d. Several real
numbers may be read/written in the same format by including a repeat count, i.e.
aFw.d. For example:

REAL :: itest=123.4567 !number to write
...
WRITE(*,*) itest ! 1.2345670E+02 -not F format
WRITE(*,’(F8.0)’) itest ! 123.
WRITE(*,’(F10.4)’) itest ! 123.4567
WRITE(*,’(F10.5)’) itest ! 123.45670
WRITE(*,’(F10.9)’) itest !**********
WRITE(*,’(2F8.4)’) itest, 7654321 !123.4567765.4321
WRITE(*,’(2F10.4)’) itest, 7654321 ! 123.4567 765.4321

It is important to remember that the decimal point is counted in the the width w of the
output. In the above example, although there are 7 numerals to write to the screen the
field width must be 8 (or larger) to cater for the decimal point.

8.3.3 Real - Exponential Form

The edit descriptor E is used to control the format of real (and complex) numbers
where a floating decimal point notation is required. It has the form Ew.d or Ew.dEe
where e is the number of digets in the exponent, i.e. a number x10e. The exponent is
useful for displaying numbers with values below 0.001 or above 1000. As before, sev-

Interactive Input and Output

Cardiff, London and Belfast HPC T&E Centres 81

eral real numbers may be read/written in the same format by including a repeat
count, i.e. aEw.d. If w is too large to represent the number leading spaces are added
before the digets. For example:

REAL :: itest=123.45*1000000 !number to write times 1 million
...
WRITE(*,*) itest ! 1.2345670E+02
WRITE(*,’(E10.4)’) itest !0.1234E+09
WRITE(*,’(E10.5)’) itest !.12345E+09
WRITE(*,’(E10.4E3)’) itest !.1234E+009
WRITE(*,’(E10.9)’) itest !**********
WRITE(*,’(2E12.4)’) itest, 7654321 ! 0.12345E+09 0.76543E+04
WRITE(*,’(2E10.4)’) itest, 7654321 !0.1234E+090.7654E+04

Two alternative forms to the E descriptor are available:

• EN - Engineering - the exponent is always divisible by 3 and the value
before the decimal point lies in the range 1..1000

• ES - Scientific - the value before the decimal point always lies in the
range 1..10

Both are used in the same way as the E descriptor, for example:

REAL :: itest=123.45*100 !number to write times 100
...
WRITE(*,*) itest ! 1.2345000E+04
WRITE(*,’(EN13.6)’) !12.345000E+03
WRITE(*,’(ES13.6)’) ! 1.234500E+04

8.3.4 Character

The A edit descriptor is used to control the format of characters and strings. It has the
form A or Aw. The A descriptor will writes as many characters as required while Aw
writes a string of width w. If w is bigger than the character string leading spaces are
added before the string’s characters. For example:

CHARACTER(LEN=8) :: long=’Bookshop’
CHARACTER(LEN=1) :: short=’B’
...
WRITE(*,*) long ! Bookshop
WRITE(*,’(A)’) long !Bookshop
WRITE(*,’(A8)’) long !Bookshop
WRITE(*,’(A5)’) long !Books
WRITE(*,’(A10)’) long ! Bookshop
WRITE(*,’(A)’) short !B
WRITE(*,’(2A) short, long !BBookshop
WRITE(*,’(2A3) short, long ! BBoo

When using the A descriptor in formatted READ() statement (i.e. input) the character
string does not need to be enclosed in quotes.

8.3.5 Logical

Logical data is formatted using the L descriptor and has the form Lw or aLw for
repeated counts. Usuall only two forms of the L descriptor are used, L for the single
charater ‘T’ or ‘F’ format and L7 which allows ‘.TRUE.’ and ‘.FALSE’. to be input .

LOGICAL :: ltest=.FALSE.
WRITE(*,*) ltest ! F
WRITE(*,’(2L1)’) ltest, .NOT.ltest !FT
WRITE(*,’(L7)’) ltest ! F

An Introduction to Fortran 90

82 Fortran 90 student notes

8.3.6 Blank Spaces (Skip Character Positions)

The descriptor X is used to introduce spaces between output values to improve reada-
bility; it has the form aX. Additional spaces are only meaningful for output (i.e.
WRITE() statements), they are ignored in formatted READ() statements. For Exam-
ple:

INTEGER :: n=1234 !number to write
...
WRITE(*,’(I4, 2X, I4)’) i, i-1 !1234 1233
WRITE(*,’(I4, 4X, I4)’) i, i-1 !1234 1233

8.3.7 Special Characters

There are a number of other characters which control the format of data; most are
used in WRITE() statements only.

• ’ ’ to output the character string specified.

• / specifies take a new line.

• () to group descriptors, normally for repetition.

• : terminate I/O if list exhausted.

For example:

INTEGER :: value = 100
INTEGER :: a=101, b=201
...
WRITE(*,’(’The value is’, 2X, I3, ’ units.’)’) value
WRITE(*,’(’a =’, 1X, I3, /, ’b = ’, 1X, I3)’)
WRITE(*,’(’a and b =’, 2(1X, I3))’) a, b

writes the following lines to the screen:

The value is 100 units.
a = 101
b = 201
a and b = 101 201

Notice that spaces may be specified in the output line by either the X edit descriptor or
by spaces in a character string, as in ‘b = 201’.

8.4 Input/Output Lists
When more than one variable is written or read in the same WRITE() or READ()
statement, it is refered to as an I/O list. For output variables and/or expressions may
be used but for input only variables are permitted. Implied-DO loops (see below) may
be used for either input or output.

An array may be specified as either to be processed in its entirety, or element by ele-
ment, or by subrange; for example:

INTEGER, DIMENSION(10) :: a
READ (*,*) a(1), a(2), a(3) !read values into 3 elements
READ (*,*) a !read in 10 values
READ (*,*) a(5:8) !read values into 4 elements

Array elements may only appear once in an I/O list, for example:

INTEGER :: b(10), c(3)

Interactive Input and Output

Cardiff, London and Belfast HPC T&E Centres 83

c= (/1,2,1/)
READ (*,*) b(c) !illegal

would be illegal as b(1) appears twice.

8.4.1 Derived DataTypes

I/O is performed on derived data types as if the components were specified in order.
Thus for p and t of type POINT and TRIANGLE respectively, where

TYPE point
REAL :: x, y

END TYPE
TYPE (point) :: pt

TYPE triangle
TYPE (point) :: a, b, c

END TYPE
TYPE (triangle) :: tri

the following two statement pairs are equivalent:

READ (*,*) pt
READ (*,*) pt%x, pt%y
...
READ (*,*) tri
READ (*,*) tri%a%x, tri%a%y, tri%b%x, tri%b%y, tri%c%x, tri%c%y

An object of a derived data type which contains a pointer (see later) may not appear in
an I/O list. This restriction prevents problems occurring with recursive data types.

8.4.2 Implied DO Loop

The Implied-DO-list is like a shorthand version of the DO loop construct. The
Implied-DO-list is often used when performing I/O on an array, has the general form:

(object, do_var=start, stop [,step])

where do_var is an interger (and cannot be a pointer). Consider the following exam-
ples:

INTEGER :: j
REAL, DIMENSION(5) :: a
READ (*,*) (a(j), j=1,5) !a(1), a(2), a(3), a(4), a(5)
WRITE (*,*) (a(j), j=5,1,-1) !a(5), a(4), a(3), a(2), a(1)

The first statement would read 5 values in to each element of a, in assending order.
The second statement would write all 5 values of a in reverse order.

The implied-do-list may also be nested

INTEGER :: I, J
REAL, DIMENSION(10,10) :: B
WRITE (*,*) ((B(I,J),I=1,10), J=1,10)

This kind of output is an alernative to using an array section.

8.5 Namelist
A namelist is a facility for grouping variables for I/O. A NAMELIST is most useful for
output as this can be useful for program testing and debugging. It’s use on input is
slightly more complicated and is best considered elsewhere.

An Introduction to Fortran 90

84 Fortran 90 student notes

The NAMELIST statement is used to define a group of variables as follows:

NAMELIST / group-name / variable-name-list

for example:

INTEGER :: sat=7, sun=1, mon=2, tues=3, wed=4, thur=5, fri=6
...
NAMELIST / week / mon, tues, wed, thur, fri !list
NAMELIST / week / sat, sun !may be extended

Variables must be declared before appearing in a NAMELIST group (and must not be a
mixture of PRIVATE and PUBLIC variables). The keyword NML= may be used in place
of the format specifier in an I/O statement. For example:

WRITE (*,NML=week)

will output the following line:

&WEEK SUN=1, MON=2, TUES=3, .../

Note the output is an annotated list of the form:

& group-name variable1=value {, variable2=value} /

This record format (including & and / characters) must be used for input.

Arrays may also be specified, for example

INTEGER, DIMENSION(3) :: items
NAMELIST / group / items
ITEMS(1) = 1
WRITE (*, NML=group)

would produce

&GROUP ITEMS(1)=1 ITEMS(2)=0 ITEMS(3)=0 /

8.6 Non-Advancing I/O
The normal action of an I/O statement is to advance to the next record on completion.
Thus on input if a record is only partially read the rest of the input record is discarded.
On output a WRITE() statement will complete with the cursor positioned at the start
of a new line.

Non-advancing I/O permits records to be read in sections (for example a long record
of unknown length) or to create a neat user-interface where a prompt for input and
the user’s response appear on the same line.

There is a complex set of rules covering the use of non-advancing I/O and its various
associated keywords. This section only deals with the screen management aspects of
this topic.

The ADVANCE keyword is used in write or read statements as follows:

INTEGER :: i, j
...
WRITE(*,*,ADVANCE=’NO’) ’Enter i value: ’
READ(*,*) i
WRITE(*,*) ’Enter j value: ’ !’ADVANCE=’YES’
READ(*,*) j

If the user enters the values 10 and 20 this would appear on the screen as

Interactive Input and Output

Cardiff, London and Belfast HPC T&E Centres 85

Enter i value: 10
Enter j value:
20

The non-advancing I/O looks neat compared to the (default) advancing I/O which is
spread over two lines.

8.7 Exercises
1. What values would be read into the variables in the READ() statement in the

following:

REAL :: a, b, c
REAL, DIMENSION (1:5) :: array
INTEGER :: i, j, k
READ(*,*) a, b, c
READ(*,*) i, j, k, array

given the following input records:

1.5 3.4 5.6 3 6 65
2*0 45
3*23.7 0 0

Check your answer by write a program which write the values of the variables
to the screen.

2. Given the statements:

REAL :: a
CHARACTER(LEN=2) :: string
LOGICAL :: ok
READ (*,'(F10.3,A2,L10)') a, string, ok

what would be read into a, string and ok if each of the following lines were
typed as input records (where b represents a space or blank character)?

(a) bbb5.34bbbNOb.true.
(b) 5.34bbbbbbYbbFbbbbb
(b) b6bbbbbb3211bbbbbbT
(d) bbbbbbbbbbbbbbbbbbF

Check your answer by write a program which write the values of the variables
to the screen.

3. Write statements to output all 16 elements of a one dimensional array of real
numbers with 4 numbers per line each in a total fieldwidth of 12 and having
two spaces between each number. The array should be output in fixed point
notation with 4 characters following the decimal point and then in floating
point notation with three significant digits.
Hint: An implied DO loop is useful when grouping array elements on the same
line.

4. Write a program which will output the following table to screen:

Position Name Score

1 tom 93.6
2 dick 87.0

An Introduction to Fortran 90

86 Fortran 90 student notes

3 harry 50.9

When initialising arrays to hold the table’s values note that the header might be
stored as a string while the underline is simply a repeated character!. The first
column should be an interger, the second a string, the third a real number.

File-based Input and Output

Cardiff, London and Belfast HPC T&E Centres 87

9 File-based Input and Output

In the previous modules all input and output was performed from and to the default
devices, namely the keyboard and screen. In many circumstances this is not the most
appropriate action, i.e. temporary storage of large amounts of intermediate results;
large amounts of input or output; output from one program used as the input of
another; a set of input data which is used many times, etc.

A mechanism is required which permits a programmer to direct input to be per-
formed on data from a source other than the keyboard (during execution time) and to
store output in a more ‘permanent’ and capacious form. This is generally achieved by
utilizing the computer’s filestore which is a managed collection of files. A file such as
the source program or a set of I/O data is normally formatted, which means it consists
of an ordered set of character strings separated by an end of record marker. A format-
ted file may be viewed using an editor or printed on a printer. An unformatted file
(see later) has no discernable structure and should be regarded as single stream of
bytes of raw data. An unformatted file is normally only viewed using a suitable user
written program.

9.1 Unit Numbers
Fortran I/O statements access files via a unique numeric code or unit number. Each
unit number is an integer which specifies a data channel which may be connected to a
particular file or device. The program may set up a connection specifically, or use the
defaults, and may at any time break and redefine the connection. These numbers must
lie in the range 1...99.

Unit numbers may be specified as:

• an integer constant e.g. 10

• an integer expression e.g. nunit or nunit+1

• an asterisk * denoting the default unit.

• the name of an internal file.

A statement such as a READ(), WRITE() or OPEN() is directed to use a particular
unit by specifying the UNIT keyword as follows:

INTEGER :: nunit=10
...
READ(UNIT=10,*)
WRITE(UNIT=nunit,*)

The unit number may also be specified as a positional argument as shown later.

Certain unit numbers are reserved to for I/O with the keyboard and screen. The unit
number 5 refers to the keyboard (so you should never write to it!) while 6 refers to the
screen (so you should never read from it!). The following READ() statements are all
equivalent, as are the WRITE() statements:

An Introduction to Fortran 90

88 Fortran 90 student notes

READ(*,*) data !recall * refers to default settings
READ(5,*) data
READ(unit=5,*) data
...
WRITE(*,*) data !recall * refers to default settings
WRITE(6,*) data
WRITE(UNIT=6,*) data

Some computer systems have a naming convention which will “map” unit numbers
to default file names, for example when using unit number 10 on a VAX/VMS system
this will map to a file called FOR010.DAT and on some UNIX systems to a file called
fort.10.

Also some computer systems provide a form of external variable which may be
defined prior to execution and the contents of the variable used as a filename. Again
on a VAX/VMS system accessing unit 10 will cause an external variable FOR010 to be
checked for a filename.

System specific information such as this is provided in the language reference manual
for that system.

9.2 READ and WRITE Statements
9.2.1 READ Statement

As has been seen before, the READ() statement has the form:

READ(clist) list

where clist is defined as:

[UNIT=] unit-number,
[FMT=] format-spec
[,REC= record-number]
[,IOSTAT=ios]
[,ADVANCE=adv]
[,SIZE=integer-variable]
[,EOR=label]
[,END=label]
[,ERR=label]

Note that a unit-number and format-spec are required in that order (though the
keywords are not), the rest are optional. Most of the keywords are for advanced file
manipulation, and as such will not be discussed here.

A useful argument to detect errors in I/O, particularly to files, is IOSTAT. If an error
occurs during I/O, the variable specified by IOSTAT will return a positive, system
dependent integer. The value 0 will be returned if the operation completes success-
fully. For example:

READ (*,*) a,b,c !read from keyboard, default format
READ (10,FMT=*) line !read from unit 10, default format
READ (UNIT=5,*) x,y,z !read from keyboard
READ (UNIT=10,*,IOSTAT=ios) !ios=0 if all goes ok.

Problems with I/O can be detected while a program runs as follows:

INTEGER :: fileno=50, ios=0, data
...
READ(UNIT=fileno,*,IOSTAT=ios) data !read value from file
IF (ios /= 0) THEN

READ(*,*) ’ERROR in reading from file’ !error message

File-based Input and Output

Cardiff, London and Belfast HPC T&E Centres 89

STOP !terminate program
ENDIF

9.2.2 WRITE Statement

The WRITE() statement has a general form similar to the READ() statement:

WRITE(clist) list

where clist is defined as:

[UNIT=] unit-number,
[FMT=] format-spec
[,REC= record-number]
[,IOSTAT=ios]
[,ADVANCE=adv]
[,SIZE=integer-variable]
[,EOR=label]
[,ERR=label]

Again note that a unit-number and format-spec are required in that order and
that other arguments are optional. IOSTAT remains one of the most useful arguments
and works the same for WRITE() as for READ() statements. For example:

INTEGER :: n=10, ios=0
...
WRITE (*,*) a,b,c !write to screen, default format
WRITE (UNIT=6,*) i,j !write to screen, default format
WRITE (10,FMT=*) I !write to unit 10, default format
WRITE (UNIT=n,FMT=*,IOSTAT=ios) data

9.3 OPEN Statement
The OPEN() statement is used to connect a unit number to a file, and to specify cer-
tain properties for that file which differ from the defaults. It can be used to create or
connect to an existing file. In addition to the standard form described some compliers
may provide a number of non-standard additional keywords.

Common programming practice places all OPEN statements in a subroutine which is
called in the initialization phase of the main program. OPEN statements invariably
contain system specific file names and non-standard features thus, should the pro-
gram be required to run on more than one computer system, the OPEN statements
may be easily located.

The OPEN() statement has the general form:

OPEN(unit_no, [olist])

where unit_no is a valid unit number specifier (with or without the keyword) and
olist is a list of keyword clauses (explained below) For example, the following
OPEN() statement all open a file associated with the unit number 10:

INTEGER :: ifile=10
...
OPEN(10)
OPEN(UNIT=10)
OPEN(UNIT=ifile)

The following keywords are some of those specified in the Fortran 90 language stand-
ard and may be used to specify the nature of the file opened:

An Introduction to Fortran 90

90 Fortran 90 student notes

• FILE=filename; where filename is a valid string for the particular system.
Note that case sensitivity is system specific. e.g. FILE=’output.test’

• STATUS=st; where st may be one of ’OLD’, ’NEW’, ’REPLACE’, ’SCRATCH’ or
’UNKNOWN’. ’OLD’ specifies a file that must already exist; ’NEW’ creates a new file;
’REPLACE’ deletes an existing file before a new file (with the same name) is cre-
ated; ’SCRATCH’ creates a temporary file which exist only while the program is
running and is lost there after. In general use ’OLD’ for input and ’NEW’ for out-
put.

• ERR=label; is similar to a GOTO statement which works only if an error occurs
opening the file. If possible use IOSTAT instead.

• IOSTAT=ios; where ios is an integer variable which is set to zero if the state-
ment is executed successfully or to an implementation dependent constant oth-
erwise.

• ACTION=act; where act may be ’READ’, ’WRITE’ or ’READWRITE’ specifying the
permitted modes of operation on the file. The default is processor dependent.

Some common file opening statements:

OPEN (UNIT=10,FILE=’fibonacci.out’)
OPEN (UNIT=11,FILE=’fibonacci.out’,STATUS=’NEW’,IOSTAT=ios)
IF(ios/=0) THEN

WRITE(6,*) ’Error opening file: fibonacci.out.’
STOP

ENDIF
OPEN (UNIT=12, FILE=’student.records’, STATUS=’OLD’, &

FORM=’FORMATTED’, IOSTAT=ios)

If you are in any doubt about the default values for any of the fields of the OPEN()
statement, especially as some are machine dependent, specify the required values.
The combinations of possible error conditions, mean that careful thought should be
given to the specification of OPEN() statements and the associated error handling.

Specifying some argument values alter the default values of others while some combi-
nations of argument values are mutually exclusive, such problems are beyond these
notes.

9.4 CLOSE statement
This statement permits the orderly disconnection of a file from a unit and is done
either at the completion of the program or so that a connection may be made to a dif-
ferent file or to alter a property of the file. In its simplest form the CLOSE() statement
requires a unit number (of a file already open), but often IOSTAT is used:

CLOSE ([UNIT=]unit-number [,IOSTAT=ios])

For example:

CLOSE (10)
CLOSE (UNIT=10)
CLOSE (UNIT=nunit, IOSTAT=ios)

9.5 INQUIRE statement
This statement may be used to check the status of a file or the connection to a file. It
causes values to be assigned to the variables specified in the inquiry-list which indi-
cate the status of the file with respect to the specified keywords. The INQUIRE()
statement has the general form:

File-based Input and Output

Cardiff, London and Belfast HPC T&E Centres 91

INQUIRE (inquiry-list)

where inquiry-list may be either:

FILE=fname

or
UNIT=unum

plus any the following (other keywords/arguments exist but are for more advanced
file I/O):

[, EXIST=lex] !true or false
[, OPENED=lod] !true or false
[, NUMBER=unum] !unit number
[, NAME=fnm] !filename
[, FORMATTED=fmt] !’YES’ or ’NO’
[, UNFORMATTED=unfmt] !’YES’ or ’NO’
[, FORM=frm] !’FORMATTED’ or’UNFORMATTED’

’EXIST’ determines whether a file of a given name exists; ’OPENED’ determines
whether or not it has been opened by the current program; ’NUMBER’ determines the
unit number associated with a file; ’NAME’ determines the name associated with a unit
number; ’FORMATTED’, ’UNFORMATTED’ or ’FORM’ determine the format of a particu-
lar file. The values returned by the INQUIRE() statement’s arguments are also listed
above.

9.6 Exercises
1. Complete the following statement, which would open an unformatted file

called ‘result.dat’ that does not exist.

OPEN(UNIT=10,..)

2. Write a section of code which would open 5 files on the unit numbers from 20
to 25. The default values should be used for all keywords. Your code should
include a means of detecting errors.

3. Write sections of code to perform the following:
(a) test for the existence of a file called TEMP.DAT
(b) test if a file has been opened on unit 10.
(c) test to see if the file opened on unit 15 is a formatted or unformatted file.
The program fragments should output the results in a suitable form.

4. Write a Fortran program which will prompt the user for a file name, open that
file and then read the file line by line outputting each line to the screen prefixed
with a line number. Use the file which contains the source of the program as a
test file.

Dynamic arrays

Cardiff, London and Belfast HPC T&E Centres 93

10 Dynamic arrays

So far all variables that have been used have been static variables, that is they have
had a fix memory requirement, which is specified when the variable is declared. Static
arrays in particular are declared with a specified shape and extent which cannot
change while a program is running. This means that when a program has to deal with
a variable amount of data, either:

• an array is dimensioned to the largest possible size that will be required, or

• an array is given a new extent, and the program re-complied every time it is run.

In contrast dynamic (or allocatable) arrays are not declared with a shape and initially
have no associated storage, but may be allocated storage while a program executes.
This is a very powerful feature which allows programs to use exactly the memory
they require and only for the time they require it.

10.1 Allocatable arrays
10.1.1 Specification

Allocatable arrays are declared in much the same way as static arrays. General form:

type, ALLOCATABLE [,attribute] :: name

They must include the ALLOCATABLE attribute and the rank of the array, but cannot
specify the extend in any dimension or the shape in general. Instead a colon (:) is used
for each dimension. For example:

INTEGER, DIMENSION(:), ALLOCATABLE :: a !rank 1
INTEGER, ALLOCATABLE :: b(:,:) !rank 2
REAL, DIMENSION(:), ALLOCATABLE :: c !rank 1

On declaration, allocatable arrays have no associated storage and cannot be refer-
enced until storage has been explicitly allocated.

10.1.2 Allocating and deallocating storage

The ALLOCATE statement associates storage with an allocatable array:

ALLOCATE(name(bounds) [,STAT])

• if successful name has the requested bounds (if present STAT=0).

• if unsuccessful program execution stops (or will continue with STAT>0 if
present).

it is possible to allocate more than one array with the same ALLOCATE statement, each
with different bounds, shape or rank. If no lower bound is specified then the default is
1. Only allocatable arrays with no associated storage may be the subject of an ALLO-
CATE statement, for example

An Introduction to Fortran 90

94 Fortran 90 student notes

n=10
ALLOCATE(a(100))
ALLOCATE(b(n,n), c(-10:89)).

The storage used by an allocatable array may be released at any time using the DEAL-
LOCATE statement:

DEALLOCATE(name [,STAT])

• If successful arrayname no longer has any associated storage (if present
STAT=0)

• If unsuccessful execution stops (or will continue with STAT>0 if present).

The DEALLOCATE statement does not require the array shape. It is possible to deallo-
cate more than one array with the same DEALLOCATE statement, each array can have
different bounds, shape or rank. Only allocatable arrays with associated storage may
be the subject of a DEALLOCATE statement.

The following statements deallocate the storage from the previous example:

DEALLOCATE (a, b)
DEALLOCATE (c, STAT=test)
IF (test .NE. 0) THEN

STOP ‘deallocation error’
ENDIF

It is good programming practice to deallocate any storage that has been reserved
through the ALLOCATE statement. Beware, any data stored in a deallocated array is
lost permanently!

10.1.3 Status of allocatable arrays

Allocatable arrays may be in either one of two states:

• ‘allocated’ - while an array has associated storage.

• ‘not currently allocated’ - while an array has no associated storage.

The status of an array may be tested using the logical intrinsic function ALLOCATED:

AllOCATED(name)

which returns the value:

• .TRUE. if name has associated storage, or

• .FALSE. otherwise.

For example:

IF(ALLOCATED(x)) DEALLOCATE(x)

or:

IF(.NOT. ALLOCATED(x)) ALLOCATE(x(1:10))

On declaration an allocatable array’s status is ‘not currently allocated’ and will
become ‘allocated’ only after a successful ALLOCATE statement. As the program con-
tinues and the storage used by a particular array is deallocated, so the status of the
array returns to ‘not currently allocated’. It is possible to repeat this cycle of allocating
and deallocating storage to an array (possibly with different sizes and extents each
time) any number of times in the same program.

Dynamic arrays

Cardiff, London and Belfast HPC T&E Centres 95

10.2 Memory leaks
Normally, it is the program that takes responsibility for allocating and deallocating
storage to (static) variables, however when using dynamic arrays this responsibility
falls to the programmer.

Statements like ALLOCATE and DEALLOCATE are very powerful. Storage allocated
through the ALLOCATE statement may only be recovered by:

• a corresponding DEALLOCATE statement, or

• the program terminating.

Storage allocated to local variables (in say a subroutine or function) must be deallo-
cated before the exiting the procedure. When leaving a procedure all local variable are
deleted from memory and the program releases any associated storage for use else-
where, however any storage allocated through the ALLOCATE statement will remain
‘in use’ even though it has no associated variable name!. Storage allocated, but no
longer accessible, cannot be released or used elsewhere in the program and is said to
be in an ‘undefined’ state This reduction in the total storage available to the program
called is a ‘memory leak’.

SUBROUTINE swap(a, b)
REAL, DIMENSION(:) :: a, b
REAL, ALLOCATABLE :: work(:)

ALLOCATE(work(SIZE(a)))
work = a
a = b
b = work
DEALLOCATE(work) !necessary

END SUBROUTINE swap

The automatic arrays a and b are static variables, the program allocates the required
storage when swap is called, and deallocates the storage on exiting the procedure.
The storage allocated to the allocatable array work must be explicitly deallocated to
prevent a memory leak.

Memory leaks are cumulative, repeated use of a procedure which contains a memory
leak will increase the size of the allocated, but unusable, memory. Memory leaks can
be difficult errors to detect but may be avoided by remembering to allocate and deal-
locate storage in the same procedure.

An Introduction to Fortran 90

96 Fortran 90 student notes

10.3 Exercises
1. Write a declaration statement for each of the following allocatable arrays:

(a) Rank 1 integer array.
(b) A real array of rank 4.
(c) Two integer arrays one of rank 2 the other of rank 3.
(d) A rank one real array with lower and upper bound of -n and n respectively.

2. Write allocation statements for the arrays declared in question 1, so that
(a) The array in 1 (a) has 2000 elements
(b) The array in 1 (b) has 16 elements in total.
(c) In 1 (c) the rank two array has 10 by 10 elements, each index starting at ele-
ment 0; and the rank three array has 5 by 5 by 10 elements, each index starting
at element -5.
(d) The array in 1 (d) is allocated as required.

3. Write deallocation statement(s) for the arrays allocated in 2.
4. Write a program to calculate the mean and the variance of a variable amount of

data. The number of values to be read into a real, dynamic array x is n. The pro-
gram should use a subroutine to calculate the mean and variance of the data
held in x. The mean and variance are given by:

5. Write a module called tmp_space to handle the allocation and deallocation of
an allocatable work array called tmp. The module should contain two subrou-
tines, the first (make_tmp) to deal with allocation, the second (unmake_tmp) to
deal with deallocation. These subroutines should check the status of tmp and
report any error encountered. Write a program that tests this module.
The idea behind such a module is that once developed it may be used in other
programs which require a temporary work array.

variance x i() mean–()2

i 1=

n

∑
 
 
 

n 1–()⁄=

mean x i()
i 1=

n

∑
 
 
 

n⁄=

Pointer Variables

Cardiff, London and Belfast HPC T&E Centres 97

11 Pointer Variables

11.1 What are Pointers?
A pointer variable, or simply a pointer, is a new type of variable which may reference
the data stored by other variables (called targets) or areas of dynamically allocated
memory.

Pointers are a new feature to the Fortran standard and bring Fortran 90 into line with
languages like C. The use of pointers can provide:

• A flexible alternative to allocatable arrays.

• The tools to create and manipulate dynamic data structures (such as linked
lists).

Pointers are an advanced feature of any language. Their use allows programmers to
implement powerful algorithms and tailor the storage requirements exactly to the size
of the problem in hand.

11.1.1 Pointers and targets

Pointers are best thought of as variables which are dynamically associated with (or
aliased to) some target data. Pointers are said to ‘point to’ their targets and valid tar-
gets include:

• Variables of the same data type as the pointer and explicitly declared with the
TARGET attribute.

• Other pointers of the same data type.

• Dynamic memory allocated to the pointer.

Pointers may take advantage of dynamic storage but do not require the ALLOCATA-
BLE attribute. The ability to allocate and deallocate storage is an inherent property of
pointer variables.

11.2 Specifications
The general form for pointer and target declaration statements are:

type, POINTER [,attr] :: variable list
type, TARGET [,attr] :: variable list

Where:

• type is the type of data object which may be pointed to and may be a derived
data type as well as intrinsic types.

• attribute is a list of other attributes of the pointer.

An Introduction to Fortran 90

98 Fortran 90 student notes

A pointer must have the same data type and rank as its target. For array pointers the
declaration statement must specify the rank but not the shape (i.e. the bounds or
extend of the array). In this respect array pointers are similar to allocatable arrays.

For example, the following three pairs of statements, all declare pointers and one or
more variables which may be targets:

REAL, POINTER :: pt1
REAL, TARGET :: a, b, c, d, e

INTEGER, TARGET :: a(3), b(6), c(9)
INTEGER, DIMENSION(:), POINTER:: pt2

INTEGER, POINTER :: pt3(:,:)
INTEGER, TARGET :: b(:,:)

Note that the following is an examples of an illegal pointer declaration:

REAL, POINTER, DIMENSION(10) :: pt !illegal

The POINTER attribute is incompatible with the ALLOCATABLE, EXTERNAL,
INTENT, INTRINSIC, PARAMETER and TARGET attributes. The TARGET attribute is
incompatible with the EXTERNAL, INTRINSIC, PARAMETER and POINTER
attributes.

11.3 Pointer assignment
There are two operators which may act on pointers:

• The pointer assignment operator (=>)

• The assignment operator (=)

To associate a pointer with a target use the pointer assignment operator (=>):

pointer => target

Where pointer is a pointer variable and target is any valid target. pointer may
now be used as an alias to the data stored by target. The pointer assignment opera-
tor also allocates storage required by the pointer.

To change the value of a pointer’s target (just like changing the value of a variable)
use the usual assignment operator (=). This is just as it would be for other variable
assignment with a pointer used as an alias to another variable.

The following are examples of pointer assignment:

INTEGER, POINTER :: pt
INTEGER, TARGET :: x=34, y=0
...
pt => x ! pt points to x
y = pt ! y equals x
pt => y ! pt points to y
pt = 17 ! y equals 17

The declaration statements specify a three variables, pt is an integer pointer, while x
and y are possible pointer targets. The first executable statement associates a target
with pt. The second executable statement changes the value of y to be the same as
pt’s target, this would only be allowed when pt has an associated target. The third
executable statement re-assigns the pointer to another target. Finally, the fourth exe-
cutable statement assigns a new value, 17, to pt’s target (not pt itself!). The effect of
the above statements is illustrated below.

Pointer Variables

Cardiff, London and Belfast HPC T&E Centres 99

It is possible to assign a target to a pointer by using another pointer. For example:

REAL, POINTER :: pt1, pt2
...
pt2 => pt1 !legal only if pt1 has an associated target

Although this may appear to be a pointer pointing to another pointer, pt2 does not
point to pt1 itself but to pt1’s target. It is wrong to think of ‘chains of pointers’, one
pointing to another. Instead all pointers become associated with the same target.

Beware, of using the following statements, they are both illegal:

pt1 => 17 !constant expression is not valid target
pt2 => pt1 + 3 !arithmetic expression is not valid target

11.3.1 Dereferencing

Where a pointer appears as an alias to a variable it is automatically dereferenced; that
is the value of the target is used rather than the pointer itself. For a pointer to be deref-
erenced in this way requires that it be associated with a target.

Pointer are automatically dereferenced when they appear:

• As part of an expression.

• In I/O statements.

For example:

pt => a
b = pt !b equals a, pt is dereferenced
IF(pt<0) pt=0 !pt dereferenced twice

WRITE(6,*) pt !pt’s target is written
READ(5,*) pt !value stored by pt’s target

pt => x x

y

pt

34

0

y = pt x

y

pt

34

34

pt => y x

y

pt

34

34

pt = 17 x

y

pt

34

17

An Introduction to Fortran 90

100 Fortran 90 student notes

11.4 Pointer association status
Pointers may be in one of three possible states:

• Associated - when pointing to a valid target.

• Disassociated - the result of a NULLIFY statement.

• Undefined - the initial state on declaration.

A pointer may become disassociated through the NULLIFY statement:

NULLIFY(list of pointers)

A pointer that has been nullified may be thought of as pointing ‘at nothing’.

The status of a pointer may be found using the intrinsic function:

ASSOCIATED (list of pointers [,TARGET])

The value returned by ASSOCIATED is either .TRUE. or .FALSE. When TARGET is
absent, ASSOCIATED returns a value .TRUE. if the pointer is associated with a target
and .FALSE. if the pointer has been nullified. When TARGET is present ASSOCIATED
reports on whether the pointer points to the target in question. ASSOCIATED returns a
value .TRUE. if the pointer is associated with TARGET and .FALSE. if the pointer
points to another target or has been nullified.

It is an error to test the status of an undefined pointer, therefore it is good practice to
nullify all pointers that are not immediately associated with a target after declaration.

The following example shows the use of the ASSOCIATED function and the NULLIFY
statement:

REAL, POINTER :: pt1, pt2 !undefined status
REAL, TARGET :; t1, t2
LOGICAL :: test
pt1 => t1 !pt1 associated
pt2 => t2 !pt2 associated
test = ASSOCIATED(pt1) ! .T.
test = ASSOCIATED(pt2) ! .T.
...
NULLIFY(pt1) !pt1 disassociated
test = ASSOCIATED(pt1) ! .F.
test = ASSOCIATED(pt1, pt2) ! .F.
test = ASSOCIATED(pt2, TARGET=t2) ! .T.
test = ASSOCIATED(pt2, TARGET=t1) ! .F.
NULLIFY(pt1, pt2) !disassociated

The initial undefined status of the pointers is changed to associated by pointer assign-
ment, there-after the ASSOCIATED function returns a value of .TRUE. for both point-
ers. Pointer pt1 is then nullified and its status tested again, note that more than one
pointer status may be tested at once. The association status of pt2 with respect to a
target is also tested. Finally both pointers are nullified in the same (last) statement.

11.5 Dynamic storage
As well as pointing to existing variables which have the TARGET attribute, pointers
may be associated with blocks of dynamic memory. This memory is allocated through
the ALLOCATE statement which creates an un-named variable or array of the specified
size, and with the data type, rank, etc. of the pointer:

REAL, POINTER :: p, pa(:)
INTEGER :: n=100

Pointer Variables

Cardiff, London and Belfast HPC T&E Centres 101

...
ALLOCATE(p, pa(n))
...
DEALLOCATE(p, pa)

In the above example p points to an area of dynamic memory and can hold a single,
real number and pa points to a block of dynamic memory large enough to store 100
real numbers. When the memory is no longer required it may be deallocated using the
DEALLOCATE statement. In this respect pointers behave very much like allocatable
arrays.

11.5.1 Common errors

Allocating storage to pointers can provide a great degree of flexibility when program-
ming, however care must be taken to avoid certain programming errors:

• Memory leaks can arise from allocating dynamic storage to the pointer and then
re-assigning the pointer to another target:

INTEGER, POINTER :: pt(:)
...
ALLOCATE(pt(25))
NULLIFY(pt) !wrong

Since the pointer is the only way to reference the allocated storage (i.e. the allo-
cated storage has no associated variable name other than the pointer) reassign-
ing the pointer means the allocated storage can no longer be released. Therefore
all allocated storage should be deallocated before modifying the pointer to it.

• It is possible to assign a pointer to a target, but then remove the target (by deal-
locating it or exiting a procedure to which it is local), in that case the pointer may
be left ‘dangling’:

REAL, POINTER :: p1, p2
...
ALLOCATE(p1)
p2 => p1
DEALLOCATE(p1) !wrong

In the above example p2 points to the storage allocated to p1, however when
that storage is deallocated p2 no longer has a valid target and its state becomes
undefined. In this case dereferencing p2 would produce unpredictable results.

Programming errors like the above can be avoided by making sure that all
pointers to a defunked target are nullified.

11.6 Array pointers
Pointers may act as dynamic aliases to arrays and array sections, such pointers are
called array pointers. Array pointers can be useful when a particular section is refer-
enced frequently and can save copying data. For example:

REAL, TARGET :: grid(10,10)
REAL, POINTER :: centre(:,:), row(:)
...
centre => grid(4:7,4:7)
row => grid(9,:)

An Introduction to Fortran 90

102 Fortran 90 student notes

An array pointer can be associated with the whole array or just a section. The size and
extent of an array pointer may change as required, just as with allocatable arrays. For
example:

centre => grid(5:5,5:6) !inner 4 elements of old centre

Note, an array pointer need not be deallocated before its extent or bounds are rede-
fined.

INTEGER, TARGET :: list(-5:5)
INTEGER, POINTER :: pt(:)
INTEGER, DIMENSION(3) :: v = (/-1,4,-2/)
...
pt => list !note bounds of pt
pt => list(:) !note bounds of pt
pt => list(1:5:2)
pt => list(v) !illegal

The extent (or bounds) of an array section are determined by the type of assignment
used to assign the pointer. When an array pointer is aliased with an array the array
pointer takes its extent form the target array; as with pt => list above, both have
bounds -5:5. If the array pointer is aliased to an array section (even if the section cov-
ers the whole array) its lower bound in each dimension is 1; as with pt => list(:)
above, pt’s extent is 1:11 while list’s extent is -5:5. So pt(1) is aliased to list(-
5), pt(2) to list(-4), etc.

It is possible to associate an array pointer with an array section defined by a subscript
triplet. It is not possible to associate one with an array section defined with a vector
subscript, v above. The pointer assignment pt => list(1:5:2) is legal with
pt(1) aliased to list(1), pt(2) aliased to list(3) and pt(3) aliased to
list(5).

grid(1:10,1:10)

centre(1:4,1:4)

row(1:10)

list(-5:5)

pt => list pt(-5:5)

list(-5:5)

pt => list(:) pt(1:11)

list(-5:5)

pt => list(1:5:2) pt(1:3)

Pointer Variables

Cardiff, London and Belfast HPC T&E Centres 103

11.7 Derived data types
Pointers may be a component of a derived data type. They can take the place of allo-
catables arrays within a derived data type, or act as pointers to other objects, includ-
ing other derived data types:

The dynamic nature of pointer arrays can provide varying amounts of storage for a
derived data type:

TYPE data
REAL, POINTER :: a(:)

END TYPE data
TYPE(data) :: event(3)

DO i=1,3
READ(5,*) n !n varies in loop
ALLOCATE(event(i)%a(n))
READ(5,*) event(i)%a

END DO

The number of values differs for each event, the size of the array pointer depends on
the input value n. When the data is no longer required the pointer arrays should be
deallocated:

DO i=1,3
DEALLOCATE(event(i)%a)

END DO

11.7.1 Linked lists

Pointers may point to other members of the same data type, and in this way create
‘linked lists’. For example consider the following data type:

TYPE node
REAL :: item
TYPE(node), POINTER :: next

END TYPE node

The derived type node contains a single object item (the data in the list) and a
pointer next to another instance of node. Note the recursion-like property in
the declaration allowing the pointer to reference its own data type.

Linked lists are a very powerful programming concept, their dynamic nature
means that they may grow or shrink as required. Care must be taken to ensure
pointers are set up and maintained correctly, the last pointer in the list is usually
nullified. Details of how to implement, use and manipulate a linked list can be
found in some of the reading material associated with these notes.

11.8 Pointer arguments
Just like other data types, pointers may be passed as arguments to procedures. There
are however a few points to remember when using pointers as actual or dummy argu-
ments:

• As with other variables, actual and dummy arguments must have the same data

item

next
...item

next

item

next

An Introduction to Fortran 90

104 Fortran 90 student notes

type and rank. dummy arguments that are pointer may not have the INTENT at-
tribute, since it would be unclear whether the intent would refer to the pointer
itself or the associated target.

• Pointer arguments to external procedures require INTERFACE blocks.

When both the actual and dummy arguments are pointers, the target (if there is one)
and association status is passed on call and again on return. It is important to ensure
that a target remains valid when returning from a procedure (i.e. the target is not a
local procedure variable), otherwise the pointer is left ‘dangling’.

When the actual argument is a pointer and the corresponding dummy argument is
not, the pointer is dereferenced and it is the target that is copied to the dummy argu-
ment. On return the target takes the value of the dummy argument. This requires the
actual argument to be associated with a target when the procedure is referenced.

For example:

PROGRAM prog
INTERFACE !needed for external subroutine

SUBROTINE suba(a)
REAL, POINTER :: a(:)

END SUBROUTINE suba
END INTERFACE
REAL, POINTER :: pt(:)
REAL, TARGET :: data(100)
...
pt => data
CALL suba(pt)
CALL subb(pt)
...

CONTAINS
SUBROUTINE subb(b) !internal

REAL, DIMENSION(:) :: b !assumed shape of 100
...

END SUBROUTINE subb
END PROGRAM prog

SUBROUTINE suba(a) !external subroutine
REAL, POINTER :: a(:) !a points to data
...

END SUBROUTINE suba

It is not possible for a non-pointer actual argument to correspond with a pointer
dummy argument.

11.9 Pointer functions
Functions may return pointers as their result. This is most useful where the size of the
result depends on the function’s calculation. Note that:

• The result must have the POINTER attribute.

• The returning function must have a valid target or have been nullified.

• Pointer results from external procedures require INTERFACE blocks.

For example:

INTERFACE
FUNCTION max_row (a)

REAl, TARGET :: a(:,:)
REAL, POINTER :: max_row(:)

END FUNCTION max_row

Pointer Variables

Cardiff, London and Belfast HPC T&E Centres 105

END INTERFACE
REAL, TARGET :: a(3,3)
REAL, POINTER :: p(:)
...
p => max_row (a)
...

FUNCTION max_row (a) !external
REAL, TARGET :: a(:,:)
REAL, POINTER :: max_row(:) !function result
INTEGER :: location(2)

location = MAXLOC(a) !row and column of max value
max_row => a(location(1),:) !pointer to max row

END FUNCTION max_row

Here the external function max_row returns the row of a matrix containing the largest
value. The pointer result is only allowed to point to the dummy argument a because it
is declared as a target, (otherwise it would have been a local array and left the pointer
dangling on return). Notice the function result is used on the right hand side of a
pointer assignment statement. A pointer result may be used as part of an expression
in which case it must be associated with a target.

An Introduction to Fortran 90

106 Fortran 90 student notes

11.10 Exercises
1. Write a declaration statement for each of the following pointers and their tar-

gets:
(a) A pointer to a single element of an array of 20 integers.
(b) A pointer to a character string of length 10.
(c) An array pointer to a row of a 10 by 20 element real array.
(d) A derived data type holding a real number three pointers to neighbouring
nodes, left, right and up (this kind of derived data structure may be used to
represent a binary tree).

2. For the pointer and target in the following declarations write an expression to
associate the pointer with:
(a) The first row of the target.
(b) A loop which associates the pointer with each column of the target in turn.

REAL, POINTER :: pt(:)
REAL, TARGET, DIMENSION(-10:10, -10:10) :: a

3. Write a program containing an integer pointer and two targets. Nullify and
report the initial status of the pointer (using the ASSOCIATED intrinsic func-
tion). Then associate the pointer with each of the targets in turn and output
their values to the screen. Finally ensure the pointer ends with the status ‘not
currently associated’.

4. Write a program containing a derived data type. The data type represents dif-
ferent experiments and should hold the number of reading taken in an experi-
ment (an integer) and values for each of the readings (real array pointer).
Read in the number and values for a set of experimental readings, say 4, and
output their mean. Deallocate all pointers before the program finishes.

5. Write an internal function that takes a single rank one, integer array as an argu-
ment and returns an array pointer to all elements with non-zero values as a
result. The function will need to count the number of zero’s in the array (use
the COUNT intrinsic), allocate the required storage and copy each non-zero
value into that storage. Write a program to test the function.

Intrinsic procedures

Cardiff, London and Belfast HPC T&E Centres 107

12 Intrinsic procedures

Fortran 90 offers many intrinsic function and subroutines, the following lists provide
a quick reference to their format and use.

In the following intrinsic function definitions arguments are usually named according
to their types (I for integer C for character, etc.), including those detained below.
Optional arguments are shown in square brackets [], and keywords for the argument
names are those given.

KIND - describes the KIND number.

SET - a string containing a set of characters.

BACK - a logical used to determine the direction a string is to be searched.

MASK - a logical array used to identfy those element which are to take part in the
desired operation.

DIM - a selected dimension of an argument (an integer).

12.1 Argument presence enquiry
PRESENT(A) - true if A is present.

12.2 Numeric functions
ABS(A) - return the absolute value of A.

AIMAG(Z) - return the imaginary part of complex number Z.

AINT(A [, KIND]) - returns a value A truncated to a whole number.

ANINT(A [, KIND]) - returns a value rounded to the nearest value of A.

CEILING(A) - returns the lowest integer greater than or equal to A.

CMPLX(X [, Y][, KIND]) - converts A to a complex number.

CONJG(Z) - returns the conjugate of a complex number.

DBLE(A) - converts A to a double precision real.

DIM(X, Y) - returns the maximum of X-Y or 0.

DPROD(X, Y) - returns a double precision product.

FLOOR(A) - returns the largest integer less than or equal to A.

INT(A [, KIND]) - converts to an integer.

MAX(A1, A2 [, A3...]) - returns the maximum value.

MIN(A1, A2 [, A3...]) - returns the minimum value.

An Introduction to Fortran 90

108 Fortran 90 student notes

MOD(A, P) - returns remainder modulo P i.e. A-INT(A/P)*P.

MODULO(A, P) - A modulo P.

NINT(A [, KIND]) - returns the nearest integer to A.

REAL(A [, KIND]) - converts to a real.

SIGN(A, B) - returns the absolute value of A times the sign of B.

12.3 Mathematical functions
ACOS(X) - arccosine.

ASIN(X) - arcsine.

ATAN(X) - arctan.

ATAN2(X, Y) - arctan.

COS(X) - cosine.

COSH(X) - hyperbolic cosine.

EXP(X) - exponential.

LOG(X) - natural logarithm.

LOG10(X) - base 10 logarithm.

SIN(X) - sine.

SINH(X) - hyperbolic sine.

SQRT(X) - square root.

TAN(X) - tan.

TANH(X) - hyperbolic tan.

12.4 Character functions
ACHAR(I) - returns the Ith character in the ASCII collating sequence.

ADJUSTL(STRING) - adjusts string left by removing any leading blanks and insert-
ing trailing blanks.

ADJUSTR(STRING) - adjusts string right by removing trailing blanks and inserting
leading blanks.

CHAR(I [, KIND]) - returns the Ith character in the machine specific collating
sequence.

IACHAR(C) - returns the position of the character in the ASCII collating sequence.

ICHAR(C) - returns the position of the character in the machine specific collating
sequence.

INDEX(STRING, SUBSTRING [, BACK]) - returns the leftmost (rightmost if
BACK is .TRUE.) starting position of SUBSTRING within STRING.

LEN(STRING) - returns the length of a string.

LEN_TRIM(STRING) - returns the length of a string without trailing blanks.

LGE(STRING_A, STRING_B) - lexically greater than or equal to.

Intrinsic procedures

Cardiff, London and Belfast HPC T&E Centres 109

LGT(STRIN_A1, STRING_B) - lexically greater than.

LLE(STRING_A, STRING_B) - lexically less than or equal to.

LLT(STRING_A, STRING_B) - lexically less than.

REPEAT(STRING, NCOPIES) - repeats concatenation.

SCAN(STRING, SET [, BACK]) - returns the index of the leftmost (rightmost if
BACK is .TRUE.) character of STRING that belong to SET, or 0 if none belong.

TRIM(STRING) - removes training spaces from a string.

VERIFY(STRING, SET [, BACK]) - returns zero if all characters in STRING
belong to SET or the index of the leftmost (rightmost if BACK is .TRUE.) that does not.

12.5 KIND functions
KIND(X) - returns the kind type parameter value.

SELECTED_INT_KIND(R) - kind of type parameter for specified exponent range.

SELECTED_REAL_KIND([P] [,R]) - kind of type parameter for specified preci-
sion and exponent range.

12.6 Logical functions
LOGICAL(L [, KIND]) - convert between different logical kinds.

12.7 Numeric enquiry functions
DIGITS(X) - returns the number of significant digits in the model.

EPSILON(X) - returns the smallest value such that REAL(1.0, KIND(X)) +
EPSILON(X) is not equal to REAL(1.0, KIND(X)).

HUGE(X) - returns the largest number in the model.

MAXEXPONENT(X) - returns the maximum exponent value in the model.

MINEXPONENT(X) - returns the minimum exponent value in the model.

PRECISION(X) - returns the decimal precision.

RADIX(X) - returns the base of the model.

RANGE(X) - returns the decimal exponent range.

TINY(X) - returns the smallest positive number in the model.

12.8 Bit enquiry functions
BIT_SIZE(I) - returns the number of bits in the model.

12.9 Bit manipulation functions
BTEST(I, POS) - is .TRUE. if bit POS of integer I has a value 1.

IAND(I, J) - logical .AND. on the bits of integers I and J.

IBCLR(I, POS) - clears bit POS of interger I to 0.

An Introduction to Fortran 90

110 Fortran 90 student notes

IBITS(I, POS, LEN) - extracts a sequence of bits length LEN from integer I
starting at POS

IBSET(I, POS) - sets bit POS of integer I to 1.

IEOR(I, J) - performas an exclusive .OR. on the bits of integers I and J.

IOR(I, J) - performes an inclusive .OR. on the bits of integers I and J.

ISHIFT(I, SHIFT) - logical shift of the bits.

ISHIFTC(I, SHIFT [, SIZE]) - logical circular shift on a set of bits on the
right.

NOT(I) - logical complement on the bits.

12.10 Transfer functions
TRANSFER(SOURCE, MOLD [, SIZE]) - converts SOURCE to the type of MOLD.

12.11 Floating point manipulation functions
EXPONENT(X) - returns the exponent part of X.

FRACTION(X) - returns the fractional part of X.

NEAREST(X, S) - returns the nearest different machine specific number in the
direction given by the sign of S.

RRSPACING(X) - returns the reciprocal of the relative spacing of model numbers
near X.

SCALE(X) - multiple X by its base to power I.

SET_EXPONENT(X, I) - sets the expontnt part of X to be I.

SPACING(X) - returns the absolute spacing of model numbers near X.

12.12 Vector and matrix functions
DOT_PRODUCT(VECTOR_A, VECTOR_B) - returns the dot product of two vectors
(rank one arrays).

MATMUL(MATRIX_A, MATRIX_B) - returns the product of two matricies.

12.13 Array reduction functions
ALL(MASK [, DIM]) - returns .TRUE. if all elements of MASK are .TRUE.

ANY(MASK [, DIM]) - returns .TRUE. if any elements of MASK are .TRUE.

COUNT(MASK [, DIM]) - returns the number of elements of MASK that are .TRUE.

MAXVAL(ARRAY [, DIM] [,MASK]) - returns the value of the maximum array
element.

MINVAL(ARRAY [, DIM] [,MASK]) - returns the value of the minimum array
element.

PRODUCT(ARRAY [, DIM] [, MASK]) - returns the product of array elements

SUM(ARRAY [, DIM] [, MASK]) - returns the sum of array elements.

Intrinsic procedures

Cardiff, London and Belfast HPC T&E Centres 111

12.14 Array enquiry functions
ALLOCATED(ARRAY) - returns .TRUE. if ARRAY is allocated.

LBOUND(ARRAY [, DIM]) - returns the lower bounds of the array.

SHAPE(SOURCE) - returns the array (or scalar) shape.

SIZE(ARRAY [, DIM]) - returns the total number of elements in an array.

UBOUND(ARRAY [, DIM]) - returns the upper bounds of the array.

12.15 Array constructor functions
MERGE(TSOURCE, FSOURCE, MASK) - returns value(s) of TSOURCE when MASK
is .TRUE. and FSOURCE otherwise.

PACK(ARRAY, MASK [, VECTOR]) - pack elements of ARRAY corresponding to
true elements of MASK into a rank one result

SPREAD(SOURCE, DIM, NCOPIES) - returns an array of rank one greater than
SOURCE containing NCOPIES of SOURCE.

UNPACK(VECTOR, MASK, FIELD) - unpack elements of VECTOR corresponding
to true elements of MASK.

12.16 Array reshape and manipulation func-
tions

CSHIFT(ARRAY, SHIFT [, DIM]) - performs a circular shift.

EOSHIFT(ARRAY, SHIFT [, BOUNDARY] [, DIM]) - performs an end-off
shift.

MAXLOC(ARRAY [, MASK]) - returns the location of the maximum element.

MINLOC(ARRAY [, MASK]) - returns the location of the minimum element.

RESHAPE(SOURCE, SHAPE [, PAD] [, ORDER]) - rehapes SOURCE to shape
SHAPE

TRANSPOSE(MATRIX) - transpose a matrix (rank two array).

12.17 Pointer association status enquiry
functions

ASSOCIATED(POINTER [, TARGET]) - returns .TRUE. if POINTER is associated.

12.18 Intrinsic subroutines
DATE_AND_TIME([DATE] [, TIME] [, ZONE] [, VALUES]) - real time
clock reading date and time.

MVBITS(FROM, FROMPOS, LEN, TO TOPOS) - copy bits.

RANDOM_NUMBER(HARVEST) - random number in the range 0-1 (inclusive).

RANDOM_SEED([SIZE] [, PUT] [, GET]) - initialise or reset the random
number generator.

An Introduction to Fortran 90

112 Fortran 90 student notes

SYSTEM_CLOCK([COUNT] [, COUNT_RATE] [, COUNT_MAX]) - integer data
from the real time clock.

Further reading

Cardiff, London and Belfast HPC T&E Centres 113

13 Further reading

Fortran 90 handbook - J.C. Adams et. al., McGraw-Hill, 1992.

Programmer’s Guide to Fortran 90 - W.S. Brainerd et. al., Unicomp, 1994.

Fortran 90 - M. Counihan, Pitman, 1991.

Fortran 90 programming - T.M.R. Ellis et. al., Wesley, 1994.

Fortran 90 for Scientists and Engineers - B.D. Hahn, Edward Arnold, 1994.

Fortran 90 Explained - M. Metcalf and J. Ried, Oxford University Press, 1992.

Programming in Fortran 90 - J.S. Morgan and J.L. Schonfelder, Alfred Walker Ltd,
1993.

Programming in Fortran 90 - I.M. Smith, Wiley.

