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Summary

e QFT calculation of density-density corre-
lation function for a BEC analogue of a

black hole

e [ake into account the effective potential
for the quantum field

e Discuss the effects of
— an infrared cutoff

— including the potential



Effective metric

e Lab frame
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o Let v = —vx

e [ransformation to static spherically sym-
metric coordinates
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Solutions to the Gross Pitaevskii Equation

e Background Solution
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e Linearized equation in 3+1 dimensions
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e If the term containing V is zero then solu-
tions are
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e [ hese solutions can be used to define the
Unruh state



Unruh State

e Use positive frequency in static spherically
symmetric time, t, for left moving modes
at 7—

e Define Kruskal coordinates and use pos-
itive frequency in Kruskal time for right
moving modes on the past horizon

e T hen use a Bogolubov transformation to
write in terms of eT™wU on the past horizon



o If left-moving modes are ignored, the two-
point function for égz) if ) <0 and z» >0
IS
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e Potential should be important for modes
with w 5 |Veff|max



Density-Density Correlation Function
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Numerical Computations

e Same parameters as the QM calculation
by Carusotto, Fagnocchi, Recati, Balbinot,
and Fabbri

e Slight differences:
Horizon is at x = 0

Black hole is to left of horizon and conden-
sate moves to the left



Values
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The top plot is ¢ (x) and the bottomplot is Veff (x)



Effect of the Potential on the Modes

e Recall the mode equation is

X + Wy + Varrxw = O
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e EXxpect no significant effect for w? > | Vefr|max



e [ his discussion on initial conditions for the
spatial modes is revised from the original
talk. A mistake for the modes which ini-
tially go into the region outside the event
horizon was pointed out by R. Parentani
during the talk and in subsequent discus-
sions. It is corrected here.

— For solutions on the past horizon which
initially go into the region outside the
event horizon

x Fix the behavior so they are right mov-
ing in the limit £ — oo

Xw — €

* Fix the amplitude so that the right
moving modes originating from the past
horizon have unit amplitude on that
horizon.



For the solutions on the past horizon which
are always inside the event horizon, fix the

behavior so that

on the past horizon.

For w = 0 nonzero Vg implies that at large
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Cutoff

e Recall the 2-point function is
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e In Vi = O case Balbinot, et. al. sub-
tracted from the two-point function
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e Won't work for Vgsr 7= 0 so need to impose
a cutoff




e In principle fix by setting A\¢ = 27c/we ~
2mer /we ~ the size of the system

e Effective UV cutoff scale is
)\’LL’U ~Y 27726//43 ~ 60

Need ¢ > A\

e Specific cases tried: A\ ~ 3000, 300



Regul ari zati onusingacutoff of w = 0. 002

Regul ari zati onusingacutoff of w = 0.02



Correlation Function for x = 10, V = 0O
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LLowest curve at the minimum: Regulariza-
tion via the subtraction term

Next lowest curve: Regularization with a
cutoff we, = 0.002, A¢ ~ 3000

Upper curve: Regularization with a cutoff
Wc — 002, >\C Y 300



Explanations

e Recall
hn
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— For Au = 0 high frequency modes con-
tribute more so cutoff is less important

— Infrared effects most important for term
~(2 ~(2
~ (1) (w2) (037 (11, 21)057 (2, 72))
For ¢/(z) < we this term is small



Conclusions

e Including the potential V requires imple-
mentation of a cutoff we

e For physically motivated values find rela-
tively weak dependence of peak of correla-
tion function on the cutoff

Cutoff dependence is stronger farther from
the peak



Future Work

e Consider the case when both points are in-
side the horizon - QM calculation shows an

interesting effect

e Investigate what happens when the event
horizon forms in the ‘“sudden’” approxima-

tion



