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Summary

• QFT calculation of density-density corre-

lation function for a BEC analogue of a

black hole

• Take into account the effective potential

for the quantum field

• Discuss the effects of

– an infrared cutoff

– including the potential



Effective metric

• Lab frame

ds2 =
n

mc

[
−c2dT2 + (d~x− ~vdt) · (d~x− ~vdt)

]

• Let ~v = −vx̂

• Transformation to static spherically sym-

metric coordinates

dT = dt +
v

c2 − v2
dx

ds2 =
n

m

[
−(c2 − v2)

c
dt2 +

c

c2 − v2
dx2

+
dy2 + dz2

c

]



Solutions to the Gross Pitaevskii Equation

• Background Solution

Ψ̂ = eiθ̂
√

n̂

n̂ = n + n̂1

θ̂ = θ + θ̂1

with

n = constant

~v =
h̄

m
~∇θ = −vx̂

v = constant



• Linearized equation in 3+1 dimensions

2θ̂1 = 0

n̂1 = − h̄

g

(
∂T θ̂1 +

h̄

m
~∇θ · ~∇θ̂1

)

• Dimensional reduction to 1+1 dimensions

θ̂1 = θ̂
(2)
1

√
mc

h̄n`2⊥

(2(2) + V )θ̂(2)
1 = 0

If c = c(x), then with dx∗ ≡ dx(c2 − v2)/c

2(2) =
m

n

c

c2 − v2
(−∂2

t + ∂2
x∗)

V =
m

n

[
c′′

2

(
1− v2

c2

)
− c′2

4c
+

5

4

v2

c2
c′2

]



(−∂2
t + ∂2

x∗) +
c2 − v2

c

n

m
V θ̂

(2)
1 = 0

V =
m

n

[
c′′

2

(
1− v2

c2

)
− c′2

4c
+

5

4

v2

c2
c′2

]

• If the term containing V is zero then solu-

tions are

θ̂
(2)
1 ∼ e−iωu and e−iωw

u = t− x∗

w = t + x∗

• These solutions can be used to define the

Unruh state



Unruh State

• Use positive frequency in static spherically

symmetric time, t, for left moving modes

at I−

• Define Kruskal coordinates and use pos-

itive frequency in Kruskal time for right

moving modes on the past horizon

• Then use a Bogolubov transformation to

write in terms of e±iωu on the past horizon



• If left-moving modes are ignored, the two-

point function for θ̂
(2)
1 if x` < 0 and xr > 0

is

〈θ̂(2)
1 (t`, x`)θ̂

(2)
1 (tr, xr)〉 =

1

8π

∫ ∞
0

dω
1

ω sinh
(

πω
κ

)
[
e−iω(tr−t`)χω(x`)χω(xr)

+eiω(tr−t`)χ∗ω(x`)χ
∗
ω(xr)

]

d2χω

dx∗2
+ ω2χω + Veffχω = 0

Veff =
c2 − v2

c

n

m
V (x)

• Potential should be important for modes

with ω <∼ |Veff |max



Density-Density Correlation Function

G2(x`, xr) = 〈n̂(x`)n̂(xr)〉 − 〈n̂(x`)〉〈n̂(xr)〉

=
h̄n

m`2⊥c2(x`)c2(xr)

×D
(√

c(x`)c(xr)〈θ̂(2)
1 (t`, x`)θ̂

(2)
1 (tr, xr)〉

)

D = ∂T`
∂Tr − v∂x`∂Tr − v∂T`

∂xr + v2∂x`∂xr

Recall

dT = dt +
v

c2 − v2
dx



Numerical Computations

• Same parameters as the QM calculation

by Carusotto, Fagnocchi, Recati, Balbinot,

and Fabbri

• Slight differences:

Horizon is at x = 0

Black hole is to left of horizon and conden-

sate moves to the left



Values

• h̄ = ξ = c` = 1

• v = 3/4, cr = 1/2

• σx = 1
2

• Sound speed is

c(x) =

√
c2` +

1

2

(
c2r − c2`

) [
1 +

2

π
tan−1

(
x

σx
− 2 +

√
3

)]

• Surface gravity

κ =

[
1

2

d

dx

(
c(x)− v2

c(x)

)]

x=0

= c′(0) =
1

8πσx(2−
√

3)
≈ 0.30
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The top plot is c HxL and the bottom plot is Veff HxL



Effect of the Potential on the Modes

• Recall the mode equation is

d2χω

dx∗2
+ ω2χω + Veffχω = 0

Veff =
c2 − v2

c

n

m
V (x)

• Expect no significant effect for ω2 À |Veff |max



• This discussion on initial conditions for the

spatial modes is revised from the original

talk. A mistake for the modes which ini-

tially go into the region outside the event

horizon was pointed out by R. Parentani

during the talk and in subsequent discus-

sions. It is corrected here.

– For solutions on the past horizon which

initially go into the region outside the

event horizon

∗ Fix the behavior so they are right mov-

ing in the limit x →∞

χω = eiωu

∗ Fix the amplitude so that the right

moving modes originating from the past

horizon have unit amplitude on that

horizon.



• For the solutions on the past horizon which

are always inside the event horizon, fix the

behavior so that

χω = e−iωu

on the past horizon.

• For ω = 0 nonzero Veff implies that at large

|x|
χ0 → 1 + ax∗



Cutoff

• Recall the 2-point function is

〈θ̂(2)
1 (t1, x1)θ̂

(2)
1 (t2, x2)〉 =

1

8π

∫ ∞
0

dω
1

ω sinh
(

πω
κ

)
[
e−iω(t2−t1)χω(x1)χω(x2)

+eiω(t2−t1)χ∗ω(x1)χ
∗
ω(x2)

]

• In Veff = 0 case Balbinot, et. al. sub-

tracted from the two-point function

κ

8π2

∫ ∞
0

dω

ω2

• Won’t work for Veff 6= 0 so need to impose

a cutoff

1

8π

∫ ∞
ωc

dω
1

ω sinh
(

πω
κ

) ...



• In principle fix by setting λc = 2πc/ωc ∼
2πcr/ωc ∼ the size of the system

• Effective UV cutoff scale is

λuv ∼ 2π2c/κ ∼ 60

Need λc À λuv

• Specific cases tried: λc ≈ 3000, 300



5
10

15
20

-20 -15 -10 -5

-0.08

-0.06

-0.04

-0.02

0.00

Regularization using the subtraction term

5
10

15
20

-20
-15 -10 -5

-0.06

-0.04

-0.02

0.00

Regularization using a cutoff of Ω = 0.002

5
10

15
20

-20
-15

-10
-5

-0.06

-0.04

-0.02

0.00

Regularization using a cutoff of Ω = 0.02



• Lowest curve at the minimum: Regulariza-
tion via the subtraction term

• Next lowest curve: Regularization with a
cutoff ωc = 0.002, λc ∼ 3000

• Upper curve: Regularization with a cutoff
ωc = 0.02, λc ∼ 300



Explanations

• Recall

G2(x, x′) =
h̄n

m`2⊥c2(x)c2(x′)

×D
(√

c(x)c(x′)〈θ̂(2)
1 (t1, x1)θ̂

(2)
1 (t2, x2)〉

)

D = ∂T∂T ′ − v∂x∂T ′ − v∂t∂x′ + v2∂x∂x′

• For V = 0

〈θ̂(2)
1 (t1, x1)θ̂

(2)
1 (t2, x2)〉 =

1

8π

∫ ∞
ωc

dω
cos(ω∆u)

ω sinh
(

πω
κ

)

– For ∆u = 0 high frequency modes con-
tribute more so cutoff is less important

– Infrared effects most important for term
∼ c′(x1)c

′(x2)〈θ̂(2)
1 (t1, x1)θ̂

(2)
1 (t2, x2)〉

For c′(x) ¿ ωc this term is small



Conclusions

• Including the potential V requires imple-

mentation of a cutoff ωc

• For physically motivated values find rela-

tively weak dependence of peak of correla-

tion function on the cutoff

Cutoff dependence is stronger farther from

the peak



Future Work

• Consider the case when both points are in-

side the horizon - QM calculation shows an

interesting effect

• Investigate what happens when the event

horizon forms in the “sudden” approxima-

tion


