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Abstract

In a rotationally symmetric space M around an axis A (whose precise defini-
tion is satisfied by all real space forms), we consider a domain G limited by two
equidistant hypersurfaces orthogonal to A. Let M ⊂M be a revolution hypersur-
face generated by a graph over A, with boundary in ∂G and orthogonal to it. We
study the evolution Mt of M under the volume-preserving mean curvature flow
requiring that the boundary of Mt rests on ∂G and stays orthogonal to it. We
prove that: a) the generating curve of Mt remains a graph; b) the flow exists as
long as Mt does not touch the rotation axis; c) under a suitable hypothesis relat-
ing the enclosed volume and the area of M , the flow is defined for every t ∈ [0,∞[
and a sequence of hypersurfaces Mtn converges to a revolution hypersurface of
constant mean curvature. Some key points are: i) the results are true even for
ambient spaces with positive curvature, ii) the averaged mean curvature does not
need to be positive and iii) for the proof it is necessary to carry out a detailed
study of the boundary conditions.

Mathematics Subject Classification (2010) 53C44

1 Introduction and Main Results

1.1 Background about volume preserving evolution

A family of immersions Xt : M −→ M , t ∈ [0, T [, of an n-dimensional compact
manifoldM into an (n+1)-dimensional Riemannian manifold (M, g) is called a Volume
Preserving Mean Curvature Flow (vpmcf) if it is a solution of the equation

∂Xt

∂t
= (Ht −Ht) Nt, (1.1)
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where Ht is the averaged mean curvature Ht =

∫
M Htd�t

∣Mt∣
of the immersion Xt, d�t

is the canonical volume element of the Riemannian manifold Mt = (M,X∗t g), ∣Mt∣
its n-volume (which we shall call “area”), Nt the unit normal vector field pointing
outward (if each Xt(M) encloses a domain Ωt) and Ht the mean curvature of the
immersion Xt, with the following conventions: the Weingarten map Lt : TM −→ TM
is given by LtZ = ∇ZNt and Ht is its trace. Sometimes we shall also use the notation
Mt = Xt(M).

The presence of the global term H in equation (1.1) has two major consequences:
a) it keeps the enclosed volume constant while the area decreases, and b) makes the
usual techniques in geometric flows (e.g. the application of maximum principles) either
fail or become more subtle. The resultant evolution problem is particularly appealing
-since from a) it is specially well suited for applications to the isoperimetric problem-
and challenging because b) causes numerous extra complications; for instance, a basic
principle for the ordinary mean curvature flow (the comparison principle) fails in
general for (1.1), e.g., an initially embedded curve may develop self-intersections (cf.
[21]). Hence the present knowledge of this flow is considerably poorer than that of
the unconstrained evolution.

The vpmcf has been studied under convexity assumptions for an initial closed
hypersurface either within a Euclidean or Hyperbolic ambient space (cf. [16] and [6],
respectively). There is intuitive evidence, as pointed out by G. Huisken in [16], that
the preservation of convexity may fail in ambient manifolds with positive curvature.
One can also find stability results: if the initial hypersurface is close enough to a
model constant mean curvature hypersurface, then it flows to one model (see [1], [11],
[6] and [19]).

After dealing with convexity assumptions, it is natural to wonder whether there
is another natural geometric condition, invariant under (1.1), which still softens the
problems caused by the global term. A good choice seems to take the initial M to
be a revolution hypersurface generated by the graph of a function over the axis of
revolution of M . This was done for the Euclidean space in [2, 3]. Later on, in [7], we
consideredM within a wider family of ambient spaces (including the Euclidean and the
Hyperbolic ones) for which it still makes sense the notion of revolution hypersurface
around an axis A.

The papers [2, 3, 7] study the evolution under (1.1) of M as above, whose boundary
intersects orthogonally two totally geodesic hypersurfaces �tg orthogonal toA; one also
requires that the evolving hypersurface meets �tg orthogonally at each time. When
M is not Euclidean, it is imposed that some of its sectional curvatures be negative.
It is proved that:

A As long as the evolving hypersurface does not touch A, the flow exists
and the generating curve remains a graph over A.

B Under a hypothesis relating the enclosed volume to the area of M , we
achieve long time existence, and convergence of a certain sequence
Mtn to a revolution hypersurface of constant mean curvature.
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In the Euclidean space, the hypersurfaces �tg are parallel hyperplanes, so they
are at constant distance from each other; however, this is no longer true in the more
general ambient spaces studied in [7]. Then it is natural to address the same problem,
but considering regions limited by hypersurfaces at constant distance.

The main concern of the present paper will be the proof of the statements cor-
responding to A and B when changing �tg by equidistant limiting hypersurfaces. To
understand some interesting issues arising in the new setting (cf. Section 1.3), it is
important to highlight the following facts about the proofs of A and B in [2, 3, 7].

(1) An isometry of the ambient space allows to extend the problem to another bigger
domain with symmetry so that the original boundary points become interior
points and the maximum principle applies. Accordingly, the boundary of the
evolving hypersurface does not cause any extra complication.

(2) We need the non-positivity of some sectional curvatures of the ambient space
for our results to work.

(3) The geometry of the problem implies that the evolving manifolds have positive
averaged mean curvature. This is necessary for proving the preservation of the
generating curve as a graph in [7, Theorem 5]. Sometimes, this is also a usual
restriction asked to get a friendlier flow behavior (cf. [19]).

1.2 Suitable ambient spaces

Here we give precise definitions of the ambient spaces where we consider the evo-
lution, and also of the concept of revolution hypersurface in them.

Definition 1 An (n + 1)-dimensional rotationally symmetric space (RSS)
with respect to a curve A is a Riemannian manifold (M, g) such that there is an
action of SO(n) on (M, g) by isometries for which the set of fixed points is the curve
A. Then A is a geodesic and it is called the rotation axis.

A smoothly embedded hypersurface X : M −→M is said to be a hypersurface of
revolution around A if it is invariant under the action of SO(n) on (M, g).

There are natural ways of constructing an RSS by using warped products and
spherically symmetric spaces. Recall that a warped productℳ×f N of two Rieman-
nian manifolds (ℳ, g) and (N , ℎ) is given by (ℳ×N , g + f2ℎ), with f : ℳ −→ ℝ
a positive smooth map. A spherically symmetric space (S, �) admits a metric of
the form � = dr2 +ℎ(r)2gSn−1 with ℎ(0) = 0 and ℎ′(0) = 1, where r is the distance to
a fixed point O in S and gSn−1 is the metric of the round unit sphere. Here we shall
consider the more standard complete cases:
∘ [12, section 3.2] O is a pole; then ℎ never vanishes, S is diffeomorphic to ℝn and

can be parametrized on [0,∞[×Sn−1;
∘ [5, page XV.13] the first positive zero z of ℎ exists (z < ∞); then ℎ(z) = 0,

ℎ′(z) = −1, S is a differentiable sphere and can be parametrized on [0, z[×Sn−1.
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In short, S can be regarded as the warped product I ×ℎ Sn−1, with I = [0, z] when
z <∞ and I = [0,∞[ otherwise.

In practice, we consider two kinds of warped products to build up an RSS: (M̂, ĝ) :=
S ×f J , with f : S −→ ℝ depending only on r or (M, g) := J ×f S, with f : J −→ ℝ
and J a real interval. The above expression for the metric � yields

(M̂, ĝ) := (I × Sn−1 × J, dr2 + ℎ(r)2gSn−1 + f(r)2dz2) (1.2)

and

(M, g) := (J × I × Sn−1, dz2 + f(z)2dr2 + f(z)2ℎ(r)2gSn−1). (1.3)

In both cases the action of SO(n) is given by

R(z, r, u) = (z, r, Ru), for every R ∈ SO(n).

Obviously A+ := J ×{0}×Sn−1 (with Sn−1 collapsed to a point, because ℎ(0) = 0) is
part of the rotation axis A, which coincides with A+ when z does not exist. If z <∞,
one has A = A+ ∪ A−, with A− := J × {z} × Sn−1 (with Sn−1 collapsed to a point,
because ℎ(z) = 0).

In [7] we used (1.2) as the ambient space. Here we shall see (cf. section 2) that
the hypesurfaces z = constant in (M, g) are orthogonal to the axis A+ and at con-
stant distance from each other. Then (1.3) is specially suited to consider equidistant
hypersurfaces as the boundary of the domain containing the surface to evolve. As we
shall show in Remark 3, space forms are special cases of (M, g), and specific choices
of the functions f and ℎ give also a new situation in the Euclidean space.

We are thus led to consider the following natural setting:

Setting Eq. (M, g) is an RSS with rotation axis A and metric g as in
(1.3) satisfying either

∫∞
0 ℎ(r)n−1dr =∞ or z <∞. M ⊂M is a smoothly

embedded hypersurface of revolution around A generated by the graph of
a function r(z) over A+ and contained in the domain G = {(z, r, u) ∈M :
a ≤ z ≤ b}. It is required that ∂M intersects ∂G orthogonally and that
M encloses a (n+ 1)-volume V inside G.

Then we let M flow by (1.1) with the boundary condition that

Mt intersects G orthogonally at the boundary for every t. (1.4)

1.3 Statement of the main results

Along this paper we shall prove:

Theorem 1 Let Mt be the solution of (1.1) with initial condition as in the setting
Eq and boundary condition (1.4), defined on a maximal interval [0, T [. Then

a) The generating curve of the solution Mt of (1.1) remains a graph over A+ for
every t ∈ [0, T [.
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b) If T <∞, the singularities at t = T are located on the rotation axis A.

c) There is a constant C depending on g, V , a and b such that if ∣M ∣ ≤ C, then
T = ∞ and there is a sequence of times tn → ∞ such that Mtn converges to a
revolution hypersurface of constant mean curvature in M .

This result not only completes the non-Euclidean version of [2, 3], started in [7],
by considering equidistant instead of totally geodesic hypersurfaces as the boundary
of the domain containing the evolution. In fact, it also solves the problem for a
new situation in the Euclidean space: the case where the boundary hypersurfaces are
spheres instead of hyperplanes (see Remark 3 for details).

More surprisingly, this change of the boundary hypersurfaces makes the corre-
sponding results valid for a new and interesting framework: ambient spaces with
positive curvature and evolving hypersurfaces with non-necessarily positive H. To
our knowledge, apart from removing the restrictions (2) and (3) of our statements in
[7], this is the first time that results for the evolution (1.1) are obtained in a fam-
ily of ambient spaces of positive cuvature including those of constant curvature, and
allowing the possibility H < 0.

Such a new scenario is even more rewarding if we realize that we are in a much
harder situation than those in [2, 3, 7]. Indeed, the geometry of the new setting does
not allow to use any symmetry as we pointed out in (1), so each step in the proof has
the further complication of analyzing what happens at the boundary.

The paper is organized as follows. In Section 2 we study the geometry of the
ambient space with the metric (1.3) and give some special interesting examples of the
setting Eq. Section 3 gathers computations of basic quantities for evolving revolution
surfaces, standard results about short time existence and basic evolution formulas for
our flow. In Section 4 we obtain upper bounds for the distance to A+ and for the
absolute value of the averaged mean curvature, results that we shall apply in Section 5
to prove the preservation of the property of being a graph for the generating curve of
the evolving hypersurface. Section 6 is devoted to obtain interior estimates of the heat
operator acting on a special function, which is applied in Section 7 to get more interior
estimates, boundary estimates and uniform bounds for the norm of the Weingarten
map. In Section 8 we obtain the estimates for the higher order derivatives, concluding
with the proof of part b) of Theorem 1. Finally, in Section 9 we prove part c) of
the theorem. Appendix A is devoted to the proof of a computational lemma, and in
Appendix B we give two examples of hypersurfaces in the setting Eq with negative
averaged mean curvature.

2 More about the geometry of the RSS (M, g)

For subsequent arguments, it will be very useful to have explicit expressions for the
Levi-Civita connection ∇ of (M, g). Given a local orthonormal frame {ei}ni=2 for the
unit sphere Sn−1 with the standard metric and the vector fields ∂r, ∂z associated to the
coordinates r and z of M , it follows from the expression of g that {∂z, Er, E2, ..., En}
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(with Er =
∂r
f

, Ei =
ei
fℎ

) is a local orthonormal frame of (M, g). Since M is the

warped product J ×f
(
I ×ℎ Sn−1

)
, using the formulae for the covariant derivatives of

a warped product (cf. [23]), we obtain

Lemma 2 For the Levi-Civita connection ∇ of (M, g), the following formulae hold

∇∂z∂z = 0, ∇∂zEi = 0, ∇∂zEr = 0, ∇Ei∂z =
f ′

f
Ei, (2.1)

∇∂z∂r = ∇∂r∂z =
f ′

f
∂r, ∇∂r∂r = −f ′f∂z, ∇ErEr = −f

′

f
∂z, (2.2)

∇∂rEi = 0, ∇Ei∂r =
ℎ′

ℎ
Ei (2.3)

∇EiEj =
1

(fℎ)2
∇S
eiej −

(
f ′

f
∂z +

ℎ′

f2ℎ
∂r

)
�ij . (2.4)

for 2 ≤ i, j ≤ n, where ∇S denotes the Levi-Civita connection of Sn−1.

Remark 1 It follows from (2.2) that the “plane zr” is a totally geodesic surface
and that ∂r restricted to that surface is a Killing vector field.

Remark 2 From (1.3), (2.1) and (2.2) we deduce that the curves z 7→ (z, r0, u0)
are geodesics and the hypersurfaces z = c (c constant) are at constant distance from

each other, and are umbilical with normal curvature
f ′

f
(c). Hence only the values c

of z for which f ′(c) = 0 make the hypersurface z = c totally geodesic in M . If such a
c exists, the boundary hypersurfaces of G in setting Eq are equidistant from a totally
geodesic one, which corresponds to a special framework in the Hyperbolic Space (see
case C3 in Remark 3).

The hypersurfaces z = constant have the same constant normal curvature k if and

only if
f ′

f
(z) = k, which gives f(z) = d ekz for some constant d. These hypersurfaces

correspond to horospheres when the ambient space is the Hyperbolic Space (case C4 in
Remark 3).

Using now the formulae for the curvature of a warped product and the standard
expression for the curvature tensor of Sn−1 , we obtain

Lemma 3 The components of the curvature tensor R of (M, g) in the basis
{∂z, Er, E2, ..., En} are

Rz��
 = 0 Rz�z� = −f
′′

f
���

Rrijk = 0 Rrirj = − 1

f2

(
ℎ′′

ℎ
+ f ′2

)
�ij

Rijkℓ =
1− (ℎ′2 + ℎ2f ′2)

f2ℎ2
(�ki�ℓj − �ℓi�kj)
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for �, �, 
 ∈ {r, 2, . . . , n} and i, j, k, ℓ ∈ {2, . . . , n}.

Remark 3 From lemmas 2 and 3 we have the following different special cases for
the setting Eq in space forms:

(C1) J = ℝ, f(z) = 1 and ℎ(r) = r. Then I = [0,∞[, (M, g) is the Euclidean space
ℝn+1 and G is the slice between two hyperplanes. A = A+ is the axis xn+1 in
ℝn+1.

(C2) J = [0,∞[, f(z) = z and ℎ(r) = sin r. Then I = [0, �], (M, g) is again the
Euclidean space and G is the spherical crown between two spheres of radii a and
b. A+ is the upper half-axis xn+1 in ℝn+1 and A− is the lower half-axis.

(C3) J = ℝ, f(z) = cosh(
√
∣�∣ z) and ℎ(r) = ∣�∣−

1
2 sinh(

√
∣�∣ r) for � < 0. Then

I = [0,∞[, (M, g) is ℍn+1
� , which here means the Hyperbolic space of sectional

curvature �, and G is the slice between two equidistant hypersurfaces. A = A+.

(C4) J = [0,∞[, f(z) = ∣�∣−
1
2 sinh(

√
∣�∣ z) and ℎ(r) = sin r for � < 0. Then

I = [0, �], (M, g) is ℍn+1
� and G is the spherical crown between two geodesic

spheres of M of radii a and b.

(C5) J = ℝ, f(z) = e
√
∣�∣z and ℎ(r) = r, � < 0. Then I = [0,∞[, (M, g) recovers

again ℍn+1
� and G is the slice between two “parallel” horospheres. A = A+.

(C6) J =

[
− �

2
√
�
,
�

2
√
�

]
, f(z) = cos(

√
� z) and ℎ(r) = �−

1
2 sin(

√
� r) for � > 0.

Then I =
[
0, �/

√
�
]
, (M, g) is the round Sn+1(1/

√
�) and G is the slice between

two parallels. A = A+ ∪ A− is a meridian, with A+ and A− half-meridians.

Let us remark that even in the cases (C2), (C4) and (C6) where A ∕= A+, one has
that A = A+ ∪ A− is a connected real line (a circle in case (C6)); accordingly, even
from an intuitive viewpoint, A has the right to be called the rotation axis.

Remark 4 If in examples (C3) and (C6) we use different constants in the defini-

tion of f and ℎ (for instance, in (C3) we pick f = cosh(
√
� z), ℎ = ∣�∣−

1
2 sinh(

√
∣�∣ r)

with � ∕= �), we still produce constant sectional curvature, but we get spaces with sin-
gularities (or not complete regular spaces). These model ambient spaces appear in the
literature as extremals of some functionals defined on the space of Riemannian metrics
(cf. [17, 13, 10, 20]). Since our theorem refers to slices G which do not contain the
singular points, it also holds in these non-regular ambient spaces.

3 Evolving revolution hypersurfaces within a RSS

Let us begin with a remark on the notation: when we introduce for the first time
a quantity depending on the evolving hypersurface Mt, we write either a subindex t

or ( . , t) to denote its dependence on t, but just later we shall omit this unless what
we mean is not clear from the context.
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3.1 Basic quantities on revolution hypersurfaces

Our flow (1.1) is invariant under isometries of (M, g), and in particular it is in-
variant under the action of SO(n). As a consequence, if the starting hypersurface M
is of revolution, also is the evolving Mt. Hence the unit normal vector Nt to Mt will
be contained in the plane generated by Er, ∂z and can be written as

N = ⟨N,Er⟩Er + ⟨N, ∂z⟩ ∂z. (3.1)

In turn, the unit vector tt tangent to the generating curve will be

t = −⟨N, ∂z⟩Er + ⟨N,Er⟩ ∂z. (3.2)

We shall use the coordinates (zt, rt, ut) for Mt. Without loss of generality, we can
parametrize the generating curve ct of Mt as c : [a, b] −→ M , c(s) = (z(s), r(s), u),
with ċ(s) ∕= 0 for every s. With this parametrization, the vectors t and N admit the
expressions

t =
1

∣ċ∣
(f ṙEr + ż∂z), N =

1

∣ċ∣
(żEr − f ṙ∂z), (3.3)

where ∣ċ∣ :=
√
ż2 + (ṙ f)2 and ż, ṙ denote the derivatives of z and r with respect to s.

Consider the local orthonormal frame t, E2, ..., En on Mt. Then the mean curvature
of Mt is given by

H = k1 + (n− 1)k2, (3.4)

where k1 is the normal curvature of Mt in the direction of t:

k1 = −
〈
∇tt, N

〉
= − 1

∣ċ∣

(
r̈f ż − z̈f ṙ + ṙf ′ż2

∣ċ∣2
+ f ′ṙ

)
, (3.5)

and k2 is the normal curvature of Mt in the direction of Ei, i = 2, ..., n:

k2 =
〈
∇E2N,E2

〉
= ⟨N,Er⟩

〈
∇E2Er, E2

〉
+ ⟨N, ∂z⟩

〈
∇E2∂z, E2

〉
=

ℎ′

ℎf
⟨N,Er⟩+

f ′

f
⟨N, ∂z⟩ =

1

∣ċ∣

(
ℎ′ż

ℎf
− f ′ṙ

)
. (3.6)

3.2 Short time existence and some evolution formulae

Recall the well known fact (cf. [9]) that Xt is a solution of (1.1) if and only if it
is, up to tangential diffeomorphisms, a solution of〈

∂X

∂t
,N

〉
= H −H. (3.7)

If we consider the flow of the graph of (z, u) 7→ (z, r(z), u) under (3.7), the variable
z does not change with time, and formulae of the previous subsection (now taking
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s = z) remain true for any time. Using them, equation (3.7) with this initial condition
becomes

∂r

∂t
=

r̈

∣ċ∣2
+
f ′

f

(
1

∣ċ∣2
+ n

)
ṙ − (n− 1)

ℎ′

ℎf2
+H

∣ċ∣
f
. (3.8)

Here replacing H in (3.8) by any C1,�/2 real valued function  such that  (0) = H(0),
we obtain a parabolic equation which, at least for small t, has a unique solution
satisfying ṙ(a) = ṙ(b) = 0. Now, using a routine fixed point argument (cf. [22]), we
can establish short time existence also for (3.8) with the same boundary conditions.

The following lemma collects some evolution formulae for (1.1) in (M, g).

Lemma 4 If Mt is a solution of (1.1), the following evolution equations hold:

(a)
∇N
∂t

= ∇H

(b)
d

dt
∣Mt∣ = −

∫
M

(H −H)2 d�t,

(c)
∂∣L∣2

∂t
= Δ∣L∣2 − 2∣∇L∣2 + 2∣L∣4 − 2HtrL3 + 2∣L∣2 (T + (n− 1)J )

− 2H (k1T + (n− 1)k2J )− 4(k1 − k2)2(n− 1)Y − 2
〈
�, �̃RN

〉
,

where ∇ denotes both the intrinsic covariant derivative and the gradient on Mt,
Δ denotes its intrinsic Laplacian and � its second fundamental form. Moreover
�̃RN (X,Y ) :=

∑
i

(
∇XRNEiY Ei +∇EiRNYXEi

)
, and T , J and Y are the sectional

curvatures of the planes generated by {t, N}, {Ei, N} and {Ei, t}, respectively.

Proof (a) and (b) are well known and valid for any ambient space. The proof of
(c) follows exactly by the same argument as in [7], substituting the orthonormal local
frame N, t = E1, E2, ..., En into the more general and standard evolution equation of
∣L∣2 (see, for instance, (6.1) in [7]). ⊔⊓

The lemma below contains two equations which are very specific to our setting.
The proof is straightforward but quite long and technical; the interested reader can
find the details in the Appendix A of the present paper.

Lemma 5 Set u := ⟨N, ∂r⟩; then for any functions �,  : ℝ −→ ℝ one has the
following evolution formulae under (1.1):

(a)

(
∂

∂t
−Δ

)
�(r) = �′

(
H
u

f2
− 2

f ′

f3
u ⟨N, ∂z⟩ − (n− 1)

ℎ′

f2ℎ

)
+
�′′

f2

(
u2

f2
− 1

)
.

(b)

(
∂

∂t
−Δ

)
 (z) =  ′

(
H ⟨N, ∂z⟩+

(
u2

f2
− n

)
f ′

f

)
−  ′′u

2

f2
.
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4 Upper bounds for r and ∣H∣
In this section, we shall prove that if M is a hypersurface satisfying the conditions

in the setting Eq, then the coordinate r of M and its averaged mean curvature H (in
absolute value) are uniformly bounded. In fact, we shall obtain these bounds under
more general conditions than the setting Eq. Our ultimate goal is to apply these
results to bound r and H for a maximal solution Mt of (1.1).

Notation 2 From now on, given any function F (z, r, u), we shall use the notation
∥F∥∞ = sup[a,b]×[�,d]×Sn−1 ∣F (z, r, u)∣, where � and d are constants described in each
situation. Frequently F depends only on one or two of the variables z, r, u.

Let us define the function �(R) =

∫ R

0
ℎ(r)n−1dr, and let r2 be the constant

r2 = �−1

(
∣M ∣
!n−1

∥f−n∥∞ +
V

!n−1

∫ b
a f(z)ndz

)
, (4.1)

where !n−1 denotes the volume of Sn−1 with its standard metric. When z =∞ (which
hereafter means that z < ∞ is false), the hypothesis

∫∞
0 ℎ(r)n−1dr = ∞ in setting

Eq ensures that r2 always exists. On the contrary, when z < ∞, r2 may not be well
defined; if this happens, we use the convention min{z, r2} = z.

Observe that the following result does not require the generating curve of M to
be the graph of a function nor that it is contained in G.

Proposition 6 Let (M, g) be as defined in (1.3). If M is an embedded hyper-
surface of revolution in M , with boundary in the hypersurfaces z = a, z = b and
orthogonal to them along the boundary, then r < min{z, r2}.

Proof If there is some point in M with r = z, since M is of revolution, this point
has to be singular, in contradiction with the fact that M is a regular submanifold.
Then, we shall concentrate on proving that r < r2, with r2 < z.

Now we define

r1 = �−1

(
V

!n−1

∫ b
a f(z)ndz

)
. (4.2)

It follows that r2 > r1 > 0 because � is an increasing function,
Let us denote by rm and rM the minimum and maximum value of r on M respec-

tively, and let rz = inf{r(s); z(s) = z}. By d�g we mean the volume element of M
and by Ω the domain enclosed by M and the disks in ∂G limited by ∂M . Using the
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definition of r1 and the expression (1.3), we obtain

!n−1

(∫ b

a
f(z)ndz

)(∫ r1

0
ℎ(r)n−1dr

)
= V =

∫
Ω
d�g

≥ !n−1

∫ b

a

∫ rz

0
f(z)nℎ(r)n−1dr dz

≥ !n−1

(∫ b

a
f(z)ndz

)(∫ rm

0
ℎ(r)n−1dr

)
, (4.3)

Next, recalling (1.3), (3.3) and that d� = �Nd�g, we get the area of M as

∣M ∣ =
∫
M
{N (d�ḡ) = !n−1

∫ b

a

√
ż(s)2 + f(z(s))2ṙ(s)2 f(z(s))n−1ℎ(r(s))n−1ds (4.4)

> !n−1

∫ b

a
∣ṙ(s)∣ f(z(s))nℎ(r(s))n−1ds ≥ !n−1 min

[a,b]
f(z)n

∫ rM

rm

ℎ(r)n−1dr. (4.5)

From the inequality (4.3) we have that r1 ≥ rm. If r1 ≥ rM , we have the desired
bound. If not, it follows from the inequality (4.5) that

∣M ∣ > !n−1

∥f−n∥∞

[∫ r1

rm

+

∫ rM

r1

]
ℎ(r)n−1dr >

!n−1

∥f−n∥∞

∫ rM

r1

ℎ(r)n−1dr

=
!n−1

∥f−n∥∞
(�(rM )− �(r1)).

Hence

�(rM ) <
∣M ∣∥f−n∥∞

!n−1
+ �(r1), (4.6)

from which the proposition follows. ⊔⊓

Corollary 7 If (M, g) and M are in the setting Eq and [0, T [ is the maximal time
interval where the flow (1.1) satisfying the boundary condition (1.4) is defined; then
rt < min{z, r2} for every t ∈ [0, T [, with r2 defined by (4.1) for the initial condition
M0.

Proof Applying Proposition 6 to Mt for each fixed t, we reach (4.6) with ∣Mt∣
instead of ∣M ∣. Then the conclusion follows using the area decreasing property of the
flow (which is a consequence of (b) in Lemma 4) and that the function � is increasing.
⊔⊓

Next, the goal is to bound the modulus of the averaged mean curvature Ht.

Proposition 8 Let (M, g) and M be as in Proposition 6. If the number of points
in the generating curve of M with tangent in the direction of ∂r is finite and z > d ≥
r ≥ � > 0, then there is a constant ℎ2(V, g, n, a, b, �, d) > 0 such that ∣H∣ ≤ ℎ2.
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Remark 5 Observe that when r2 < z the hypothesis d ≥ r means no restriction,
since by Proposition 6 we can take d = r2. In this case ℎ2 depends on ∣M ∣ through r2.

Proof From (3.4), (3.5) and (3.6) we can write

H =
1

∣M ∣

∫
M

−1

∣ċ∣
d

ds
arctan

(
f
ṙ

ż

)
d�+

1

∣M ∣

∫
M

1

∣ċ∣

(
(n− 1)

ℎ′

ℎf
ż − nf ′ṙ

)
d� =: I1 + I2.

(4.7)

Now we integrate by parts, and having into account that the condition in the
boundary gives ṙ(b) = ṙ(a) = 0 and that at the points si, i = 1, . . . , k, where the

tangent vector to the generating curve is vertical (that is
ṙ

ż
= ±∞) one still has that

arctan

(
f(z(si))

ṙ(si)

ż(si)

)
is finite, we get

I1 =
!n−1

∣M ∣

∫ b

a
−(fℎ)n−1 d

ds
arctan

(
f
ṙ

ż

)
ds

=
(n− 1)!n−1

∣M ∣

∫ b

a
arctan

(
f
ṙ

ż

)
(fℎ)n−2 (fℎ′ṙ + ℎf ′ż) ds. (4.8)

Using arctan

(
f
ṙ

ż

)
f
ṙ

ż
≤ �

2∣ż∣
∣f ṙ∣, ∣f ṙ∣ ≤ ∣ċ∣ and ∣ż∣ ≤ ∣ċ∣, we get

∣I1∣ <
(n− 1)!n−1

∣M ∣
�

2

(∫ b

a
∣ċ∣(fℎ)n−2∣ℎ′∣ ds+

∫ b

a
fn−2ℎn−1∣f ′∣∣ċ∣ ds

)
≤ (n− 1)

∣M ∣
�

2

(∫
M

∣ℎ′∣
fℎ

d�+

∫
M

∣f ′∣
f
d�

)
≤ (n− 1)

�

2

(∥∥∥∥ ℎ′ℎf
∥∥∥∥
∞

+

∥∥∥∥f ′f
∥∥∥∥
∞

)
. (4.9)

Next, we bound ∣I2∣ as follows:

∣I2∣ ≤ (n− 1)

∥∥∥∥ ℎ′fℎ
∥∥∥∥
∞

+
n

∣M ∣

∫
M

∣f ′ṙ∣
∣ċ∣

d� < (n− 1)

∥∥∥∥ ℎ′fℎ
∥∥∥∥
∞

+ n

∥∥∥∥f ′f
∥∥∥∥
∞

(4.10)

In conclusion, the existence of the finite upper bound ℎ2 follows from (4.9) and (4.10).
⊔⊓

Corollary 9 Let Mt be the solution of (1.1) with initial condition M in the set-
ting Eq and satisfying the boundary condition (1.4). For every t with 0 < � ≤
rt ≤ d < z and such that the generating curve of Mt is a graph, there is a constant
ℎ2(V, g, n, a, b, �, d) > 0 such that ∣H∣ ≤ ℎ2.

Proof It follows because if the generating curve of M is a graph, it satisfies the
conditions in Proposition 8. ⊔⊓
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5 The generating curve remains a graph

This section is devoted to prove that, for M in the setting Eq, the evolving hy-
persurface remains a revolution hypersurface generated by a smooth graph. As we
pointed out above, Mt is always a revolution hypersurface. Then the aim is to show
that the generating curve remains a graph over the rotation axis for all time.

Recall that the generating curve is a graph if and only if ⟨N,Er⟩ > 0, which is

equivalent to say u := ⟨N, ∂r⟩ > 0, and also equivalent to
1

f(z)
≤ v =

1

u
< ∞.

Therefore, our goal is to obtain an upper bound for v. To achieve this, we first need
the evolution equation for v.

Lemma 10 Under (1.1), v = u−1 evolves as

∂

∂t
v = Δv −

(
∣L∣2 +Ric(N,N) +

(n− 1)

f2

[
ℎ′

ℎ

]′)
v − 2

v
∣∇v∣2.

Proof First we compute Δu. To do so, for a fixed time t and a point p ∈M , we
shall use a local frame F1, F2, ..., Fn of M orthonormal at p and satisfying ∇FiFj(p) =

0. Next, we extend it to a local frame F̃i on a neighborhood of p in M using the flow
of ∂r so that [∂r, F̃i] = 0. It follows from Bartnik’s formula (cf. [4] page 158) that, at
the point p,

Δu = ⟨∂r,∇H⟩ − (∣L∣2 +Ric(N,N))u (5.1)

+
n∑
i=1

[(
∇
F̃i
ℒ∂rg

)
(N, F̃i)−

1

2

(
∇Nℒ∂rg

)
(F̃i, F̃i)

]
+ ⟨ℒ∂rg, �⟩ −

H

2
(ℒ∂rg)(N,N),

where the last term vanishes by Remark 1.
Since (5.1) is evaluated at a point p where {F̃i} is orthonormal and the relevant

expressions are tensorial, we can use henceforth the frame {t, E2, ..., En} (which sat-
isfies LEi = k2Ei) instead of {F̃i}. Doing so, using Remark 1 (which also implies
∇N t ∈ span{∂z, ∂r}) and (2.3), we get

n∑
i=1

(
∇Nℒ∂rg

)
(F̃i, F̃i) =

n∑
i=2

(
∇Nℒ∂rg

)
(Ei, Ei)

=
n∑
i=2

(
2N
〈
∇Ei∂r, Ei

〉
− 2 (ℒ∂rg) (∇NEi, Ei)

)
=

n∑
i=2

2N

〈
ℎ′

ℎ
Ei, Ei

〉
= 2(n− 1)

[
ℎ′

ℎ

]′ 〈
∇r,N

〉
= 2(n− 1)

[
ℎ′

ℎ

]′ u
f2
. (5.2)

Here we have used that

∇r =
1

f
Er =

1

f2
∂r. (5.3)
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Next, exploiting once more Remark 1 (which yields ∇tt,∇tN ∈ span{∂z, ∂r}),
together with (2.4), (2.2) and (2.3), we compute

n∑
i=1

(
∇
F̃i
ℒ∂rg

)
(N, F̃i) + ⟨ℒ∂rg, �⟩

=
n∑
i=2

(
∇Eiℒ∂rg

)
(Ei, N) + (ℒ∂rg)(t, t)�(t, t) +

n∑
i=2

(ℒ∂rg)(Ei, Ei) �(Ei, Ei) =

=
n∑
i=2

(
Ei [ℒ∂rg(Ei, N)]− ℒ∂rg(∇EiEi, N)− ℒ∂rg(Ei,∇EiN) + ℒ∂rg(kiEi, Ei)

)
=

n∑
i=2

Ei

( 〈
∇N∂r, Ei

〉
+
〈
∇Ei∂r, N

〉 )
= 0. (5.4)

Now, plugging (5.2) and (5.4) into (5.1), we conclude

Δu = ⟨∂r,∇H⟩ − (∣L∣2 +Ric(N,N))u− (n− 1)

[
ℎ′

ℎ

]′ u
f2
. (5.5)

On the other hand, using part (a) of Lemma 4, (2.2) and the flow equation (1.1),
we get

∂

∂t
u =

〈
∇∂tN, ∂r

〉
+
〈
N,∇∂t∂r

〉
= ⟨∇H, ∂r⟩+ (H −H)

(
⟨N,Er⟩

〈
N,∇Er∂r

〉
+ ⟨N, ∂z⟩

〈
N,∇∂z∂r

〉)
= ⟨∇H, ∂r⟩ .

The substitution of (5.5) in the above formula yields

∂

∂t
u = Δu+ (∣L∣2 +Ric(N,N))u+ (n− 1)

[
ℎ′

ℎ

]′ u
f2
,

which along with the transformation formulae

dv = − 1

u2
du,

∂v

∂t
= − 1

u2

∂u

∂t
, Δv = − 1

u2
Δu+

2

u3
∣du∣2

lead to the equality in the statement. ⊔⊓

Notice that, unlike the corresponding situation in [7], we cannot use directly the
evolution equation from Lemma 10 in a maximum principle argument to deduce the
sought bound for v. Instead of v, we need to argue with its product by an appropriate
function of r, as can be seen in the following proof.

Theorem 11 Let Mt be the solution of (1.1) defined on a maximal time interval
[0, T [, with initial condition M in the setting Eq and satisfying the boundary condition
(1.4). Then the generating curve of the solution Mt of (1.1) remains a graph over the
revolution axis for every t ∈ [0, T [.
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Proof Let us define Φ = �(r)v for some � : ℝ −→ ℝ. Thanks to part (a) of
Lemma 5 and Lemma 10, we obtain(

∂

∂t
−Δ

)
Φ = v

(
∂

∂t
−Δ

)
�+ �

(
∂

∂t
−Δ

)
v − 2 ⟨∇�,∇v⟩

= �′
(
H

f2
− 2

f ′

f3
⟨N, ∂z⟩ − (n− 1)

ℎ′v

ℎf2

)
+
�′′

f2

(
1

f2v
− v
)

− � v
(
∣L∣2 +Ric(N,N) +

(n− 1)

f2

[
ℎ′

ℎ

]′)
− 2

�

v
∣∇v∣2 − 2 ⟨∇�,∇v⟩ .

Using −v ⟨∇�,∇v⟩ = −⟨∇Φ,∇v⟩ + �∣∇v∣2 and neglecting the term with ∣L∣2, we
reach the inequality(

∂

∂t
−Δ

)
Φ ≤ �′

f2

(
H − 2

f ′

f
⟨N, ∂z⟩

)
+

�′′

f4v
− 2

v
⟨∇Φ,∇v⟩ − Φ

f2
A,

with A = Ric(N,N)f2 + (n− 1)

[
ℎ′

ℎ

]′
+ (n− 1)

ℎ′�′

ℎ�
+
�′′

�
.

On the other hand, given any t0 ∈ [0, T [, we have minM×[0,t0] r(⋅, t) = �(t0) > 0
and maxM×[0,t0] r(⋅, t) = d(t0) < min{z, r2} (thanks to Corollary 7 and because if r
attains the values 0 or z at some point in some time, the solution Mt has a singularity
at this point and time). Now choose t1 as the maximum time in [0, t0] such that the
generating curve of Mt is a graph for every t ∈ [0, t1[.

If we take �(r) := eCr, it holds that �′ = C � and �′′ = C2�. Accordingly,

A ≥ −
∣∣∣∣Ric(N,N)f2 + (n− 1)

[
ℎ′

ℎ

]′∣∣∣∣+ C

[
(n− 1)

ℎ′

ℎ
+ C

]
≥ −ℜ + C

(
C − (n− 1)

∥∥ℎ′/ℎ∥∥
∞

)
,

where ℜ := ∥f2∥∞∥Ric∥∞ + (n− 1)
(
∥ℎ′′/ℎ∥∞ + ∥ℎ′2/ℎ2∥∞

)
, (5.6)

Next, we can define the constant C := ℜ+ (n− 1) ∥ℎ′/ℎ∥
∞

+ 1 <∞, which (since
C ≥ 1) yields

A ≥ −ℜ + C(ℜ + 1) ≥ C > 0.

Then, applying Corollary 9 on [0, t1[, we reach(
∂

∂t
−Δ

)
Φ ≤ h− 2

v
⟨∇Φ,∇v⟩ − C̃ Φ, (5.7)

with h := h(V, g, n, a, b, �(t0), d(t0)) = CeCr2∥f−2∥∞
(
ℎ2 + 2 ∥f ′/f∥

∞
+ C∥f−1∥∞

)
and C̃ = C/∥f2∥∞. From here, by application of the maximum principle, we conclude

v ≤ eCrv = Φ ≤ max{eCd(t0) max
M0

v, h/C̃} on [0, t1[. (5.8)
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Since the solution Mt is defined, and is continuous in t, on [0, T [⊃ [0, t0[⊃ [0, t1[ the
bound (5.8) is true on the whole interval [0, t1]. Then by continuity of v, v will be
still bounded on [0, t1 + "[, in contradiction with the definition of t1 if t1 < t0. In
conclusion, t1 = t0 and the generating curve of Mt is a graph along all [0, t0]. Since t0
is arbitrary, this is true for [0, T [. ⊔⊓

6 Preliminary interior estimates

Here we begin our way towards getting global estimates of ∣L∣. Following [7],
we start by obtaining an interior estimate for the heat operator acting on a certain
function of the form '(v)∣L∣2.

Lemma 12 Let Mt be a solution of (1.1) defined on [0, T [ with initial condition
M in the setting Eq, satisfying the boundary condition (1.4), and such that there are
constants d and � satisfying z > d ≥ rt ≥ � > 0 on [0, T [. Let g = '(v)∣L∣2, where '
is defined by

'(v) :=
v2

1− kv2
with k :=

1

2 max v2
. (6.1)

Then we can find two positive constants K1, K2 so that(
∂

∂t
−Δ

)
g ≤ −kg2 +K1g +K2

√
g− 1

'
⟨∇g,∇'⟩+

v2 − '
2'3

∣∇'∣2g.

Notice that k is a well defined constant depending on V, g, n, a, b, � and d, as follows
from (5.8).

Proof The evolution of g is given by those of ' and ∣L∣2 according to the formula:(
∂

∂t
−Δ

)
g = ∣L∣2

(
∂

∂t
−Δ

)
'+ '

(
∂

∂t
−Δ

)
∣L∣2 − 2

〈
∇',∇∣L∣2

〉
≤ '′∣L∣2

(
∂

∂t
−Δ

)
v − '′′∣L∣2∣∇v∣2 + '

(
∂

∂t
−Δ

)
∣L∣2

− 1

'
⟨∇g,∇'⟩+ 2'∣∇L∣2 +

3

2'
∣L∣2∣∇'∣2,

where, exactly as in [7], we have used an inequality from [8] (combined with Kato’s
inequality ∣∇∣L∣∣ ≤ ∣∇L∣) to bound the last term in the first line.

By our hypotheses, we are working within a bounded domain of the ambient
manifold M ; in particular, all the curvatures of M appearing in the evolution formula
(c) of Lemma 4 are bounded. Hence, arguing as in (6.12) of [7], we can find two
positive constants C1, C2 so that(

∂

∂t
−Δ

)
g ≤ S− ∣L∣2

(
2

v'′
+
'′′

'′2
− 3

2'

)
∣∇'∣2 − 2'HtrL3

+ C1g + C2
√
'g− 1

'
⟨∇g,∇'⟩ , (6.2)
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with

S = −∣L∣2'′
(
∣L∣2 +Ric(N,N) +

(n− 1)

f2

[
ℎ′

ℎ

]′)
v + 2'∣L∣4,

where we have also used Lemma 10 and ∣∇v∣ = ∣∇'∣/'′ to get, after rearranging and
canceling terms, the inequality above.

Next, let us bound and/or rearrange the different terms in (6.2). First, from the
definition of ' in (6.1), it is easy to check

'′ =
2v

(1− kv2)2
= 2

'2

v3
and

(
2

v'′
+
'′′

'′2
− 3

2'

)
=
'− v2

2'2
. (6.3)

Now we are in position to bound S as follows

S =

(
2

'
− '′v

'2

)
g2 −

(
Ric(N,N) +

(n− 1)

f2

[
ℎ′

ℎ

]′) '′

'
vg ≤

(
2

'
− '′v

'2

)
g2 +K0g.

(6.4)

Here 0 < K0 := ℜ ∥'′v/'∥
∞
∥f−2∥∞ = 2ℜ

∥∥(1− kv)−1
∥∥
∞
∥f−2∥∞ ≤ ℜ∥f−2∥∞

where ℜ is the constant coming from (5.6), and the last inequality is true by the
choice of k.

Using ∣trL3∣ ≤ ∣L∣3 and Young’s inequality with " = k' for k as in (6.1):

−2'HtrL3 ≤ 2'∣H∣∣L∣3 = 2∣H∣∣L∣g ≤
(
k'∣L∣2 +

1

4k'
4H

2
)
g = kg2 +

H
2

k'
g. (6.5)

Plugging the expressions from (6.3) to (6.5) into (6.2) and using Corollary 9, we
reach the inequality in the statement for two positive constants K1 and K2. ⊔⊓

In [7], we managed to exploit a special symmetry of the problem in order to apply
the maximum principle directly to the inequality corresponding to that from Lemma
12 without having care of the boundary. However, our present setting lacks that
symmetry and, therefore, we need to have into account the effect of the boundary. To
do so, we consider another function  (z)g, which gives us more freedom to get interior
and boundary estimates of the heat operator acting on such a new function.

7 Global curvature estimates

Before analyzing its behavior at the boundary (see Lemma 14), we have to deduce
interior estimates for  (z)g (cf. Lemma 13 below). A combination of the interior and
boundary estimates for such an adhoc function will allow us to achieve global bounds
for the curvature in Proposition 15, which will close this section.

Lemma 13 Under the same hypotheses and notation as in Lemma 12, let us define
g̃ =  (z) g, where  is any real function satisfying that
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 ,  ′ and  ′′ are bounded and  > c for some constant c > 0.

Then there are positive constants C1, C2, C3 such that(
∂

∂t
−Δ

)
g̃ ≤ −⟨2∇ ln +∇ ln',∇g̃⟩ − C1g̃

2 + C2g̃ + C3

√
g̃. (7.1)

Proof As  is positive, using part (b) of Lemma 5 and Lemma 12, we have(
∂

∂t
−Δ

)
g̃ ≤ g̃

 ′

 

[
H ⟨N, ∂z⟩+

(
u2

f2
− n

)
f ′

f

]
−  ′′

 

u2

f2
g̃− 2 ⟨∇ ,∇g⟩

+  

(
−kg2 +K1g +K2

√
g− 1

'
⟨∇g,∇'⟩+

v2 − '
2'3

∣∇'∣2g
)
.

Now for the gradient terms we compute

−2 ⟨∇ ,∇g⟩ =
2

 
⟨∇ ,−∇g̃ + g∇ ⟩ = −2 ⟨∇ ln ,∇g̃⟩+ 2

∣∇ ∣2

 2
g̃

− 
'
⟨∇g,∇'⟩ =

1

'
⟨∇', g∇ −∇g̃⟩ = ⟨∇ ln',∇ ln ⟩ g̃− ⟨∇ ln',∇g̃⟩ .

Therefore(
∂

∂t
−Δ

)
g̃ ≤

{
K1 +

 ′

 

[
H ⟨N, ∂z⟩+

f ′

f

(
1

(fv)2
− n

)]
−  ′′

 (fv)2
+ 2
∣∇ ∣2

 2

}
g̃

− k

 
g̃2 +K2

√
 
√
g̃− ⟨∇g̃, 2∇ ln +∇ ln'⟩+D g̃

with D = ⟨∇ ln ,∇ ln'⟩+
v2 − '

2'

∣∇'∣2

'2
.

By explicit computation of ∇' = '′∇v, it is easy to check that D is of order ∣L∣.
To compensate this, let us apply Young’s inequality with " = k/

(
2∥f2∥∞

)
:

D ≤ ∥f
2∥∞
2k

∣∇ ∣2

 2
+

(
k

∥f2∥∞
+
v2 − '
'

)
∣∇'∣2

2'2
≤ ∥f

2∥∞
2k

 ′2

 2

because ∇ =  ′(z)∇z, (6.1) implies
k

∥f2∥∞
+
v2

'
− 1 = k

(
1

∥f2∥∞
− v2

)
≤ 0, and

∣∇z∣ = ∣t(z)∣ = ∣ ⟨t, ∂z⟩ ∣ ≤ 1.
Plugging the above inequalities into the definition of g̃, we reach(
∂

∂t
−Δ

)
g̃ ≤

[
K1 +

∣ ′∣
 

(
∣H∣+ ∣f

′∣
f

(n− 1)

)
+
∣ ′′∣
 

+
 ′2

 2

(
2 +
∥f2∥∞

2k

)]
g̃

− k

 
g̃2 +K2

√
 
√
g̃− ⟨∇g̃, 2∇ ln +∇ ln'⟩ .

Applying Corollary 9 and using our hypotheses about  and its derivatives, we deduce
that all the coefficients of the different powers of g̃ in the above formula are bounded,
which gives the positive constants in the statement. ⊔⊓
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Lemma 14 Set  (z) := [f(z)]−2m for any m > 0. Under the same hypotheses
that in the preceding section, at the boundary ∂Mt, for t ∈]0, T [, one has

∂z g̃ = 2 '
f ′

f
B,

where

B := 3(n− 1)k1k2 − (m+ n− 2 + 'f2)k2
1 − (n− 1)(m+ 1 + 'f2)k2

2 − k1H.

Proof First, let us compute

∂z∣L∣2 = 2k1∂zk1 + 2(n− 1)k2∂zk2 = 2k1∂zH + 2(n− 1)(k2 − k1)∂zk2. (7.2)

To compute ∂zH, recall that on the boundary we have t = ∂z and N = Er. Hence,
along the boundary, for t > 0,

∇∂tEr = ∇∂tN = ∇H = t(H)t = ∂zH∂z,

where we have used formula (a) from Lemma 4. Using the flow equation, we also get

∇∂tEr = (H −H)∇NEr = (H −H)∇ErEr = (H −H)
f ′

f
∂z,

which yields

∂zH
∣∣
∂M

= (H −H)
f ′

f
. (7.3)

Next, taking into account (2.1), (3.6), ṙ∣∂M = 0 and that ∇∂zN ∣∂M = k1∂z,

∂zk2

∣∣
∂M

= ∂z

(
ℎ′

ℎf
⟨N,Er⟩+

f ′

f
⟨N, ∂z⟩

)∣∣∣
∂M

= −ℎ
′f ′

ℎf2
+
ℎ′

ℎf

〈
∇∂zN,Er

〉 ∣∣
∂M

+
f ′

f

〈
∇∂zN, ∂z

〉 ∣∣∣
∂M

=
f ′

f
(k1 − k2). (7.4)

Now, substituting (7.3) and (7.4) in (7.2), we get

∂z∣L∣2 = 2k1(H −H)
f ′

f
− 2(n− 1)

f ′

f
(k2 − k1)2

= 2
f ′

f

(
k2

1 + (n− 1)k1k2 − k1H − (n− 1)k2
2 + 2(n− 1)k1k2 − (n− 1)k2

1

)
= 2

f ′

f
(−k1H − (n− 2)k2

1 + 3(n− 1)k1k2 − (n− 1)k2
2). (7.5)

On the other hand, applying again (2.1) and ∇∂zN ∣∂M = k1∂z, we obtain

∂zv = ∂z

(
⟨N, fEr⟩−1

)
= −v2∂z (⟨N, fEr⟩) = − 1

f2
⟨N,Er⟩ ∂zf = − f

′

f2
. (7.6)
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Then, from the definition of g̃ and substituting the explicit expression of  ,

∂z g̃ = ∂z
(
 (z)'(v)∣L∣2

)
=  ′g +  '′∣L∣2∂zv +  '∂z∣L∣2

= −2m
f ′

f
 g− 2 

'2

v3

f ′

f2
∣L∣2 +  '∂z∣L∣2

= 2' 
f ′

f

(
− (m+ 'f2)∣L∣2 − k1H − (n− 2)k2

1 + 3(n− 1)k1k2 − (n− 1)k2
2

)
,

where for the equality of the second line we have applied (6.3) and (7.6), and for
the last equality we have used (7.5). Finally, substituting ∣L∣2 = k2

1 + (n − 1)k2
2 and

rearranging terms, we reach the formula in the statement. ⊔⊓

Proposition 15 Let Mt be the solution of (1.1) with initial condition M in the
setting Eq and satisfying the boundary condition (1.4). If there are constants d and � so
that z > d ≥ rt ≥ � > 0, then we can find a positive constant C0 = C0(V, g, n, a, b, �, d)
such that ∣L∣ ≤ C0 on Mt.

Proof Observe that, when g̃ attains its maximum in the interior, we can use, in
the standard way, a maximum principle argument for the inequality in Lemma 13 (like
in [7]) to conclude that g̃ is bounded. Since  and ' are also bounded, we achieve the
desired upper bound for ∣L∣.

It remains consider the case of g̃ attaining the maximum at the boundary, so that
∂z g̃∣∂M ≥ 0. Notice that ṙ∣∂M = 0 which, by substitution in (3.6), gives

∣k2∣ =
∣∣∣∣ ℎ′(r)

ℎ(r)f(z)

∣∣∣∣ ≤ 1

min{f(a), f(b)}

∥∥∥∥ℎ′ℎ
∥∥∥∥
∞

=: k2.

Let us assume ∣k1∣ > ℓ := max{1, k2}. This allows us to estimate the quantity in
Lemma 14 as

B < 3(n− 1)k1k2 − k1H −mk2
1 ≤ 3(n− 1)∣k1∣ℓ+ ∣k1H∣ −mk2

1

< ∣k1∣ (3(n− 1)ℓ+ ℎ2 −mℓ),

where ℎ2 is the constant coming from Corollary 9. If we choose m ≥ ℎ2 + 3(n − 1),
we obtain from Lemma 14 that ∂z g̃∣∂M < 0, which contradicts the above assertion of
∂z g̃∣∂M ≥ 0. In conclusion, ∣k1∣ ≤ ℓ, then g̃ = (k2

1 + (n− 1)k2
2) ' has an upper bound

on ∂M and thus ∣L∣ is bounded. ⊔⊓

Once we have uniform upper bounds for ∣L∣, in order to get long time existence
when the evolving manifold keeps away from the rotation axis, we also need that all
the derivatives ∣∇kL∣ be bounded, which again will require a careful analysis of what
happens on the boundary. We address this issue in the next section.
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8 The first singularities of the motion are produced at
the axis of revolution

Here we prove the following result, which assures long time existence unless the
evolving hypersurface reaches the rotation axis.

Theorem 16 Let Mt be the maximal solution of (1.1), defined on [0, T [, with
initial condition M in the setting Eq and satisfying (1.4). Then either

T =∞ or

⎧⎨⎩
inf
[0,T [

min
Mt

r(⋅, t) = 0

or
z <∞ and sup

[0,T [
max
Mt

r(⋅, t) = z
.

Proof First notice that, if the flow is defined on [0, T [, minMt rt(x) > 0 and
maxMt rt(x) < z for each t ∈ [0, T [. Let us assume � = inf [0,T [ minMt r(⋅, t) > 0 and
d = sup[0,T [ maxMt r(⋅, t) < z ; then the goal is to show that the solution of the flow
can be prolonged after T , which is a contradiction.

Since rt ∈ [�, d], our evolving hypersurface remains within a bounded subset of
the ambient manifold M ; accordingly, we have bounds for the curvature R and its
covariant derivatives. Hence, following the same procedure of [14, 15], we can find
a constant D1 = D1(n, g, C0, ℎ2) (where ℎ2 and C0 are the constants coming from
Corollary 9 and Proposition 15, respectively) such that

∂

∂t
∣∇L∣2 ≤ Δ∣∇L∣2 +D1(∣∇L∣2 + 1). (8.1)

We define
Ψ := ∣∇L∣2 + �∣L∣2, (8.2)

for some positive constant � to be specified later. For the time derivative of Ψ, (8.1)
yields

∂Ψ

∂t
≤ Δ∣∇L∣2 +D1

(
∣∇L∣2 + 1

)
+ �

∂

∂t
∣L∣2 ≤ ΔΨ + (D1 − 2�)∣∇L∣2 +D1 + �D2,

where D2 comes from bounding the curvature terms, ∣H∣ and the different powers of
∣L∣ in Lemma 4 (c).

If we choose � ≥ D1 and D3 := D1+�D2, having into account (8.2) and Proposition
15, we deduce

∂Ψ

∂t
≤ ΔΨ− �∣∇L∣2 +D3 ≤ ΔΨ− �Ψ + �2C2

0 +D3.

From here, a maximum principle argument ensures that Ψ (and then ∣∇L∣) is bounded
if it is bounded at the boundary. To ensure that the latter indeed happens, we consider
the equivalent flow equation (3.8), take derivatives with respect to z and, after that,
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evaluate on ∂M having in mind that ṙ = 0, ∂ṙ∂t = 0, ∣ċ∣ = 1 and ∂z∣ċ∣ = 2ṙf(r̈f+ ṙf ′) =
0 on the boundary. Doing so, we obtain

0 =
...
r + (n+ 1)

f ′

f
r̈ + 2(n− 1)

ℎ′

ℎ

f ′

f3
−H f ′

f2
. (8.3)

Again by Proposition 15, ∣L∣∣∂M is bounded which, combined with (3.5), gives a bound
for r̈∣∂M . Thus (8.3) implies that

...
r ∣∂M is bounded; this, again by (3.5), ensures that

∣∇L∣ is bounded on the boundary, as we needed to show. Then ∣∇L∣ is bounded on
the whole M , and so is

...
r .

Next, we can substitute the solution r(z, t) in (3.8) and see that it is a solution of
the linear PDE

∂r

∂t
= a(z, t)r̈ + b(z, t), (8.4)

where

a =
1

1 + (ṙf)2
b =

f ′

f

(
1

1 + (ṙf)2
+ n

)
− (n− 1)

ℎ′

ℎf2
+H

√
1 + (ṙf)2

f
. (8.5)

Until now we have proved that r, H, ṙ, r̈ and
...
r are bounded. Then from (3.8) it

follows that also ∂ṙ
∂t is bounded. Taking derivatives in (3.8) with respect to z we obtain

∂ṙ
∂t as a function depending on z, r, ṙ, r̈,

...
r and H, hence it is also bounded. Moreover,

it follows from (4.7), (4.8) and (4.4) that ∂H
∂t is bounded if r, ṙ, ∂r∂t and ∂ṙ

∂t are bounded
(which we know is true) and ∣Mt∣ is bounded from below by a positive constant.
But this last condition follows from ∣Mt∣ ≥ AV , the last being the n-volume of the
hypersurface of minimum area enclosing a volume V and with boundary orthogonal
to and included between the hypersurfaces z = a, z = b. Summing up, we conclude
that ∂b

∂t and ∂b
∂z are bounded.

Following the notation in [18] for the Hölder norms, the bounds mentioned before
imply, by Theorem 5.4 page 322 in [18], that ∣r∣(3) is bounded. Repeating the argument
(doing the standard bootstrapping argument), we have that, for every m, ∣r∣(m) is
bounded by some constant depending on m, then also ∣∇mL∣ is bounded, and arguing
as in [14] we can continue the flow after T .

⊔⊓

9 Initial conditions giving long time existence and con-
vergence.

Theorem 17 If, for an initial hypersurface M in the setting Eq, we have the
following upper bound for the area ∣M ∣:

∣M ∣ ≤ min {V, vol(G)− V }
∥f−n∥∞

∫ b
a f(z)ndz

, (9.1)
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then the solution of (1.1) satisfying (1.4) is defined for all t > 0, and there is a
subsequence of times tn for which the corresponding solution converges to a revolution
hypersurface of constant mean curvature in M .

In our setting Eq, when z = ∞, vol(G) = ∞ and the hypothesis reduces to
a uniform upper bound on the ratio ∣M ∣/V . When z < ∞, vol(G) is finite, and
vol(G) − V has the same right than V to be called the volume enclosed by M , then
the necessity to modify the hypothesis when vol(G) is finite is quite natural.

Proof We can assume that our initial M has non-constant H (since, otherwise, it
is a steady soliton of the flow (1.1) and the statement follows trivially). Then Lemma
4 (b) implies

∣Mt∣ < ∣M ∣ and r2(t) < r2 for any t > 0, (9.2)

where r2(t) is the upper bound of r at time t obtained by direct application of (4.1)
using ∣Mt∣ instead of ∣M ∣.

Observe that, when Mt is a graph (and we take z = s), the first inequality in (4.3)
becomes an equality which yields rm(t) ≤ r1 ≤ rM (t). Given t0 > 0, we set

" = ∣M ∣ − ∣Mt0 ∣ > 0 and � = inf
[t0,T [
{rm(t)}.

Now we use the continuity of the function F (ℓ) = !n−1 min[a,b] f(z)n
∫ r1
ℓ ℎ(r)n−1dr

at ℓ = � to choose a t" ≥ t0 so that rm(t") is close enough to � in order to imply
F (rm(t")) > F (�)− "

2 . Plugging the latter and r1 ≤ rM (t) into (4.5) leads to

∣M ∣ = ∣Mt0 ∣+ " ≥ ∣Mt" ∣+ " > !n−1 min
[a,b]

f(z)n
∫ r1

�
ℎ(r)n−1dr +

"

2

= !n−1 ∥f−n∥−1
∞

(
�(r1)−

∫ �

0
ℎ(r)n−1dr

)
+
"

2

=
V

∥f−n∥∞
∫ b
a f(z)ndz

− !n−1

∥f−n∥∞

∫ �

0
ℎ(r)n−1dr +

"

2
,

where we have applied the definition of r1 in (4.2). Note that the above inequality is
compatible with the hypothesis (9.1) only if � > 0. Hence

rt ≥ � > 0 for every t ∈ [t0, T [. (9.3)

On the other hand, the quantity vol(G) can be written (cf. (4.3)) as

vol(G) = !n−1

(∫ b

a
f(z)ndz

)(∫ z

0
ℎ(r)n−1dr

)
,

which gives

�(z) =
1

!n−1

vol(G)∫ b
a f(z)ndz

.
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Next, (4.1) together with the hypothesis (9.1) imply

�(r2) =
1

!n−1

(
∣M ∣∥f−n∥∞ +

V∫ b
a f(z)ndz

)
≤ 1

!n−1

(
vol(G)− V∫ b
a f(z)ndz

+
V∫ b

a f(z)ndz

)
= �(z).

Accordingly, r2 ≤ z and, thanks to (9.2), we have � = r2 − r2(t0) > 0. Using
Proposition 6 for any fixed time t ≥ t0 and the definition of r2(t) combined with
the decreasing of the area under the flow, we reach

rt < r2(t) ≤ r2(t0) = r2 − � =: d ≤ z− � < z. (9.4)

Then, from (9.3) and (9.4) we conclude, because of Theorem 16, that the solution
of (1.1) is defined on [0,∞[; hence r is bounded uniformly from above and below on
[0,∞[. After the results of section 5, it is clear that ṙ remains bounded all the time. In
addition, the proof of Theorem 16 shows that ∣∇jL∣2 is uniformly bounded for every
j ≥ 0. Once we have all these bounds, it follows from (3.5) and (3.6) (taking z = s)
that all the derivatives of r are bounded on [0,∞[.

We are now in position to apply Arzelà-Ascoli Theorem to ensure the existence
of a sequence of maps rti satisfying (3.8) which C∞-converges to a smooth map
r∞ : [a, b] −→ ℝ+ also solving (3.8). A standard argument like in [6] proves that
the limiting hypersurface M∞ = (z, r∞(z), u) has constant mean curvature. ⊔⊓

Here we give a final remark for those readers familiar with [7], who may wonder
why the above proof is not as short as that of the corresponding result (namely,
Theorem 12) in [7]. The reason is that there is a “typo” in the hypothesis on the
inequality satisfied by ∣M ∣: where it says “≤”, it should say “< ”. To attain the
same result using the weaker assumption “≤” as in the theorem above, one needs to
obtain finer estimates like in the previous proof. On the other hand, the proof of the
convergence of the sequence in [7, Theorem 12] has an issue, in fact, what is actually
proved there is the existence of a convergent subsequence.

A Appendix - Proof of Lemma 5

First, we shall obtain the evolution of r.

∂r

∂t
= (H −H)

〈
∇r,N

〉
=

(5.3)
(H −H)

u

f2
. (A.1)

Since ∇tt = 0 and Ei(r) = 0 (as can be easily deduced from Lemma 2), we have

Δr = tt(r)−
n∑
i=2

∇EiEi(r). (A.2)
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We compute, using (5.3) and (3.2),

t(r) =
〈
∇r, t

〉
=

1

f
⟨Er, t⟩ = − 1

f
⟨N, ∂z⟩ (A.3)

and, using (3.2) and Lemma 2 repeatedly,

tt(r) =
f ′

f2
⟨t, ∂z⟩ ⟨N, ∂z⟩ −

1

f

〈
∇tN, ∂z

〉
− 1

f

〈
N,∇t∂z

〉
=
f ′

f2
⟨N,Er⟩ ⟨N, ∂z⟩ −

1

f
⟨t, ∂z⟩ k1 −

1

f
⟨t, Er⟩

〈
N,∇Er∂z

〉
=
f ′

f3
u ⟨N, ∂z⟩ −

1

f
⟨N,Er⟩ k1 +

1

f
⟨N, ∂z⟩

〈
N,

f ′

f
Er

〉
= 2

f ′

f3
u ⟨N, ∂z⟩ −

u

f2
k1. (A.4)

On the other hand, using (2.4), (3.2) and (3.6),

(∇EiEi)(r) =
〈
∇EiEi, t

〉
t(r) =

(
1

f

ℎ′

ℎ
⟨t, Er⟩+

f ′

f
⟨t, ∂z⟩

)
1

f
⟨N, ∂z⟩

= − ℎ′

f2ℎ
⟨N, ∂z⟩2 +

f ′

f2
⟨N,Er⟩ ⟨N, ∂z⟩ =

1

f2

(
u k2 −

ℎ′

ℎ

)
. (A.5)

Now, substituting (A.4) and (A.5) in (A.2), we have

Δr = 2
f ′

f3
u ⟨N, ∂z⟩+ (n− 1)

ℎ′

f2ℎ
− 1

f2
Hu. (A.6)

Therefore, for any function � : ℝ→ ℝ, we have(
∂

∂t
−Δ

)
�(r) = �′

(
∂

∂t
−Δ

)
r − �′′∣∇r∣2

= �′
(
H
u

f2
− 2

f ′

f3
u ⟨N, ∂z⟩ − (n− 1)

ℎ′

f2ℎ

)
+
�′′

f2

(
u2

f2
− 1

)
, (A.7)

where the second equality follows plugging (A.6) into (A.1), and we have also used

that ∣∇r∣2 = ∣t(r)∣2 =
1

f2
⟨N, ∂z⟩2 .

In order to prove part (b) of Lemma 5, we first need the evolution equation of the
axial coordinate z.

∂z

∂t
= (H −H)

〈
∇z,N

〉
= (H −H) ⟨N, ∂z⟩ . (A.8)

From Lemma 2 it is easy to compute that

Δz = tt(z) +

n∑
i=2

∇EiEi(z),
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with t(tz) = t (⟨t, ∂z⟩) =
〈
∇tt, ∂z

〉
+
〈
t,∇t∂z

〉
= −k1 ⟨N, ∂z⟩+ ⟨t, Er⟩

〈
t,∇Er∂z

〉
= −k1 ⟨N, ∂z⟩+

f ′

f
⟨N, ∂z⟩2 ,

and, using again (2.4), (3.2) and (3.6),

(∇EiEi)(z) =
〈
∇EiEi, t

〉
t(z) = −

(
f ′

f
⟨t, ∂z⟩2 +

ℎ′

f2ℎ
⟨t, ∂r⟩ ⟨t, ∂z⟩

)
= −f

′

f
⟨N,Er⟩2 +

ℎ′

ℎf
⟨N,Er⟩ ⟨N, ∂z⟩

= −f
′

f
⟨N,Er⟩2 + ⟨N, ∂z⟩ k2 − ⟨N, ∂z⟩2

f ′

f
= −f

′

f
+ ⟨N, ∂z⟩ k2.

The above computations lead to

Δz = −H ⟨N, ∂z⟩+
f ′

f

(
n− u2

f2

)
(A.9)

Finally, for any  : ℝ→ ℝ, we get from (A.8) and (A.9)(
∂

∂t
−Δ

)
 (z) =  ′

(
∂

∂t
−Δ

)
z −  ′′∣∇z∣2

=  

(
H ⟨N, ∂z⟩+

f ′

f

(
u2

f2
− n

))
−  ′′u

2

f2
.

B Appendix - A hypersurface in the setting Eq with neg-
ative averaged mean curvature.

For the cases with z <∞ there is a simple argument showing that, in the setting
Eq, there must be revolution hypersurfaces inside G with boundary orthogonal to ∂G
and H < 0. In fact, let us suppose that H > 0. The metric of M can also be written,
taking (z, u) instead of (0, u) as the center of the spherically symmetric (S, �), as
dz2 + f(z)2dr̄2 + f(z)2ℎ(z− r̄)2gSn−1 . With the metric written this way, the old axis
A− will be called Ã+ now, and M will be given as generated by the graph over Ã+ of
the function r̃(z) = r(z−z). Now the domain bounded by M will be G−Ω, and, as we
consider positive the orientation given by the normal pointing outward, the positive
orientation is now reversed with respect to the original one, which gives H < 0.

Anyway, we give here an explicit case with H < 0 for z < ∞ and another for
z =∞.

First, we consider the case (C2) of a revolution hypersurface inside a spherical
crown in ℝ3. As axis of symmetry we choose the y axis, and as generating curve we
take a part of the cycloid

(x(s), y(s)) = (2s− sin(s/2) + 2�, 2− cos(s/2)) ,
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which, written with the coordinates (z, r) used to describe (M, g) (see the picture on
the left), is

(z(s), r(s)) =
(√

x(s)2 + y(s)2, arctan (x(s)/y(s))
)
.

More precisely, we pick the portion (z(s), r(s)) for s ∈ [s1, s2], where s1 = 4.33453
and s2 = 12.7571 are two consecutive values of s satisfying ṙ(si) = 0 (which guar-
antees that the revolution hypersurface generated by this curve is orthogonal to the
boundary of the spherical crown G between the spheres z = z(s1) and z = z(s2)).

If we now apply the formula (4.7) for H , we obtain H = −!n−1

∣M ∣
1.55553 < 0.

Although explicit, the fact that z < ∞ and the remark done at the beginning of
this appendix make this example not too interesting. However we shall take the same
expressions of z(s), r(s), s1 and s2 to obtain an example in the case (C5) (which
obviously corresponds to z = ∞) of a revolution hypersurface between two parallel
horospheres in the hyperbolic space of dimension 3. Using again formula (4.7) we

obtain H = −!n−1

∣M ∣
9.72488 1024 < 0.
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