

GEOMETRÍA DE PAPEL

Juan M. Ribera Puchades y Lucia Rotger García ESTALMAT

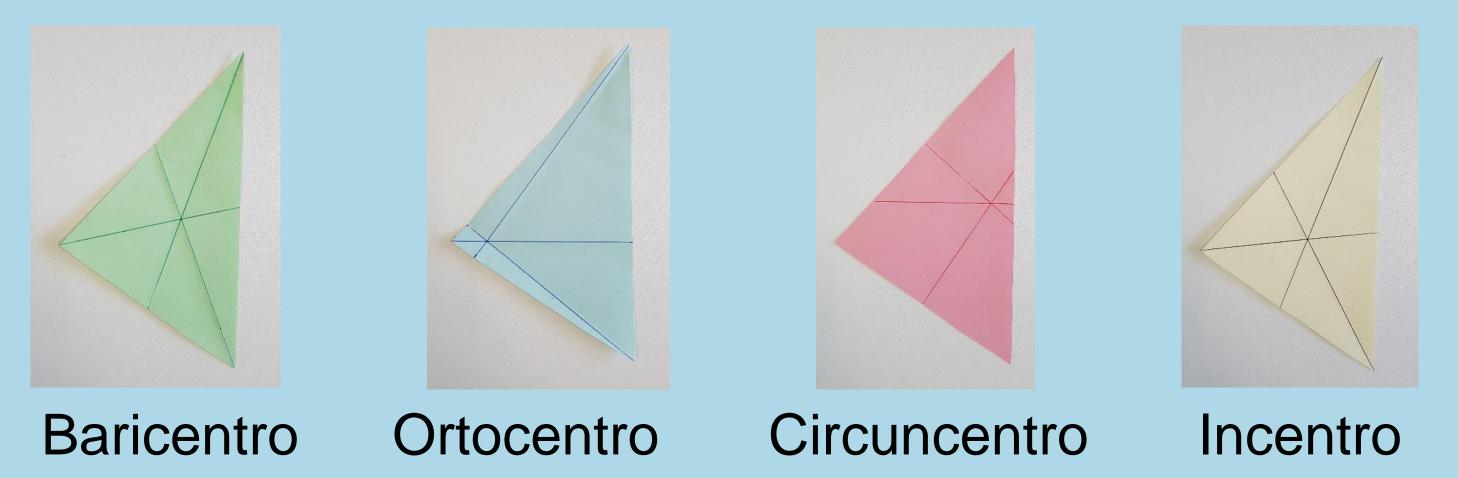
Dpto. de Matemáticas y Computación. Universidad de La Rioja

INTRODUCCIÓN

Sesión realizada en veteranos de Estalmat C.V. en el curso 2017/2018.

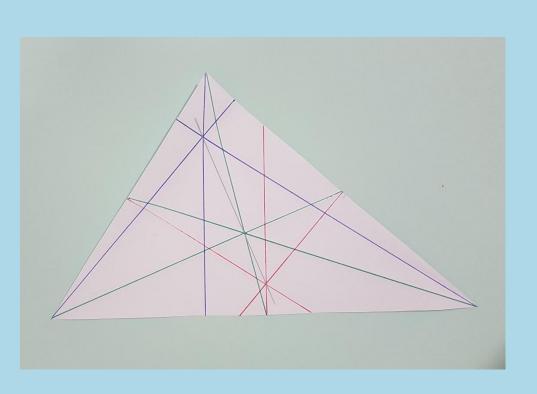
OBJETIVOS

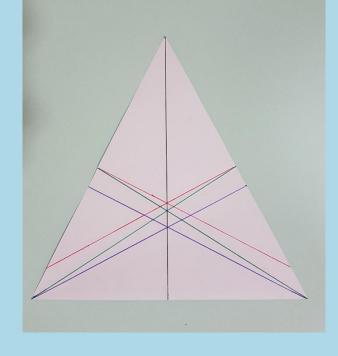
Facilitar la compresión de conceptos geométricos mediante el uso de la papiroflexia y otras estrategias manipulativas además de promover su uso en la resolución de problemas de geometría.

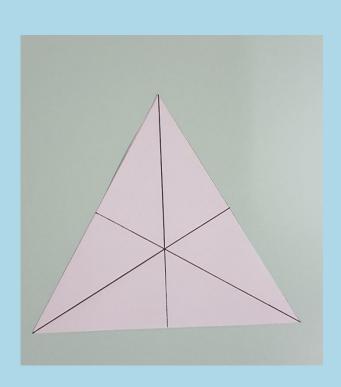

METODOLOGIA

Metodología basada en el aprendizaje cooperativo y por descubrimiento, así como en la resolución de problemas con material manipulativo.

PUNTOS NOTABLES DE UN TRIÁNGULO SECUENCIA DIDÁCTICA: EL TETRAEDRO


Construcción de los puntos notables


Doblamos el papel para obtener los puntos notables clásicos de triángulos diferentes, permitiendo realizar generalizaciones y observar sus propiedades.



Construcción de la recta de Euler

Construimos la recta de Euler en diferentes tipos de triángulos, con especial atención a los triángulos isósceles y equilátero.

Escaleno

Isósceles

Equilátero

Aplicación a la resolución de problemas

Usamos la papiroflexia para aproximarnos a las soluciones de algunos problemas planteados o visualizar algunos casos particulares:

- Probar que la bisectriz del ángulo recto de un triángulo rectángulo bisecta el cuadrado de la hipotenusa.
- Consideramos el triángulo ABC y la mediana AD. Si los radios de las circunferencias inscritas de los triángulos ABD y ACD son iguales, ¿qué tipo de triángulo es ABC?
- Probar que si los lados de un triángulo están en progresión aritmética, entonces la recta entre el baricentro y el incentro es paralela a uno de los lados del triángulo.

OBSERVACION

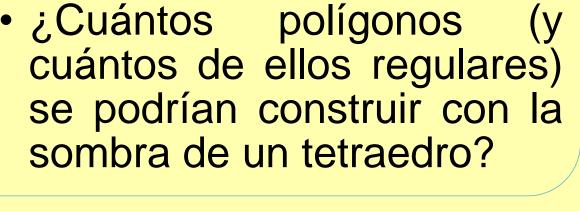
Utilizamos diferentes recursos para la visualización y análisis de los conceptos. Desde manipulativos como la papiroflexia y piezas de construcción magnéticas (Geomag) a digitales como el software Geogebra.

REFERENCIAS

- Claudi Alsina y Roger B. Nelsen. Charming proofs. A journey into elegant mathematics, 2000.
- Kazuo Haga. Origamics, Mathematical Explorations through Paper Folding, 2008.

Motivamos su aparición

- ¿Es posible construir con seis palitos iguales, exactamente cuatro triángulos también iguales?
- ¿Es posible colocar cuatro puntos en el plano, de forma que cada uno de ellos equidiste de todos los demás? ¿Es posible hacer esto en el espacio?

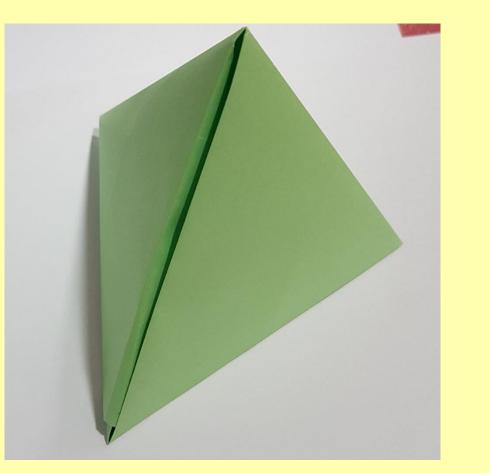


Profundizamos

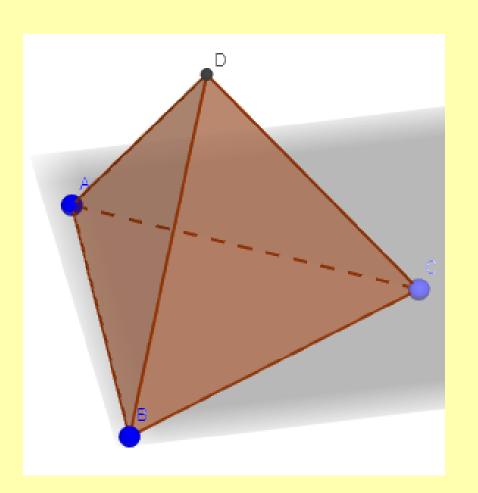
y resolvemos

problemas

 ¿Cuántos planos simetría tiene un tetraedro? ¿Cuántos polígonos


- Añadimos los puntos medios de las tres aristas que concurren en un vértice de un tetraedro, a la misma distancia del vértice. Cortamos el tetraedro por el plano que pasa por esos puntos en todos los vértices del tetraedro. ¿Cuál es el cuerpo resultante? ¿Cuál es su área y su volumen?¿Cuál es la relación entre el volumen del tetraedro original y el poliedro obtenido?
- ¿Cuál es la longitud del lado del cuadrado obtenido con la sombra de un tetraedro?

Resolvemos problemas de mayor dificultad


- ¿Qué fracción de volumen de un cubo ocupa un tetraedro regular inscrito en él?
- ¿De cuántas formas podemos inscribir un tetraedro regular en un cubo, de manera que cada uno de los vértices del tetraedro coincida con un vértice del cubo? Y si ahora yuxtaponemos entre sí los tetraedros inscritos en el cubo obtenidos anteriormente, ¿qué fracción del volumen del cubo ocupa la figura?
- Si la sección producida por un plano al cortar un tetraedro regular es un rombo, probar que necesariamente el rombo es un cuadrado. ¿Y si el tetraedro no fuese regular?

Planteamos problemas olímpicos

- Demostrar que es imposible obtener un cubo pegando tetraedros regulares (todos del mismo tamaño) por sus bases.
- Encuentra el volumen de un tetraedro regular en términos de su bimediana. Definimos la bimediana como el segmento que une los puntos medios de ejes opuestos.

