Laboratoire A RTEMIS

BP 53x - 38041 - Grencble cedex

RAPPORT DE RECHERCHE

Computational results with a Branch and Cut
Code for the Capacitated Vehicle Routing Problem

‘ I Phota Focale Studio Grenoble

. P. Augerat, J.M. Belenguer, E. Benavent
A. Corberan, D. Naddef, G. Rinaldi

RR949-M Septembre 1995

Centre national de |a recherchs scientifique . Institut national palytechnique de Grenoble
Ecole normale supérieurs de Lyon lnsntUt EMAG Université Joseph Fourier Grenokle |

Computational results with a Branch and Cut
Code for the Capacitated Vehicle Routing

Problem

P. Augerat’, J.M. Belenguer?, E. Benavent?,
A. Corberén?, D. Naddef!, G. Rinaldi®

1. ARTEMIS-IMAG. Grenoble France
2. Universitat de Valéncia. Spain

3. JASI-CNR. Rome

Abstract

In this paper, we present a Branch and Cut algorithm to solve the CVRP which is
based in the partial polyhedral description of the corresponding polytope. The valid
inequalities used in our method can be found in Cornuejols and Harche (1993), Harche
and Rinaldi (1991) and in Augerat and Pochet (1995). We concentrated mainly on the
design of separation procedures for several classes of valid inequalities.

The capacity constraints (generalized subtour eliminations inequalities) happen to
play a crucial role in the development of a cutting plane algorithm for the CVRP.
A large number of separation heuristics have been implemented and compared for
these inequalities. There has been also implemented heuristic separation algorithms for
other classes of valid inequalities that also lead to significant improvements: comb and -
extended comb inequalities, generalized capacity inequalities and hypotour inequalities.

The resulting cutting plane algorithm has been applied to a set of instances taken
from the literature and the lower bounds obtained are better than the ones previously
known. Some branching strategies have been implemented to develop a Branch an Cut
algorithm that has been able to solve large CVRP instances, some of them which had

never been solved before.

Keywords: Capacitated Vehicle Routing Problem, Branch and Cut, valid inequal-

ities.

Acknowledgments: This work was partially financed by the EEC Science Pro- .
gram 5C1-CT91-620 and by the project CE92-0007 of the Spanish Ministerio de Edu-

cacién y Ciencia.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) we consider in this paper consists in the
optimization of the distribution of goods from a single depot to a given set of customers with
known demand using a given number of vehicles of fixed capacity. There are many practical
routing applications in the public sector such as school bus routing, pick up and mail delivery,
and in the private sector such as the dispatching of delivery trucks. The reader can refer to
" Bodin et al. [BGAB83], Christofides [Chr85], Magnanti [Mag81] and Osman [Osm93b] for a
survey of vehicle routing applications, model extensions and solution methods,

In the model we deal with in this paper, there are n customers indexed by ¢, each one with
a demand of d; units of goods to be delivered from the depot, and & vehicles of capacity C.
Each customer i must be assigned to exactly one vehicle, i.e. demand splitting is not allowed
and the demand d; must be entirely delivered by one vehicle. The total demand assigned to
each vehicle must satisfy the capacity constraint, i.e. can not exceed (. The objective is to
minimize the total distance traveled by the vehicles. So, apart from assigning customers to

visiting all customers assigned to it and going back to the depot. In this paper, we restrict
our attention to symmetric distance functions in the objective.

If the capacity C is large enough (at least 37, d;), then it is possible to assign all
customers to a single vehicle and the capacity constraints are redundant. In this case, the
CVRP reduces to the multi-salesman traveling salesman problem (k-TSP). On the other
hand, if the capacity € is small according to the demands, the capacity limitation becomes a
crucial part of the problem and one has to solve a bin packing problem for the assignment of
customers (or items of weight d;) to vehicles {or bins of size C). Since k-TSP and bin packing
are both NP-hard problems, CVRP looks like the intersection of two difficult problems and
Is also an NP-hard problem. This is the reason why routing problems have first been tackled
using heuristic approaches. See again the above mentioned references and for recent results
Hiquebrau et al. [HASGQZL], Taillard [Tai93], Osman [Osm93a), Gendreau et al. [GHL94]
and Campos and Mota, [CM93].

" During the past fifteen years, exact algorithms have also been developed to solve ca-
pacitated routing problems of reasonable size to optimality. For example, Agarwal et al.
[AMS89], Mingozzi et al. [MCH94] use a set partitioning and column generation approach
and Fisher [Fis94] uses a lagrangian approach based on the minimum k-tree relaxation.
Other exact approaches are presented in the surveys of Christofides [Chr85] and Laporte
[Lap92].

Another approach to solve CVRP to optimality is the polyhedral approach which has
proved to be efficient to solve large instances for the TSP, For example, Padberg and Rinaldi
[PRI1] report on the resolution of problems with up to 2392 cities.

Note that, "large instance” does not have the same meaning for VRP and for TSP. What
we call today a large instance for CVRP is a problem with 100 customers. Fisher [Fis94]

2

reports on the solution of some test problems with up to 100 customers to optimality using
a lagrangian relaxation approach embedded in branch and bound. On the other hand, some
standard test problems with 76 customers have never been solved to optimality.

Initial investigations in the polyhedral aspects of the identical customers CVRP and in
the similarities between the TSP and CVRP polyhedra were performed by Araque [Ara90),
Campos et al. [CCM91], Araque et al. [AHM90], Laporte and Nobert [LN84] and Laporte
et al. [LND85]. A more complete description of the CVRP polyhedron can be found in
Cornuejols and Harche [CH93) and in Augerat and Pochet [AP95]. Computational results
using the polyhedral approach are reported in Araque et al. [AKMP94] (for the identical
customer case), Cornuejols and Harche [CH93] and Laporte et al. [LND85]. They solved
moderate size problems with up to 60 customers,

The confent of the paper is as follows. In Section 2, we describe formally the CVRP
and the valid inequalities that we use in our “Branch and Cut” code. In Section 3, we
present separation procedures for the capacity constraints (generalized subtour elimination
inequalities). In Section 4, we show that other inequalities lead to significant improvements

 in some kind of instances. Section 5 is dedicated to branching strategies and the paper

concludes in Section 6 with some computational results for a set of difficult instances taken
from the literature.

2 Problem Description and Known Classes of Valid In-
equalities

We present in this section the basic CVRP formulation and notation we will be using in
the sequel. We then present briefly most of the known classes of valid inequalities for this
formulation. The formulation we use is the so-called vehicle flow formulation with two
indices. Its main advantage resides in the small number of variables needed. By removing
the depot from the formulation, one could obtain an equivalent formulation of the path

- partitioning type (see Araque et al. [AHMO90]).

Problem Description

Let G(V, E) be an undirected and complete graph with node set V containing n + 1 nodes
numbered 0, 1,...,n. The distinguished node 0 corresponds to the depot and the other nodes
correspond to the n customers. The set of customers is denoted by V4, so V = ¥, U {0}. For
each customer 7 € V}, we are given a positive demand d;. For each edge ¢ € F, we are given
a positive cost value b, which corresponds to the distance between the two end-nodes of e
(cost of traveling along edge €). Let k be the fixed number of vehicles available at the depot
and C the constant vehicle capacity.

For a given subset F of edges of E, G(F)} denotes the subgraph (V(F), F}induced by F
where V(') is the set of nodes incident to at least one edge of F.

A route is defined as a nonempty subset F of edges of E for which the induced subgraph
G(F) is a simple cycle containing the depot 0 (ie. 0 € V(F), G(F) is conpected and
the degree of each node of V(F) in G(F) is 2) and such that the total demand of nodes
(customers) in Vp(F) = V(F)\ {0} does not exceed the vehicle capacity C. Such a route
represents the trip of one vehicle leaving the depot, delivering the demand of nodes in Vo(F)
(traveling along the edges F') and going back to the depot. The length of a route is the sum
of the traveling costs b, over all edges € € F. Note that if |V(F)l =2 in a route F, then the
route is composed by twice the same edge. In all other cases (i.e. [V(F)| > 2), an edge can
appear only once in a route.

Figure 1: Instance of CVRP withn = 7 customers, & = 3 vehicles of capacity 10

A k-route is defined as a subset B of edges of F that can be partitioned into k routes
By, Ry, ..., Ry and such that each node ; € Vo belongs to exactly one of the k routes (i.e. to
exactly one of the sets V(R;), 1 <j < k). The length of a k-route is the sum of the lengths
of the k different routes defining it. Fach k-route defines a feasible solution to CVRP and

the optimization problem consists in finding a minimum length k-route. Figure 1 represents
the graph associated to an instance of CVRP with 7 customers and 3 vehicles, as well as a
feasible 3-route.

Notation

In order to formulate the CVRP as an integer program, we associate a variable z. to each
edge e of £ which will represent the number of times edge e is used by the solution (k-route).
Sometimes, we will write z;; instead of z. where e is the edge between nodes ¢ and 7, ¢ < j.

For simplicity, we will also use the following notations. For given subsets of nodes §, .5’ C
V, the set §(5) (coboundary of S) is the set of edges with one end-node in § and the
other in V\ S (§(S) ={e=(,j) €e E:1€ 8, j € V\S5}), the set (S : 5"} (cut
between S and 5’) is the set of edges with one end-node in S and the other in &/ ({§ :
SY={e=(,j) e E:i €8 j€), v(5) is the set of edges with both end-nodes
in S (y(S) ={e=1(i7) € £:4,7 € S}) and d(5) is the total demand in the set S
(d(S) = Xicsdi). For any subset F' of edges, z(F) denotes the sum of the z, values over all
edges e € F. '

CVRP Formulation

Now we can formulate the CVRP as the following integer program:

(CVRP) min Y b, z, (2.1)
=23

2(5({0})) = 2k (2:2)

26({t}))=2 foralieW (2.3)
z(6(5) = 2 IV@-‘ forall S C Vs, S#0 (2.4)
0<z. <1 for all e € 4(V}) (2.5)

0<2z, <2 for all e € §({0}) (2.6)

z, integer ‘ foralee E (2.7)

Constraint (2.2) states that each of the k vehicles has to leave and go back to the depot.
Constraints (2.3) are the degree constraints at each customer node. Constraints (2.4) are the
capacity constraints (also called generalized subtour elimination constraints), where[c] is the
smallest integer larger or equal to a. They express that for a given subset S of customers,
at least [d(S)/C vehicles are needed to satisfy the demand in S and, because the depot is
outside .5, each of these vehicles must necessarily enter and leave S. Furthermore, like for
the subtour elimination constraints in the TSP case, these constraints are needed to force
the connectivity of the solution. Constraints (2.5) — (2.7) specify the integrality and bound
restrictions on the variables. A variable z. linking a customer node directly to the depot (in
(2.6)) can take the value 2 when the edge e is the only one in a route. The set of feasible
solutions to CVRP (i.e. solutions to (2.2) — (2.7)) is called XCVEP,

5

Based on this formulation, we have implemented a linear programming (LP) based cutting
plane algorithm which proceeds in the following way. At each iteration, a linear program
including the degree constraints and some set of valid inequalities is solved. If the optimal
LP solution corresponds to a k-route, we are done. Otherwise, we strengthen the linear
program by adding a set of valid inequalities violated by this optimal solution, and proceed
as before. This cutting plane algorithm has been integrated in a Branch and Cut scheme to
solve the CVRP.

We present now briefly the classes of valid inequalities for XCVBP that we use in our
cutting plane algorithm and in the next section, we will present the identification procedures
we have implemented to find valid inequalities that are violated by a given LP solution.

Capacity Constraints

Denote by r(5) the minimum number of vehicles needed to satisfy the customers demand in
a set S in any feasible solution. We obtain the following valid inequality

2(6(5)) > 2r(S) for all SC Vo, S0 (2.8)

It is NP-hard to compute r{S) but the inequality remains valid if 7(S) is replaced by
any lower bound of r(S5). Cornuejols and Harche describe several lower bounds in [CH93].
We chose to use the inequality (2.4) instead of (2.8) because computing r(S) appeared to be
costly and useless for almost all the instances we tested.

Generalized capacity inequalities

Let © = {5;,7 € I}, be a partition of V, and let I’ C I denote the set of indices of those
subsets 5; with more than one element (these subsets are also called clusters or supernodes).
We define () as the solution of the bin packing problem where the capacity of the bins is
C and the set of iterns and their weights are defined as follows; for each S;,7 € I:

- If d(S;} < C, then include an item of weight d(S;),

- Otherwise, include [ﬂg'-l] — 1 items of weight C and one more item of weight d(S;) —
(15341 - 1)C.

Then, it can be shown that the following inequality is valid:

Y o(5(50) 225 1450 4 20r(0) - k) (29)

el el

This is a particular case of the generalized capacity constraints of Harche and Rinaldi
[HR91). Note that if r(§2) < &, then (2.9) is dominated by the capacity constraints. Other-
wise, the validity of (2.9) can be informally explained as follows: let us assume for simplicity
that d(S5;) < C, for all ¢ € I’ and that r(Q) = & + 1, then at least one set of customers, say
S5j, will be visited by at least two vehicles, so z(6(S5;)) > 4.

%5 i
/ b y 5
{ e o >\
/ e \ OB i
0.5 «, 140 ~
sclgm T e e T_Eﬁ:%&:‘ﬁﬁ
hctsey 1/ A BT — 5 ~—
P Y 18, EE)
~ v NN \
16(550} \ 20“0“1 <
N ~N A
s N0 \
NN N iz T g {50
™
C=4500 o W N
k=3 \ ~
$i={8,9,10,11,12,13,14,15,16,17,18} N N ~
5={34,562123) N
§:={2,7,20,25,36,27,28,29,30) N\ | LT
S={22} g {
S.={24} \
Se={19) N \ 25¢fo
it
27(}00) 30(1[;%é;
f |
i
{ |
f
— 25(430}
[# e
23{150)

Figure 2: Violated generalized capacity inequality in E-n30-k3

Figure 2 corresponds to the support graph associated to a given fractional solution. The
depot is here represented by node one and the demands are the numbers between parenthesis.
Sets S;, 1 =1,...,6 all have their coboundary equal to 2. Yet the bin packing problem with
bins having capacity 4500 and 6 items having weights d(S;) = 3175, d(Ss) = 3925,d(Ss) =
3700, d(Ss) = 1500, d(S5) = 300 and d{Ss) = 150, gives a value of 4 while only 3 vehicles are
available. The inequality 33 | z(§ (8:)) = 8 is violated.

When the same idea is applied on a subset K of Vo, we have a special case of the path-bin
inequality introduced by Augerat and Pochet [AP95]. Let H C V3 and 0 = {Si,i€ I} bea
partition of H and let I’ be defined as above, If r(H,Q) is the solution of the bin-packing
problem on Q, we have the bin inequality

2B + Tee(s)2 2 3 (48 4 2 ,m 0 (210)

el igl’

Comb inequalities

Let T;, i =1,...,s and H be subsets of Vp satisfying :
DTN\NH#0,i=1,...,s

(i) ;N H #0, t=1,...,s

(i) TNT; =0, t=1,...,8 7=1,...,s, -
(iv) s odd

Then, the comb inequality (see Grétschel & Padberg [GP79]):
2(H)+ 3 (T < |HI+ Y (T -1) = (s +1)/2 (2.11)

i=1,...,8 i=1..5
was proved to be valid for the CVRP by Laporte & Nobert [LN84]. Using (2.2) and (2.3), it
is easy to see that (2.11) is equivalent to:

z(S(H))+ > z(0(T}))>3s + 1 (2.12)
2=1,...,8
We consider now the case where the depot is "inside” the comb. Inequalities specific to the
CVRP can be obtained considering special teeth and handles. Let H, T;, i € I be subsets
of ¥ U {0} satisfying : :
D) T\NH#0, i=1,...s
() TNH#D, i=1,...,s
(i) ¥ ;N T; # 0, for some 5,7t # J,then 0 € i N T; and
either TNT;NH =0or (NT)\H=10
(iv) s is odd

Let us define ¢(T}) = (V' \ T), 0 €T and ¢(T) = r(T: \ H) otherwise. Then, the
extended comb inequality is:

2(8(H) + >0 z(6(Ty)) > 2 D AT+ s + 1 (2.13)

i=1,..,8 =1,...,s

Figure 3 represents another support graph of a fractional solution. The depot is node
1 and the demands are in between parenthesis. A comb is represented by solid lines: the
handle H with bold edges and the teeth T}, T,, T5 with thin edges. The corresponding comb
inequality is violated since z(¢(H)) + z(6(T1)) + z(é(T2) + =2(6(T3)) = 11.33 <
2(r(M\H)+r(WMW\)+ r(TG\H)+s+1 = 2(1+2+1)+3+1=12

Hypotour inequalities

This class of inequalities are in the spirit of the hypo-hamiltonian inequalities for TSP
introduced by Grotschel and Padberg [GP85]. Let H be a set of edges and v € V,. If
H intersects all the routes including ¢ then, the following inequality is a valid hypotour
inequality:

z(H) > 1 (2.14)

More general hypotour inequalities can be defined as follows. Let az > ap be a valid
supporting inequality such that az is even for every feasible solution. If H intersects the
set of edges of any feasible solution which satisfies az = g, then the following is a valid
extended hypotour inequality.

ar + 2z(H) > ap + 2 (2.15)

We will concentrate in section 4.3 on identifying some classes of inequalities of this type.
See Augerat and Pochet [AP95] for a complete description of them.

3 Identification of capacity constraints

Let x be the optimal solution of the LP at any iteration and let G(x) be the graph induced
by the edges e with value z, > 0. This graph is called the support graph of x.

Harche and Rinaldi [HR91] showed that the separation problem for the capacity con-
straints (2.4) is NP-Complete and designed several heuristics that can be briefly described
as follows: '

1) Check (2.4) for the node set of each connected component of G(x) and G(z) \ {0}.

2) Recursively, shrink edges with value z, > 1 and non incident with the depot (see

Padberg and Rinaldi [PR91] for a detailed description of the procedure in the
TSP context). Shrinking an edge means to substitute the two endpoints of e by
a supernode with demand equal to the sum of the demands of its endpoints. If
the supernode has a demand greater than C, the set of vertices in the supernode
violates (2.4). ,
Let GS(x) be the shrunk graph thus obtained. It can be easily shown that finding
a violated capacity constraint on G(x) is equivalent to finding it on GS(x). So,
from now on, the heuristics in this section will be executed on GS(x), but for
notational convenience we will assume that they are applied on G(x).

9

=160

H-{4,11,13} 1509
T.~{4,19} | AR
T={1,2,3,73,11} { N
T,={13,16} e

7/ 14

T &n 15¢63

Figure 3: Violated comb inequality

10

3) Fractional capacity inequalities are obtained by replacing [ﬁcﬂ] in (2.4) by i(c—,“’:l.
Let f(S) = z(é(S)) — 21(6‘—?1. It is possible to find the set S C V; for which {S)
is minimum by using a max-flow algorithm. If f(S) < 0, the fractional capacity
inequality and the corresponding (2.4) constraint are violated. Anyway, the set S
is a candidate set for checking violation in (2.4).

We have implemented all of these procedures together with some easy ideas that may
be used with any other procedure. Once set S has been checked in (2.4), it is an easy task
doing the same for set V5 \ S. Furthermore, sets with demand exceeding a little bit an
integer multiple of C, are good candidates to check (2.4). Then, every time a set S for which
pC 2 d(S) 2 (p—€)C, with p integer and e = 0.33, is found, then (2.4) is checked for all the
sets S U {v} where v is adjacent to at least one node of $. Again, it can be done very fast.

The results obtained with the Harche and Rinaldi procedures, including the above ideas,
are presented in Table 1.

Greedy shrinking algorithm

In this procedure, given an initial set of nodes 5, at each iteration, a node v is added to S
in such a way that z((S : v}) is maximum (in order to minimize 2(6(5))).

Possible candidates for being the initial node set S are:

1 - only one node

2 - the end-points of an edge

3 - a set corresponding to a tight inequality in the linear program

4 - the complementary of such a set in V

5 - any set including the depot

6 - any set not including the depot

The number of initial sets in strategies 1 to 4 is fixed. In the other strategies, we generate
node sets randomly. In that case, the number of initial sets was fixed to 10 times the number
of nodes.

The best results were obtained for strategy 6 and were improved by mixing it with strat-
egy 1 (which is the fastest one). Computational results for the greedy shrinking algorithm

can be found in Table 1.

We have also tested the possibility of, given a set 5, adding to it all its neighbors, as well
as selecting the node with higher demand, but the results were not conclusive.

Similar procedures to the above ones were developed independently by Araque et al.
[AKMP94] for the identical customers CVRP.

11

Tabu search algorithm

Let S be a subset of V3, we will denote by N*t(S) the set of nodes in Vo \ .S adjacent to at
least one node in S and by ~(S) the set of nodes in § adjacent to at least one node in o\ S.
Given a set S for which d(S) and z(6(S)) have been computed in order to check violation in
(2.4), note that it is easy to compute these quantities for every set S U {v},v € N*(8), and
S\ {v}, for v N=(85). .

At each iteration of the procedure a node set S is modified by removing or adding a node
to it and (2.4) is checked. The procedure consists of two different phases, the expansion
phase and the interchange phase, which are applied iteratively. At each iteration, in the

The expansion phase stops when no node can be added without violating dS) < (p+
ulimit)C, where ulimit is a given parameter, 0 < ulimit < 1, and p takes values from 1 to
k —1 all along the algorithm. In the interchange phase, the movements are selected in such
a way that the resulting set § satisfies (p— llimit)C < d(5) < (p + ulimit)C, where llimit
is another parameter, 0 < {limit < 1.

Let us define smaz = Clp+ ulimit) - d(S) and smin = d(S) — C(p ~ llimit). Then, the
set of candidate nodes to be added to § jg CHS)={ve N*(8) : d, < smaz} while the
set of candidates to be removed from § is C-(S)={ve N=(5) : d, < smin}. If node v is
finally added (removed) to (from) S, the reverse movement is declared tabu during a number
of iterations equal to other input parameter called t]] (tabu list length).

At any iteration in any phase, the aim is to select 2 movement in such a way that for the

resulting set S, 2(6(.5)) be as small as possible. However, in the expansion phase, the node
to be added to S is randomly selected among a set of "good” candidates (see step E.2in the

The following algorithm is run starting with set § = {¢}, for every node i = 1,...n.

TABU ALGORITHM

Set p=1.
Expansion phase

E.1. Compute smaz and CH(8). HCH(S)is empty, go to L0 (Interchange phase).

E.2. Compute M = maz{z((S:v)):v e C*(5)} and randomly select a node
v € C*(S) among those satisfying M — per < z((S : v)) < M.
E.3. Add v to S, check (2.4) and go to E.1.

Interchange phase

1.0, Setster =1.

L1. Compute smaz,smin,C*(S) and C~(§) . Remove from C=(S) (CH(9))
those nodes that have been added to (removed from) S in any of the last tl]
iterations. If C*(8) U C=(S) is empty, go to L.4.

I.2. Let v be the node for which the following maximum is reached:

maz{{z((5:7)),5 € CHL{z((V\ §: 7)), 5 € C7(S)}}

L.3. Depending on if v € C*+(S) or v € C~(S), add or remove it from S and check
(2.4). Do iter = iter + 1. If iter > tope go to 1.4, otherwise, go to L1,

I1.4. Dop=p+1. Ifp< k-1 go to E.1, otherwise, stop.

The above procedure is run a number of times given by ntimes, that we have set between
1 and 3. After some testing, we have concluded that a good choice for the parameters is:
ulimit = 0.3, llimit = 0.1, and t = 5. If ntimes > 2, a good choice for per is 0.2, otherwise
we set per = 0. Finally, the maximum number of iterations to be done in every interchange
phase, tope, was chosen between 5 and 20.

The following tables compare the results obtained by the cutting plane algorithm when it
uses different heuristics to identify violated capacity constraints. The heuristics we compare
are: those explained at the beginning of this section which are due, mainly, te Harche and
Rinaldi [HR91] (denoted HR in the tables) , the greedy shrinking algorithms and the tabu
search with two different sets of values for the parameters; for tabul, ntimes =1 and tope
= 10, while for tabu2, ntimes = 3 and tope = 20. Table 1 shows the lower bounds obtained
using the different identification heuristics on a set of instances taken from the literature.
Details of these instances and on the upper bounds shown, will be given in Section 6. Table
2 gives a statistical summary of these results. The term gap refers to the relative distance
between the upper and lower bounds in percentage.)

Name | Upper Bound [LB HR | LB shrinking | LB tabul | LB tabu? |
" E-n101-k8 ’ 817 788.758 | 795.875 795.081 796.149
E-n22-k4 375 8375 | 375 375 375 |
F-n23 k3 569 | 569 | 569 | 569 | 569 |
E-n30-k3 534 508.5 | 508.5 508.5 508.5
E-n33-k4 835 831.1 833.5 833.2 833.5
_ E-n51-k5 821 510.9 514.524 514.524 514.524
LE—nTﬁ—le' 832 773.592 787.449 787.472 789.31 [
[Eor6kr 683 | 659.467 | 660.316 | 660.834 | 66L251 |
E-n76-k8 735 | 703.484 710.188 l 709.682 711.053
F-n135-k7 1165 I 1154.2 1155.89 I 1157.88 1157.55
Fadska | 74 723.8 | 793.6067 724 724
F-n72-k4 238 232.5 232.5 232.5 232.5
M-n101-k10 820 818.165 819.412 819.333 819.333

13

Table 1

[LB HR | LB shrinking | LB tabul | LB tabu2 |
L average gap 2.22 1.86 1.85 | 181 1
| maximum gap 4.8 4.8 4.8 4.8

| number of wins | 4 7 7 11

| average number of cuts | 339] 946 1908 2299

| average number iterations | 50 | 33.5 | 207 T 312

| average cpu time 171 | 182 | 700- | 859]

Table 2

The best results were obtained by combining the greedy shrinking algorithm and tabu2.
The strategy used was to call tabu2 only in those iterations where the greedy shrinking
procedure fails to find a violated inequality. The results thus obtained are shown in Table 3.

Upper |- Lower cpu cpu]
Name Bound | Bound | Gap Ip solver | identification | iterations |
| Enl01-k8 | 817 |796.314 | 2.5 | 100.09 194.31 56
E-n22-k4 | 375 375 0 1.06 1.07 22 |
E-n23-k3 | 569 569 0 | 042 0.33 9
| En30-k3 | 534 | 5085 | 48 | 217 1.2 21 |
| En33k4 | 835 | 8335 | 0.13 | 373] 201 23]
| En51-k5 | 521 |514524| L9 801 | 858 25]
| E-n76-ki0 | 832 | 789416 | 5.1 | 159.96 194.42 70]
| _En76-k7 | 683 | 661256 | 3.2 | 5114 95.79 42]
| En76k8 | 735 | 71117 | 32 | sLo1 176.14 73]
| F-0135-k7 | 1165 | 1158.25 | 0.58 | 110807 314.79 123
| Fnds-kd | 724 | 724 0 5 2.78 27
| Fn72-kd | 238 | 2325 | 23 8.56 2.87 19
{M-n101-k10 | 820 | 8195 0.061 | 1381 | 4226 46 |

Average gap: 1.78
Average total cpu time: 214
Average number of iterations: 42.8

Table 3

14

4 Separation procedures for other inequalities

4.1 Generalized capacity constraints.

We first describe procedures used to identify violation of inequality (2.9). The following
procedure works on a shrunk graph, HT(z), which initially is set equal to GS(z), the graph
obtained from G(x)\{0}, after shrinking all the edges of value 1. At each iteration, an edge
is shrunk and the current set of supernodes is used to define the partition Q of V5. The
solution to the bin packing problem on is denoted by r(Q2) and INCRE is a variable whose
value is equal to the amount on which constraint (2.9) would be violated for Q in the case
r{()) = K +1 would hold (it is very unlikely that r(Q?) > K +1). f INCRE < 0, then r{2)
" need not be computed.

We denote by d(u) to the demand of any node of the current shrunk graph, even if it is
a supernode.

Procedure 4.1 Global shrinking

8) Let HT(z) = GS(z). Set INCRE = 2.

1) Let Q1 be the partition defined by the set of nodes of HT(z). If INCRE > 0,
compute r(§2); in the case r(2) > K, constraint (£.9) is violated.

2) Select the edge of greatest value in HT(z). In the case that ties occur, we prefer
edges that join supernodes or single nodes to supernodes. Let (u,v) be the edge
selected and let y be its value.

3) Compute the new value of INCRE as follows: INCRE = INC’RE’+2y——2(|'i(§l]+
[— [eget).

4) Shrink edge (u,v) and cell HT (z) the resulting graph. If HT(z) has no edges, stop.
Otherwise check the capacity constraint for the supernode just created and go to
1.

The following procedure is very similar. It selects a node v and makes, initially, all the
shrinkings on edges in its coboundary.

Procedure 4.2 Local shrinking procedure

In step 2 of the Global shrinking procedure, select the edge of greatest value in HT(z)
incident to supernode v untid INCRE < 0 holds. At this moment, and until the end

of the algorithm, apply the original step 2.

Now we present how to separate the bin inequality (2.10), that is the case where we do
not use a partition of Vp but only of a subset H. The following procedure is applied for each

customer v.

15

Procedure 4.3 (Bin inequality)

0) Choose randomly o set of 2k customers and add v to this set if v is not already in
it

1) Compute heuristically o mazimum flow between this set of nodes and the depot. Let
(H : V\ H) be the resulting cut.

2) Ifz(6(H)) < 2(]—51-(031'[+1), apply the global shrinking procedure starting with HT(z)
as the graph induced by H in GS(z) and INCRE = 21420 1 1) — 2(5(H)).
Obviously, the violated inequalities found, if any, will be of type (2.10).

Table 4 shows the lower bounds obtained with the cutting plane algorithm that uses the
greedy shrinking and tabu2 algorithms for the identification of capacity constraints and all
the above procedures to identify generalized capacity constraints. A group of procedures is
called only when the previous ones have not found any violated inequality.

Upper | Lower cpu cpu
Name Bound | Bound | Gap | Ip solver | identification iterations
| Enl01-k8 | 817 [796.314 | 2.5 | 120.69 263.71 56
| En22-k4 | 375 375 | 0 1.3 1.5 22
E-n23-k3 | 569 569 0 0.63 0.5 9
E-n30-k3 | 534 | 5325 | 0.28 | 6.18 8.83 50
E-n33-k4 | 835 | 8335 | 0.18 | 4.36 4.08 23
Endl-k5 | 521 [3514524] 12 9.56 12.57 25]
| En76k10 | 832 [789.416] 51 | 175.08 . 254.56 70
|__En76-k7 | 683 [661.256 | 3.2 | 62.39 130.27 42
| En76-k8 T 735 | 71117 | 3.2 99.6 232.48 3]
|_F-n135-k7 [1165] 1158.25 | 0.58 | 1424.33 391.8 | 123
| Fndskd | 724 724 0 6.08 34 27
| Fn72kd [23§ 235 | 13 | 36.15 109.33 101 |
| M-n101-kI0 | 820 | 8195 | 0.061] 164.59 56.3¢ | 46 |

Average gap: 1.36
Average total cpu time: 275
Average number of iterations: 51.3

Table 4

The separation procedures for generalized capacity constraints are useful for only two
instances (E-n30-k3, F-n72-kd). In both cases, the improvement is significant. It shows

16 .

that this class of inequality is important but also that its useness depends on the kind of
instances. The instances E-n30-k3 and F -072-k4 are special in the sense that some clients
have very large demands. Thus the bin packing problem is crucial for these instances.

4.2 Combs.

The methods used to identify violated combs are similar to the ones used by Padberg and
Rinaldi [PR90] and Grétschel and Holland [GHO91} for the TSP. However, in the case of
the CVRP, we consider also extended combs, in which the teeth and/or the handle can
contain the depot. Furthermore, contrarily to the case of the TSP, the teeth have not to
be necessarily disjoint sets. The identification has two stages; in the first one, we determine
the handle, while in the second, the comb is completed by finding appropriate teeth and is
checked for violation.)

The following procedure is applied on a graph G(z') obtained from G(z) by removing

some of its edges. For this purpose, several strategies have been applied:

a) Remove the edges with value less than or equal to eps or greater than or equal to I-eps,
for eps = 0, 0.1, 0.2 and 0.3.

b) In addition to a), remove all the edges incident with the &epot.

c) In addition to a) or b), remove all the edges that join nodes which are inside sets
corresponding to supernodes of the shrunk graph GS(z).

d) In addition to a) or b), remove all the edges that join nodes which are inside sets,
~ found heuristically or by other identification procedures, which satisfy:

- 2(6(V\8)) =2r(V%\ 8), ifS contains the depot, or

- z(6(5)) = 2r(S) and for some node ¢ € S : r(§\a) =r(8), if § does not include
the depot.

Procedure 4.4 (handle candidates)

Find the biconnected components (blocks) of G(z’). The following sets are considered. as
handle candidates:

- each block, and

- for each cut vertex v of G(z'), the union of blocks incident with v,

For each handle, H, generated in the preceding procedure, we apply the following one to
generate appropriate teeth.

Procedure 4.5 (teeth candidates)

17

1) For every node v € H, consider the following candidate teeth:
7/

- edges of G(x) incident with v and with the other endpoint not in H.

supernodes of graph GS(z) containing v and not entirely in H if strategy c) has
been applied to generate the handle H.

the sets of nodes for which all the edges among them have been removed in
strategy d) to generate the handle H.

if node v is a cut vertez of G{z’), the following tentative teeth are also considered:
- blocks incident with v and not in H,

- semi-blocks not in H (graphs induced in G(z’) by v and its neighbors in the
blocks).

1.1) Select the one with greatest value (the value of a teeth T is 27 = 2(~(T)) +
e(T) + 1 — |T|, where ¢(T) has been defined in (2.13)).

1.2) If its value is at least 0.5, the teeth is added to the comb, otherwise it is
rejected. The best among all the rejected teeth is saved to be used in step 2).

2) If the number of added teeth is odd, go to 3). Otherwise, let T be the tobth with
less value among those added to the comb, and let T’ the tooth saved:

- if 2 1 — 27, add the tooth T’ to the comb.
- ifzpr < 1 —z7, or no tooth has been saved, removed the tooth T from the comb.

]

8) Check the resulting comb for condition (i) and for violation.

When a comb happens to be not violated, we try to enlarge its handle or its teeth such
as it is described in Clochard and Naddef [CN94]

Results for this procedure are presented in Table 5. The lower bounds shown have been
obtained using the greedy shrinking and tabu2 algorithms for the identification of capacity
constraints and the above procedures to identify violated combs or extended cormbs (we do
not identify the generalized capacity constraints). It should be noted that combs constraints
have been useful in 7 instances, but improvements in the lower bounds are not too significant.

18

Upper | Lower cpu cpu
Name Bound | Bound | Gap | Ip solver | identification | iterations
| Enl01-k8 [817 [798358 | 2.3 | 203.18 | 741.33 96 |
E-n22-k4 | 375 375 | 0 [137 | 356 22 |
E-n23-k3 | 569 569 0 | 061 | 2.7 9 |
E-n30-k3 | 534 | 5085 | 438 2.71 3.96 21
E-n33-k4 | 835 | 8335 [0.18 | 4.4I 6.28 23
| En51k5 | 521 [B517.011] 0.75 | 14.75 89.92 42]
En76-k10 | 832 [790.792] 5 | 245.88 | 547.34 . 102 |
En76-k7 | 683 [662.661 | 3 85.48 400.54 82 |
En76-k8 | 735 [712.4157 31 | 133.98 494.2 107 |
F-n135k7 | 1165 |[1158.48] 0.56 | 1472.32 710.41 135 |
F-nds-kd | 724 | 724 0 6.22 3.03 27
| Fn72kd 17238 | 2325 | 23 | 10.34 | 5.91 19
| M-n101-k10 | 820 [8195]0.061 | 160.81 | 56.25 46

Average gap: 1.7
Average total cpu time: 416
Average number of iterations: 56.2

Table 5

4.3 Hypotours

We will present some heuristic algorithms to identify violated inequalities of this class. Let
E(z) be the edge set of the support graph G(z), we describe now a two step algorithm for the
basic hypotour inequality. In the first step, we check if z(E\ E(z)) > 1 is a valid inequality
(and thus violated). We look for a node v such that the set of edges £\ E(z) intersects every
route containing v. If such node v is found, the second step of the algorithm strengthens the
inequality by looking for a minimal set of edges F such that F c E \ E(z) and z(F) > 1is
valid.

Note that if E\ E(z) intersects every route including v, a path in G(z) including v
satisfies at least one of the two properties:

(i) the demand of the path is greater than C

(ii) at least one endpoint of the path is not adjacent to the depot in G(z).

Our procedure is an implicit enumeration of all paths in () including v whose demand
1s lower than C. It is applied to every node.

Procedure 4.6 (First step: Finding a violated inequality)

Enumerate in G(z) those paths including v whose demand is lower than the capacity C.

19

If @ path whose endpoints are connected to the depot is found, stop. Otherwise, we say that
an infeasibility has been detected.

If an infeasibility has been detected, the inequality z(E \ £(z)) > 1 is valid.

The paths are enumerated recursively; at each step we consider all the ways of enlarging
a path in G(x) by adding two nodes. The number of possibilities is not too large because
G(x) is in general rather sparse; furthermore, we limit the depth of the recursion by a given
parameter T in order to avoid expensive computations.

Actually, the enumeration does not need to be complete. We compuitefirstfori=1,...,n
the demand md(i) of the minimum demand path in G(x) between the depot and node i.
In the recursive algorithm, we do not need to continue enlarging a path P = (aq,...,b) for

which d(V(P)\ {a,6}) + md(a) + md(b) > C.

An easy modification of the procedure allows us to find other violated inequalities. Instead
of stopping the procedure once a path connected to the depot is found, we allow to find a
small number of such paths. At the end of the procedure; we look heuristically for an edge
set F' that intersects all these paths and such that z(F) < 1. If such a set is found,
z((E\ E(z)) UF) > 1 is violated. In order to reduce computation time, only edges from
6(0) are considered to build F.

The following procedure tries to find a stronger inequality for those nodes v for which
procedure (4.6) has found a violation. It computes a set of edges F' including all edges in
E\ E(z) that allows to enlarge feasible paths in G(z).

Procedure 4.7 (Second step: Strengthening the inequality)

Set F =10.
Apply procedure (4.6) to node v with an extra treatment on each path P generated in the
enumeration:

Form the edge set Fp = {e € (§(ap)Ud(bp))\ E(z) : d(V(P)U{e}) < C} (where ap and
bp are the endpoints of P) and do F = F U Fp.

If the enumeration in Procedure 4.7 is complete, the set of edges F given by this procedure
infersects all feasible routes containing v and it is usually much smaller than E \ E(z), so
z(F) > 1is a stronger inequality that is still violated.

Consider now the following extended hypotour inequalities. Let W be a set of customers,
if H intersects all routes that induce a path on W (all customers in W are consecutive in the
route), then the following inequality is valid:

z(§(W)) + 2x(ﬁ) > 4 (4.16)

20

Let e (e and f) be an (two) edge(s) in §(W) and let H intersecting all routes containing
e (e and f) and inducing a path on W, then:

z(§(W))+ 2z(H) > 22, + 2 (4.17)

and

2((W)) + 2z(H) > 2z. + 2y (4.18)

are valid inequalities, respectively.

Figure 4 shows a violated inequality of type (4.18) in which W = {6,15,17,10,14,9,18, 19},
edge e = (6,20), edge f = (19,4), the depot is denoted by node 1 and demands are in be-
tween parenthesis. Note that every route which induces a path on W and includes edges e
and f, will have to connect nodes 20 and 4 to the depot and (due to the capacity), it could
visit at most nodes 11 or 12 before getting to the depot. Then, it can be readily checked
that every such a route will intersect the edge set H = {(1,4),(12, 4),(1,11)}.

Procedure 4.8 (Erztended procedure)

Given a customer v, build greedily a node set W such that z(8(W)) < 4, d(W) < C and
veW.
Enumerate in G(z) all paths covering the nodes of W. For each of these paths, call procedure
4.6 to enumerate all feasible extensions of it. If, for all of them, an infeasibility is detected,
then call also procedure 4.7 to generate a set H such that the inequality (4.16) is violated.

Violated inequalities of types (4.17) and (4.18) are identified in a similar way.

Let 04, -+, 8y, be a family of customer sets and let H be a set of edges that intersects
all routes which induce a path on each of the sets £y, --,{, then the following inequality
is valid.

3 2(5() + 2(6(H)) 2 2p + 2 (4.19)
i=1,,p
We identify violated inequalities of this type by applying procedures 4.6 and 4.7 on the
shrunk graph G'S(z) at some stage of the application of procedure 4.1 (the first time INCRE
is less than zero). The family of customer sets are those corresponding to supernodes of the
shrunk graph.

Results for this procedure are presented in Table 6. The lower bounds shown have been
obtained using the greedy shrinking and tabu2 algorithms for the identification of capacity
constraints and the above procedures to identify hypotour inequalities.

21

C-160 -
W={6,15,17,10,145,18,19) 50

e=(6,20)

£-(19.4)

d(wW)-121 sm//
/) 17¢E6}

s \
T)
F - - - _
I \'\. - \1 T T 0T T -~ VT —
. - \ RN 8)
! o N
{ \ 08~ o 0.7 °}33\ 0,657
s
\ ~ \} / \/ﬁs
AME
| \ 2 _
o.ésr \}'1‘51 . / N
| 2 Ve 3:3; AN
| / \;ssz pss -~ - 0.3 0.467
s - AN
'I / ~ ~
0,333 11@
~ 8
by TN
1/ 0.3)
5403 o.§33 ™ -
Y \ S 13{()
A | 0557)
/ - (7))
27— -y~ - __. \
D 198

Figure 4: Violated hypotour inequality

22

Upper | Lower cpu cpu
Name Bound | Bound | Gap | Ip solver | identification | iterations
T E-nl01k8 | 817 [798.097] 2.3 [335.83 | 2355.99 | 199 |
En22-kd | 375 | 375 0 1.36 1.54 22 |
En23-k3 | 569 | 569 0 0.58 0.44 9
| En30-k3 [534 [509.833 | 45 | 348 3 26
| En33k4 [835 [834.154] 0.1 | 7.03 30.81 42
[Emn51k5 | 521 | 515.96 [0.97] 2638 | 152.09 77
[En76-ki0 | 832 [793.080[4.7 [588.8 | 1820.14 213 |
[En76k7 | 683 |663.261 | 2.9 | 165.86 1112.45 158 |
En76k8 | 735 [712.578 | 3.1 | 210.34 111772 | 169 |
F-nl135-k7 | 1165 | 1158.83 | 0.53 | 1631.58 857.36 147 |
Fnd5-kd | 724 724 0 5.79 3.2 27
| Fo72k4 | 238 | 2336 | 1.8 | 1475 15.27 33
[M-nl01-k10 [820 | 820 0 | 167.99 83.71 54

Average gap: 1.61
Average total cpu time: 824
Average number of iterations: 90.5

Table 6

5 The Branch and Cut Algorithm

We have implemented a Branch and Cut algorithm for the CVRP, in the spirit of that by
Padberg and Rinaldi [PR91] for the TSP. .
The cutting plane algorithm described in the last sections is applied to every subproblem
until no violated inequality is found or the solution did not increase during a certain number
of iterations. Eventually, the subproblem will be fathomed if an integer feasible solution is
found or the lower bound obtained is not less than the current upper bound. If the subprob-
lem is not fathomed, it is divided in two subproblems by branching on certain inequality as
it is explain below. The subproblem to be explored is then selected as in the LIFO strategy,
that is, one of the two last subproblems just created is selected to be studied.

Branching strategiés.

Padberg and Rinaldi [PR91] basic paper on branch and cut for the TSP, describes a branch-
ing strategy based on the selection of one edge variable with fractional value; then two
subproblems will be created: one fixing that variable to zero and the other fixing it to one.
The chosen variable is a variable whose value is as close as possible to 0.5 and whose coeffi-

23

cient in the objective function is as large as possible.

This branching strategy, called edge branching, appears to induce only local changes in
the CVRP solutions and bounds. We tried also a more general strategy that we call branch-
ing on sets and that we expect to perturb the problem a little more. Let S be a set of nodes
for which z(8(5)) — 2r(S) = p(5),0 < p(S) < 2, then we can create two subproblems: one
of them adding constraint z(6(9)) = 2r(5) and the other adding z(6(S)) > 2r(S) + 2. Note
that if § = {7, 7}, this branching rule is equivalent to branching on edge e = (¢,7)- Since we
want to have a balanced branching tree, we consider as candidate sets, those sets for which
p(S5) is between 0.75 and 1. These sets will be called 0dd sets.

The branching set selection is carried out in two steps: first, a candidate list of odds sets
is build heuristically and, second, one of them is selected from that list according to some
strategy. We have tested several strategies: '

S1: Select the set S with maximum demand.

$2: Select the set S which contains the maximum number of supernodes in the shrunk
graph GS(x).

S3: Select the set § which is farthest from the depot.
S4: Select the set S such that z(§(S)) is as close as possible from 3
S5: Select the set S such that z(6(S)) is as close as possible from 2.75

All these strategies happened to be better than the edge branching strategy. Yet, none
of the five strategies overcomes the others.

A simple improvement to all these strategies is to use a linear programming selection
scheme for selecting the candidate set. Applegate et al. [ABCC94] use successfully this
method for the TSP. They first select a certain number of variables as close as possible
from 0.5. For each variable, they solve the two corresponding subproblems and compute
the minimum of the increases in the lower bounds with respect to that in the current node.
Then, they choose the variable which leads to the maximum of these minimum increases.
This can also be done in the case of the branching set selection. For instance in the case
of strategy S1, we can select first the 6 sets with maximum demand and so on. Actually,
the best improvement we obtain correspond to selecting one candidate set for each strategy
S1 to S5 and using linear programming to select the final candidate. Denote by S6 this
strategy and denote by S7 the strategy corresponding to the one of Applegate et al. with
an initial set of ten edges. Finally, denote by SO the usual edge branching strategy. Next
table compares the results obtained when solving 15 instances both from the literature and
randomly generated. :

24

; strategy | cpu | # success | # nodes
time
S0 34h30 0 150
S5 14h535 0 76
[S6 [4pn57 | 11 | 45
ST J14h]| 4 | 50
Table 7

For each strategy, the column ”cpu time” gives the total cpu time. The column "#
success” gives the number of times the strategy is the best. The column "# nodes” gives
the mean number of nodes in the branching tree.

It seems obvious that strategy S6 have to be used for the CVRP. It shows the interest of
a linear programming selection scheme but also the interest of using sets in this scheme. It
is not possible to show the same results concerning the hardest instances in the litterature
since we can not solve them to optimality. Yet, we have computed the number of nodes and
time needed to decrease the gap between the lower and upper bound by 0.5%. Compared to
strategy S0 and applied to 20 unsolved instances, strategy 56 allows to divide the number of
nodes by 21 and the cpu time by 17 while strategy S5 allows to divide the number of nodes
by 3.5 and the cpu time by 5.

6 Computational Results.

The procedures described in this paper have been applied to a set of 13 difficult instances
taken from the literature. Table 8 shows for each test instance: number of cities (including
the depot), number of vehicles and the tightness of the capacity constraints (total demand
of the customers divided by the total capacity of the fleet of vehicles). Also, it shows the
reference from which each instance have been taken and where the complete data can be
found. Data for the first nine instances can be also found in the TSPLIB (Reinelt [Rei91]).

25

| Name | cities | vehicles Tightness | Reference |

| E-n101-k8 | 101 8 0.91 [CE69] |

| E-n22k4 | 22 4 | 094 CE69] |

| En23k3 | 23 3 | 0.7 [CE69]

| En30k3 | 30 3 0.94 [CE69]

| En33kd | 33 | 4 0.92 [CE69]
E-n51-k5 | 51 5 0.97 [CE69] |
E-n76-k10 | 76 10 0.97 [CE69

| En76k7 [76 | 7 0.89 | [CE69] |
E-n76-k8 76 8 0.95 [CE69] |
F-n135-k7 | 135 7 0.95 [Fis94] |
Fndskd | 45 T 4 0.90 [Fis94
F-n72-kd | 72 4 0.96 Fis94]
M-n101-k10 | 101 10 | 091 [[CMT79]

-Table 8

All the test instances are planar, that is, customers are located at points in the plane
and bi; = [¢;; + 1|, where ¢;; is the euclidean distance between points i and j. This is the
same cost function as the one proposed in the TSPLIB. Other authors, as Fisher [Fis94],
have prefered to use real costs, so it is difficult to compare the results obtained by different
methods even if the test instances are the same.

Table 9 presents the lower bounds obtained by our cutting plane algorithm on the above
set of instances, as well as the cpu times, in seconds, in a Sun Sparc 10 machine. The identifi-
cation procedures used were the greedy shrinking and tabu2 for the capacity constraints and
all the procedures presented here for the identification of generalized capacity constraints,
combs and hypotours. The upper bounds in the table were provided to us by Campos and
Mota [CM95] and were computed with two heuristic algorithms based on tabu search and
on the use of LP solutions. Also shown are the gap between the upper and the lower bounds
and, for comparison purposes, the gap and cpu times obtained by Fisher on some of these
instances. Note that the costs used by Fisher are real ones and therefore the lower bounds
should not be compared directly because the optimal costs may not be the same; never-
theless, the comparison between the respective gaps may override, at least partially, this
difficulty. In a recent paper, Mingozzi et al. [MCH94] reports results on three instances of
this set; gaps obtained were: 0 for E-n22-k4, 0.71 for En51-k5 and 2.24 for F-n76-k10 that
was the largest instance tried in that paper.

26

Upper | Lower _ Gap cpu &
Name Bound | Bound | Gap | cpu @ | in [Fis94] | in [Fis94]
E-n101-k8 817 | 799.656 | 2.1 1708 4.87 18477 I
| E-n22-k4 375 375 0 5]
| E-n23-k3 569 | 569 0 4 |
| En30-k3 [534 534 0 30 [
| E-n33-k4 835 835 0 46
LE‘H51"1{5 521 | 517.142 | 0.74 | 129 3.34 5745
| E-n76-k10 832 [793.384 | 4.6 | 1919 9.55 11038
| E-n76-k7 683 | 664.355 | 2.7 | 1052
[Eu76k8 | 735 |713.746 | 2.0 | 1282]
, F-n135-k7 1165 | 1159.06 | 0.51 | 2024 2.57 15230
F-n45-k4 724 724 0 12 0.38 2984
F-n72-k4 238 235 1126 59 | 174 6301
| M-n101-k10 [820 820 0 167 | 022 15578

(a) seconds in 2 Sun Sparc 10
(b) seconds in a Apollo Domain 3000

Table 9

. Optimal | cpu # nodes

Name value | time (a) (b}
E-n51-k5 | 521 342.1 9 |
| F-n135-k7 | 1162 [18871 95 |
F-n72-k4 237 | 3198 [57 |

(a) seconds in a Sun Sparc 10

Table 10

27

(b) number of nodes of the enumeration tree

Six instances are solved using the cutting plane algorithm. We manage to solve three
more using the Branch and Cut algorithm. These results are presented in Table 10. Note
that the F-n135-k7 instance had never been solved to optimality before and is the largest
instance ever solved in the literature.

Acknowledgments: We thank V. Campos, J. M. Clochard, M. C. Martinez, E. Mota,
Y. Pochet, J. M. Sanchis and L. Wolsey for a lot of comments that have greatly benefited
the content of this paper.

References.

[ABCC94]

[AHM90]

[AKMP94]
[AMSS89)
[AP93]
[Arad0]

[BGABS3]

[CCM91]
[CE69]
[CHY3]

[Chr85]

[CM93]

[CMT79]

[CN94]

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Special session on TSP.
In 15th International Symposium on Mathematical Programming. University of
Michigan, USA, Aug 1994,

J. R. Araque, L. Hall, and T. Magnanti. Capacitated trees, capacitated routing
and associated polyhedra. Discussion paper 9061, CORE, Louvain La Neuve,
1990. -

J.R. Araque, G. Kudva, T.L. Morin, and J.F. Pekny. A branch-and-cut for
vehicle routing problems. Arnals of Operations Research, 50:37-59, 1994.

Y. Agarwal, K. Mathur, and H. M. Salkin. Set partitioning approach to vehicle
routing. Networks, 7:731-749, 1989. .

P. Augerat and Y. Pochet. New valid inequalities for the vehicle routing problem.
In preparation, 1995.

J. R. Araque. Solution of a 48-city vehicle routing problem by branch and cut.
Research Memorandum 90-19, Purdue University, 1990. '

L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and Scheduling of vehicles
and crews: the state of the art. Computers and Operations Research, 10:69-211,
1983.

V. Campos, A. Corberan, and E. Mota. Polyhedral results for a vehicle routing
problem. European Journal of Operational Research, 92:75-85, 1991.

N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem.
Operations Research Quarterly, 20:309-318, 1969.

G. Cornuejols and F. Harche. Polyhedra.l study of the capacitated vehicle routing.
Mathematical Programming, 60:21-52, 1993.

N. Christofides. Vehicle Routing. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization, pages 431-448. John Wiley & Sons Ltd.,
Chichester, 1985.

V. Campos and E. Mota. Obtaining feasible solutions for the Vehicle Routing
Problem in a Branch and Cut scheme. In preparation, 1995.

N. Christofides, A. Mingozzi, and P. Toth. “The Vehicle Routing Problem”.
In N. Christofides, A. Mingozzi, P Toth, and C. Sandsi, editors, Combinatorial
Optimization, pages 318~338. John Wiley & Sons Ltd., Chichester, 1979.

J.-M. Clochard and D. Naddef. Some fast and efficient heuristics for comb sep-
aration in the symetric traveling salesman problem. Technical Report RR941M,
submitted to Mathematical Programming, Institut IMAG, Grenoble, 1994.

28

[Fis94]

[GHY1)

[GHLY4]

[GP79]

[GP85)

[HASG94]

[HR91]

[Lap92]

[LN84]

[LND85]

[Mag81]

[MCH94]

[Osm93a]

[Osm93b]

[PRO0]

M. Fisher. Optimal Solution of Vehicle Routing Problems Using Minimum K-
Trees. Operations Research, 42(4):626-642, 1994.

M. Grétschel and O. Holland. Solution of large-scale symmetric travelling sales-
man problems. Mathematical Programming, 51:141-202, 1991.

M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 1994.

M. Grotschel and M.W. Padberg. On the Symmetric Traveling Salesman Prob-
lem: I and II. Mathematical Programming, 16:265-280 and 281-302, 1979.

M. Grotschel and M. W. Padberg. Polyhedral Theory. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The Traveling
Salesman Problem: A Guided Tour of Combinaterial Optimization, pages 251-
305. John Wiley & Sons Ltd., Chichester, 1985.

D.T. Hiquebrau, A.S. Alfa, J.A. Shapiro, and D.T. Gittoes. A Revised Simulated
Annealing and Cluster-First Route-Second Algorithm Applied to the Vehicle
Routing Problem. Engineering Optimization, 22:77-107, 1994.

F. Harche and G. Rinaldi. Vehicle Routing. Private communication, 1991.

G. Laporte. The Vehicle Routing Problem: An overview of exact and approxi-
mate algorithms. Furopean Journal of Operational Research, 59:345-358, 1992.

G. Laporte and Y. Nobert. Comb Inequalities for the Vehicle Routing Problem.
Methods of Operations Research, 51:271-276, 1984.

G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and
distance restrictions. Operations Research, 33:1058-1073, 1985.

T.L. Magnanti. Combinatorial Optimization and Vehicle Fleet Planning: Per-
spectives and Prospects. Networks, 11:179-213, 1981.

A. Mingozzi, N. Christofides, and E. Hadjiconstantinou. An exact algorithm for
the vehicle routing problem based on the set partitionning formulation. June
1994.

L H. Osman. Vehicle Routing and Scheduling: Applications, algorithms and de-
velopments. Technical report, Institute of Mathematics and Statistics, University

of Canterbury, 1993.

LH. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41:421-451, 1993.

M. W. Padberg and G. Rinaldi. Facet identification for the symmetric traveling
salesman polytope. Mathematical Programming, 47:219-257, 1990.

29

[PRO1]

[Rei91]

[Tai93)

M. W. Padberg and G. Rinaldi. A branch and cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. STAM Review, 33:60-100,
1991.

G. Reinelt. TSPLIB: A traveling salesman problem library. ORSA Journal of
Computing, 3:376-384, 1991.

E. Taillard. Parallel iterative search methods for vehicle routing problems. Net-
works, 23(8):661-674, 1993.

30

