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Reduction in loop quantum gravity

Models necessary to simplify, understand and develop dynamics
of full theory.

But: Beware of artefacts. For reliable results, constructions must
be ensured to work equally well in many different models.

Key issues for dynamics:

−→ Difference equations: underlying discreteness, step-size
affected by lattice refinement, directly captured only in
inhomogeneous situations. Specific form important for
acceptable behavior even of homogeneous models
(stable in semiclassical regimes).

−→ Effective equations: intuitive geometrical pictures, but
quantum back-reaction important in strong quantum regimes
(e.g. near singularities).
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Kantowski–Sachs

Schwarzschild interior metric

ds2 = −

(

1 −
2M

r

)

dt2 +
1

(

1 − 2M
r

)dr2 + r2dΩ2

homogeneous for r < 2M .
Corresponding invariant connection/triad (SU(2)-gauge fixed):

Ai
aτidx

a = c̃τ3dx+ b̃τ2dϑ− b̃τ1 sinϑdϕ+ τ3 cosϑdϕ

Ea
i τ

i ∂

∂xa
= p̃cτ3 sinϑ

∂

∂x
+ p̃bτ2 sinϑ

∂

∂ϑ
− p̃bτ1

∂

∂ϕ

Spatial metric (x = t for interior):
ds2 =

p̃2
b

|p̃c|
dx2 + |p̃c|dΩ2

On shell: p̃c = 0 at singularity, p̃b = 0 at horizon.
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Phase space

(b̃, c̃, p̃b, p̃c) ∈ R
4, with {b̃, p̃b} = γG/L0, {c̃, p̃c} = 2γG/L0 after

choosing (x, ϑ, ϕ)-integration region of size L0 × 4π. Rescale

(b, c) := (b̃, Loc̃) , (pb, pc) := (Lop̃b, p̃c)

for coordinate independent variables (but L0-dependent).

Co-triad: ac = |pb|/
√

|pc| = L0ãc, ab =
√

|pc| =
√

|p̃c|.

Note: L0 (or V0 in isotropic models) key culprit for possible
artefacts in minisuperspace constructions. Only coordinate and
L0-independent variables are b, ab and c/ac.

Can quantum corrections only depend on the curvature scale
c/ac, or possibly just on the spatial scale ac

(as suggested by inverse triad corrections)?

Here, role of quantum reduction becomes important.
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Holonomy-flux algebra

h(τ)
x (A) = exp

∫ τL0

0
dxc̃τ3 = cos

τc

2
+ 2τ3 sin

τc

2

h
(µ)
ϑ (A) = exp

∫ µ

0
dϑb̃τ2 = cos

µb

2
+ 2τ2 sin

µb

2

generate states |µ, τ〉 = ĥ
(µ)
ϑ ĥ

(τ)
x |0, 0〉 with 〈c, b|0, 0〉 = 1. Triad

eigenstates:

p̂b|µ, τ〉 = 1
2 γℓ

2
P µ|µ, τ〉, p̂c|µ, τ〉 = γℓ2P τ |µ, τ〉

Completes kinematical setting. [A. Ashtekar, MB: CQG 23 (2006) 391]

As symmetric states, |µ, τ〉 can be realized as invariant
distributions. Key properties of reduction enter at dynamical
level: Hamiltonian constraint and lattice refinement.
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Hamiltonian constraint

Standard construction:

Ĥ(δ) =
2i

γ3δ3ℓ2P
tr
(

∑

IJK

ǫIJK ĥ
(δ)
I ĥ

(δ)
J ĥ

(δ)−1
I ĥ

(δ)−1
J ĥ

(δ)
K [ĥ

(δ)−1
K , V̂ ]

+2γ2δ2τ3ĥ
(δ)
x [ĥ(δ)−1

x , V̂ ]
)

=
4i

γ3δ3ℓ2P

(

8 sin
δb

2
cos

δb

2
sin

δc

2
cos

δc

2

×

(

sin
δb

2
V̂ cos

δb

2
− cos

δb

2
V̂ sin

δb

2

)

+

(

4 sin2 δb

2
cos2

δb

2
+ γ2δ2

)(

sin
δc

2
V̂ cos

δc

2
− cos

δc

2
V̂ sin

δc

2

)

)

Real parameter δ
expected to be constant in pure minisuperspace setting.
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Difference equation

Derive explicit action of Ĥ(δ), transform to triad representation.
Resulting difference equation non-singular: evolves across
τ = 0 (pc = 0, singularity)

C+(µ, τ) (ψµ+2δ,τ+2δ − ψµ−2δ,τ+2δ)

+C0(µ, τ)
(

(µ+ 2δ)ψµ+4δ,τ − 2(1 + 2γ2δ2)µψµ,τ

+(µ− 2δ)ψµ−4δ,τ

)

+C−(µ, τ) (ψµ−2δ,τ−2δ − ψµ+2δ,τ−2δ) = 0

with

C±(µ, τ) = 2δ(
√

|τ ± 2δ| +
√

|τ |)

C0(µ, τ) =
√

|τ + δ| −
√

|τ − δ|
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Instability

With constant δ, difference equation unstable in large region of
minisuperspace (µ > 4τ ): Only exponential rather than
oscillating solutions even in supposedly semiclassical regions.
[J. Rosen, J.-H. Jung, G. Khanna: CQG 23 (2006) 7075]

Seen based on analysis of difference equation (von Neumann
stability); also indicated by tree-level equation (“holonomized”):

H(δ) =
4

γ3δ3G

(

8 sin
δb

2
cos

δb

2
sin

δc

2
cos

δc

2

√

|pc|

+

(

4 sin2 δb

2
cos2

δb

2
+ γ2δ2

)

|pb|

2
√

|pc|

)

easier to analyze numerically. [D.-W. Chiou, L. Modesto, K. Vandersloot]

Incomplete effective equation, but reliable for inferring problems
in semiclassical regimes (with weak quantum back-reaction).

(Near singularity: state parameters essential.)
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Lattice refinement

[MB, D. Cartin, G. Khanna: PRD 76 (2007) 064018]

Reason for instability: Wave function highly oscillating in
semiclassical regimes; discrete lattice must be sufficiently small.

In Hamiltonian constraint, holonomies with constant δ do not
take into account necessary refinement of discrete structure as
geometry grows. Cannot be seen purely in minisuperspace
setting −→ extra input required.

Holonomies depend on vertex numbers NI determining
discreteness:

h(ℓx
0 )

x = exp(ℓx0 c̃τ3) = exp(ℓx0L
−1
0 cτ3) = exp(cτ3/Nx) ,

h
(ℓϑ

0 )
ϑ = exp(ℓϑ0bτ2) = exp(bτ2/Nϑ)

for holonomies along edges of coordinate length ℓx0 , ℓϑ0 :
Nx = L0/ℓ

x
0 edges of length ℓx0 in interval of size L0.
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Improvised uniqueness

Discrete versus classical evolving geometry:

Nx(λ)vx(λ) =
|p̃b(λ)|
√

|p̃c(λ)|
L0 , Nϑ(λ)vϑ(λ) =

√

|p̃c(λ)|

Allows more freedom since two free functions in discrete
geometry for each free function of classical geometry: Number
of sites N as well as sizes v change in (internal) time λ.
Precise behavior needed to model full dynamics.

Possible assumption: vx(λ) constant, then Nx ∝ ãcL0 = ac and
only c/ac appears in holonomies: improv[is]ed dynamics.

Apparently unique, but based on assumption. Gives only one
special case, ruled out by failure to capture near-horizon
dynamics properly (instabilities since Nx small near pb = 0).
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Lattice refining difference equation

General refinement schemes to be considered; gives difference
equation whose step-sizes 1/NI vary:

C+(µ, τ)
(

ψµ+2δNϑ(µ,τ)−1,τ+2δNx(µ,τ)−1

−ψµ−2δNϑ(µ,τ)−1,τ+2δNx(µ,τ)−1

)

+C0(µ, τ)
(

(µ+ 2δNϑ(µ, τ)−1)ψµ+4δNϑ(µ,τ)−1,τ

−2(1 + 2γ2δ2Nϑ(µ, τ)−2)µψµ,τ

+(µ− 2δNϑ(µ, τ)−1)ψµ−4δNϑ(µ,τ)−1,τ

)

+C−(µ, τ)
(

ψµ−2δNϑ(µ,τ)−1,τ−2δNx(µ,τ)−1

−ψµ+2δNϑ(µ,τ)−1,τ−2δNx(µ,τ)−1

)

= 0

Spherical symmetry – p.11



Less symmetry

Lattice refinement of any kind (non-constant δ) goes beyond
minisuperspace models. Try to embed homogeneous models in
less symmetric ones, such as spherical symmetry.

Advantages: Triad representation still available; explicit
inhomogeneity; different types of singularities can be studied.
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Spherically symmetric gravity

Ai
adx

aτi = Axτ3dx+Aϕe
1

2
iπτΛA

ϕe
− 1

2
iπτdϑ+AϕΛA

ϕ sinϑdϕ

+τ3 cosϑdϕ

Ea
i

∂
∂xa τi = Exτ3 sinϑ ∂

∂x + Eϕe
1

2
iπτΛϕ

Ee
− 1

2
iπτ sinϑ ∂

∂ϑ +EϕΛϕ
E

∂
∂ϕ

with U(1)-gauge theory (Ax, E
x) on 1-dimensional Σ,

Aϕ: Σ → R, Pϕ = 2Eϕ cosα (using cosα := ΛA
ϕ · ΛE

ϕ )

eiβ : Σ → U(1), P β = 2AϕE
ϕ sinα (in ΛA

ϕ = cos(β)τ1 + sin(β)τ2).

Gauss constraint: ∂xE
x + 2AϕE

ϕΛA
ϕ × ΛE

ϕ = ∂xE
x + P β = 0.

Thus sinα = 0 if homogeneous (Kantowski–Sachs) but new
freedom in general spherical symmetry.

Complicated relation between momenta and triad components if
cosα is free. Will make volume in terms of fluxes complicated.
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Basic variables and smearing

A simple canonical transformation

Aϕ −→ Aϕ cosα = −γKϕ

Pϕ −→ 2Eϕ

gives densitized triad components as momenta.

Use extrinsic curvature component Kϕ instead of connection
component Aϕ, but keep U(1)-connection Ax (for now).
Still allows natural smearing in 1-dimensional model:

hI(Ax) = exp

(

1
2 i

∫

I

Ax(x)dx

)

, Fv(E
x) = Ex(v)

hv(Kϕ) = exp(iγKϕ(v)) , FI(Eϕ) =

∫

I

dxEφ(x)

hv(β) = exp(iβ(v)) , Fv(P
β) =

∫

I

dxP β(x)
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Quantization

Orthonormal basis (1-dimensional graph g, ke, kv ∈ Z, µv ∈ R)

Tg,k,µ(A) =
∏

e∈E(g)

exp

(

1
2 ike ∫

e
Axdx

)

∏

v∈V (g)

e−iγµvKϕ(v)+ikvβ(v)

Flux operators:

Êx(x)f(A) = −iγ
∑

e

δhe

δAx(x)

∂f

∂he
=

1

2
γ
∑

x∈e

he
∂f

∂he

such that Êx(x)Tg,k,µ = 1
2γke(x)Tg,k,µ.

Similarly:
∫

I

ÊϕTg,k,µ = γ
∑

v∈I

µvTg,k,µ ,

∫

I

P̂ βTg,k,µ = γ
∑

v∈I

kvTg,k,µ
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Constraints

Gauss constraint: (Ex)′ + P β = 0 implies
kv = −1

2(ke+(v) − ke−(v)) such that r

ve−(v) e+(v)

Tg,k,µ(A) =
∏

e∈E(g)

exp

(

1
2 ike ∫

e
(Ax + β′)dx

)

∏

v∈V (g)

exp(−iγµvKϕ(v))

Now only extrinsic curvature: γKx = Ax + β′ (U(1)-invariant).

Diffeomorphism constraint: moves vertices.

Hamiltonian constraint:

H[N ] =

∫

Σ
dxN(x)|Ex|−1/2

(

(1 − Γ2
ϕ +K2

ϕ)Eϕ

−2KϕKxE
x + 2ExΓ′

ϕ

)

with Γϕ = − (Ex)′

2Eϕ .
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Hamiltonian constraint

Operator constructed from holonomy and flux operators
following general scheme [T. Thiemann]

tr(hxhϑ(v+)h−1
x hϑ(v)−1hϕ{h

−1
ϕ , V }) ∼ δγ2Kϕ(v)Kx(v)

√

|Ex|

and

tr(hϑ(v)hϕ(v)hϑ(v)−1hϕ(v)−1hx{h
−1
x , V }) ∼ δγ2Kϕ(v)2

Eϕ

√

|Ex|

Radial edge length δ gives discretized integration measure;
hx, hϑ and hϕ suitable SU(2)-holonomies.

Operator changes labels through holonomies, may add new
vertices to graphs as source for lattice refinement.
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Physical states

Without explicit refinement: Decomposition in basis states
(ke ∈ Z, 0 ≤ µv ∈ R)

ψ(A,φ) =
∑

~k,~µ
ψ̃(~k, ~µ) r r r

µ− µ µ+
· · · k− k+ · · · (A,φ)

gives rise to Ĥψ(A,φ) = 0 as set of coupled difference
equations (one for each edge)

Ĉ0(~k)ψ̃(. . . , k−, k+, . . .) + ĈR+(~k)ψ̃(. . . , k−, k+ − 2, . . .)

+ĈR−(~k)ψ̃(. . . , k−, k+ + 2, . . .) + ĈL+(~k)ψ̃(. . . , k− − 2, k+, . . .)

+ĈL−(~k)ψ̃(. . . , k− + 2, k+, . . .) + · · · = 0

with difference operators Ĉ0 and Ĉ± acting on the
µ-dependence.

Non-singular: evolution across ki = 0. [PRL 95 (2005) 061301]

Bounded inverse triad. [V. Husain, O. Winkler: CQG 22 (2005) L127]

Spherical symmetry – p.18



Simpler dilaton models?
[MB, J. Reyes: CQG 26 (2009) 035018]

Use canonical transformation to introduce arbitrary dilaton
potential (e.g. higher-dimensional black holes, BF [JT]):
Hamiltonian constraint

K2
ϕE

ϕ +2KϕKx|E
x|+Eϕ

(

−|Ex|
1

2V (1
4 |E

x|) − Γ2
ϕ

)

+2|Ex|Γ′
ϕ = 0

where again Γϕ = −(Ex)′/2Eϕ.

Only one term affected, which turns out to be the simplest one
directly quantized in terms of flux operators.
Terms containing extrinsic curvature or spatial derivatives (spin
connection) do not depend on the potential.

Advantage: Most details of loop quantization (holonomies,
spatial discretization of derivatives) model independent.

Disadvantage: No simplifications from alternative potentials.
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Consistent deformations

Inverse triad corrections can be incorporated in anomaly-free
way:

H inv
grav[N ] =

∫

Σ
dxN(x)f [Ex]|Ex|−1/2

(

(1 − Γ2
ϕ +K2

ϕ)Eϕ

−2KϕKxE
x + 2ExΓ′

ϕ

)

together with matter Hamiltonian

H inv
matter[N ] =

∫

Σ
dxN(x)(ν[Ex]Hkin + σ[Ex]Hgrad + Hpot)

provided that f2 = νσ.

Constraint algebra deformed, but remains first class.

[To be compared with partially gauge-fixed version: V. Husain et al.]
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LTB models
[MB, T. Harada, R. Tibrewala: PRD 78 (2008) 064057]

Alternatively, consistent formulation with (partial) holonomy
corrections under LTB-like condition [(Ex)′ = 2g[Kϕ]Eϕ].

Constraint equation (for R =
√

|Ex|, in terms of mass function
F (x)):

2RR̈+ Ṙ2
√

1 − γ2δ2Ṙ2 = 0

together with the evolution equation

4Ṙ2R′

√

1 − γ2δ2Ṙ2 + 8RṘṘ′

= F ′

(

1 +

√

1 − γ2δ2Ṙ2

)2√

1 − γ2δ2Ṙ2 .

Spherical lattice refinement: δ[R], more complicated analysis.

Potentially naked singularities. No indication of resolution yet.
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Conclusions

General features of black hole dynamics in models of loop
quantum gravity available, but not unique.

Consistency conditions (e.g. stability) can be checked; provide
conditions also for acceptable behavior in more general cases or
full theory. Several models already ruled out!

Spacelike singularities in spherical symmetry resolved (even
inhomogeneous ones), but no clear effective picture yet:
quantum back-reaction still to be captured reliably.
For constraints, not all corrections implemented consistently
(anomaly-free) yet.
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