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Background and motivation

= Black hole thermodynamics (Bekenstein, Hawking):

1
S = ZA, T =k/87G

dM =TdS + QdJ

was argued for globally stationary space-times, using classical GR, and

QFT in curved space-time.

= Extended to isolated horizons (Ashtekar, Beetle, Fairhurst, Lewandowski):
same thermodynamics with only stationarity of intrinsic horizon geometry

required (“isolated horizon boundary conditions”).

= Entropy calculation in LQG (Ashtekar, Baez, Corichi, Krasnov): Statistical
mechanical derivation of the entropy, assuming intrinsic geometry of

horizon is spherically symmetric (“type I isolated horizon”)

= Present work: extend to axisymmetric case (“type II isolated horizon”).




For entropy calculation, need diffeomorphism-invariant observables to characterize
horizon geometry (qqp, Do). Free initial data: (Gap, @a)-

Definition of Multipoles. When S is a cross-section of an axisymmetric
(“type II”) isolated horizon,

I, +iL, = —/ Yo 0(C) Wy %
S

where

e ((,¢) are the unique coordinates in which
Gab = RB? (715704 C00C + F(C)0ad0r0)
o Uy =R+ LeD,ay .

They are not just useful for entropy calculation — they are also used in numerical
relativity! [5]

Reconstruction:

Choose (¢, ¢) (diffeo freedom)
Uy i= =33, (In +iLn)Yn,0(¢)

F(¢) = 4| R? [$, ¢ [4 daReTs(C2)] +2(C + 1)

Gab = R*(...)

Digwp) = ImV¥2é,p and (jab@a@b — 0 determine &.




Phase space we are quantizing

e Basic variables: Ashtekar-Barbero variables (VAZ 3 R = €qbcTEY).

e Boundary conditions: internal boundary, S, is type II isolated horizon

with fixed multipoles In,Ln and fixed area a,.

Partial gauge-fixing condition (r'E{ = the normal to S) reduces
SU(2) gauge, at S, to U(1). Physmal U(l) connection:

véf,az - _

'y + ’Ywa)

Canonical type I geometry and assoc. U(1) connection

v = R (202C00C + f0609)

where f =1 — (2. We also define

Manifestly U (1) and

Va,o — Va _ i (f/ . JLO'/) 8a¢ . %wa t:liﬂ“'eo cov:

imp. for solving Gauss and

where (, ¢, f are as on last slide.

Horizon boundary condition:

diffeo constraints




Symplectic structure

Can calculate symplectic current w(d1,d2) from Lagrangian. On-shell dw = 0
(“locally conserved”). Usually this is enough for fz w to be a good definition of
symplectic structure that is independent of . But in present case, symplectic

current “escapes” across the horizon:

To fix this, decompose [, w = (fsl — fSQ) A, and define Qg = [y, w + $5 A s0
that onshell

Uiy = U, = (i, — o, )0+ [aw =0.

Final result:

1
9(51, 52) = /Tr(517A A 627X — 0 7TA N 5172) 4+ —— do 51V A 6oV °

8mwG ym

Note: Canonically associated type I connection appears in horizon symplectic

structure. The type Il connection cannot be used.




Quantization Strategy

(FV7 QV) (F57QS)
l (LQG) l (Chern—Simon

Hy Hs

—~
H=Hy  Hg

l (quant. b.c.)
fHkin

l (constraints)
?{phys




Imposing the constraints

Solution to quant. b.c. and Gauss constr.

P :punctures

Hyin=

m:label quant. excit’ns of r; 5
=

b :label quant.excit’ns of Chern-

Simons curvature (holonomies)

Diffeo. constr.
Group average over [“divide by”] all diffeos preserving M and S.

Hamiltonian constr.
Is imposed in bulk as usual. Is not imposed on the horizon b/c C'(N) does

not generate gauge unless lapse vanishes at S.




e Fix axial foliation ¢ — gauge-fixing in the sense
of being used to interpret the physics.
For convenience: introduce (p as background

coordinate labeling leaves of &.

e preferred coordinate gc operator:

) 2%
C(Go) = —1 + =<0

as

(taken over directly from classical theory.)

Area e-vals are discrete — ( e-vals are discrete.




Multipole operators.
Classically: I +iLln = — § UaVYno(C) %= -2 [1, WaY; 0(¢)dC

R 1
Motivates: “In +1Lp = —%q / VoY, 0(¢)dC”
1

reqularize: set ( = lim; oo (;, (; smooth.

1 o N N N 2 o o
Uo(Ci)Yn,0(¢)dd = 28 <In + Z'Ln)

-1 Ao

Def’n of ensemble.

Nag Al

Ao In

From eq’n (1):

Answer for entropy: Same as in type (I) case!

Yo = 0.2375329579.. ..




Synopsis
e Type II case reduces to type I case :
— Surface symplectic str. is Chern-Simons with V°
— Relation b/w V.2 and bulk is again given by
dve = — 1673 (vy . p)

Qo

Do same quantization as before and get same entropy.

However, physical interp. of V? in type II case is different:

concentrations of dV° at punctures are no longer simply deficit

angles. é : \i!g,fn,f)n introduced to recover physical interp. in

type II case.

Takes us far beyond Kerr Isolated Horizons.
Kerr is a 2-parameter family, whereas the multipoles are an

infinite set of parameters.
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