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Background and motivation

⇒ Black hole thermodynamics (Bekenstein, Hawking):

S =
1

4
A, T = κ/8πG

dM = TdS + ΩdJ

was argued for globally stationary space-times, using classical GR, and

QFT in curved space-time.

⇒ Extended to isolated horizons (Ashtekar, Beetle, Fairhurst, Lewandowski):

same thermodynamics with only stationarity of intrinsic horizon geometry

required (“isolated horizon boundary conditions”).

⇒ Entropy calculation in LQG (Ashtekar, Baez, Corichi, Krasnov): Statistical

mechanical derivation of the entropy, assuming intrinsic geometry of

horizon is spherically symmetric (“type I isolated horizon”)

⇒ Present work: extend to axisymmetric case (“type II isolated horizon”).
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For entropy calculation, need diffeomorphism-invariant observables to characterize

horizon geometry (qab, Da). Free initial data: (q̃ab, ω̃a).

Definition of Multipoles. When S is a cross-section of an axisymmetric

(“type II”) isolated horizon,

In + iLn := −
∫

S

Yn,0(ζ)Ψ2
2
ε

where

• (ζ, φ) are the unique coordinates in which

q̃ab = R2
(

1
f(ζ) ∂aζ∂bζ + f(ζ)∂aφ∂bφ

)

• Ψ2 = −1
4 R̃+ i

2 ε̃abD̃aω̃b .

They are not just useful for entropy calculation — they are also used in numerical

relativity! [5]

Reconstruction:

• Choose (ζ, φ) (diffeo freedom)

• Ψ2 := −1
R2

∑
n(In + iLn)Yn,0(ζ)

• f(ζ) = 4
[
R2 ∫ ζ

−1 dζ1
∫ ζ1
−1 dζ2ReΨ2(ζ2)

]
+ 2(ζ + 1)

• q̃ab = R2(. . . )

• D̃[aω̃b] = ImΨ2 ε̃ab and q̃abD̃aω̃b = 0 determine ω̃a.
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Phase space we are quantizing

• Basic variables: Ashtekar-Barbero variables (γAi
a, γΣi

ab = εabc
γEci).

• Boundary conditions: internal boundary, S, is type II isolated horizon

with fixed multipoles I̊n,L̊n and fixed area ao.

Partial gauge-fixing condition (riEa
i = the normal to S) reduces

SU(2) gauge, at S, to U(1). Physical U(1) connection:

V :=
1

2
γ←Airi =

1

2
(−Γa + γωa)

Canonical type I geometry and assoc. U(1) connection

q̊ab = R2
(

1

f̊
∂aζ∂bζ + f̊∂aφ∂bφ

)

where f̊ := 1− ζ2. We also define

V o
a := Va − 1

4

(
f ′ − f̊ ′

)
∂aφ− γ

2
ωa

Manifestly U(1) and

diffeo cov:
imp. for solving Gauss and
diffeo constraints

where ζ, φ, f are as on last slide.

Horizon boundary condition:

dV o = −2π

ao
( 2ε) = −16π2γ

ao
(γ←Σiri)
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Symplectic structure

Can calculate symplectic current ω(δ1, δ2) from Lagrangian. On-shell dω = 0

(“locally conserved”). Usually this is enough for
∫
Σ ω to be a good definition of

symplectic structure that is independent of Σ. But in present case, symplectic

current “escapes” across the horizon:

To fix this, decompose
∫
∆ ω =

(∮
S1
− ∮

S2

)
λ, and define ΩΣ =

∫
Σ ω +

∮
S λ so

that onshell

ΩΣ1 − ΩΣ2 =
(∮

Σ2
− ∮

Σ1

)
ω +

∫
∆ ω = 0.

Final result:

Ω(δ1, δ2) = −
∫

M
Tr(δ1

γA ∧ δ2
γΣ− δ2

γA ∧ δ1
γΣ) +

1

8πG

ao

γπ

∮

S
δ1V o∧ δ2V o

Note: Canonically associated type I connection appears in horizon symplectic

structure. The type II connection cannot be used.
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Quantization Strategy
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Imposing the constraints

Solution to quant. b.c. and Gauss constr.

Hkin=
⊕

P,~m,~b

2~m=~b mod k

HP, ~m
V

⊗HP,~b
S

P :punctures

~m:label quant.excit’ns of ←−riΣ̂
i

~b :label quant.excit’ns of Chern-
Simons curvature (holonomies)

Diffeo. constr.

Group average over [“divide by”] all diffeos preserving M and S.

Hamiltonian constr.

Is imposed in bulk as usual. Is not imposed on the horizon b/c C(N) does

not generate gauge unless lapse vanishes at S.
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• Fix axial foliation ξ — gauge-fixing in the sense

of being used to interpret the physics.

For convenience: introduce ζ0 as background

coordinate labeling leaves of ξ.

• preferred coordinate ζ̂ operator:

ζ̂(ζ0) = −1 +
2âζ<ζ0

âS

(taken over directly from classical theory.)

Area e-vals are discrete → ζ̂ e-vals are discrete.

• Ψ̊2(x) = − 1
R2

0

∑
n(I̊n+iL̊n)Yn,0(x),

(
Ψ̊2 : [−1, 1] → C

)

Ψ̂2(p) := Ψ̊2(ζ̂(p))
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Multipole operators.

Classically: In + iLn = − ∮
Ψ2Yn,0(ζ) 2ε = −aS

2

∫ 1
−1 Ψ2Yn,0(ζ)dζ

Motivates: “ În + iL̂n = − âS

2

∫ 1

−1
Ψ̂2Yn,0(ζ̂)dζ̂ ”

regularize: set ζ = limi→∞ ζi, ζi smooth.

În + iL̂n = − lim
i→∞

âS

2

∫ 1

−1
Ψ̊2(ζ̂i)Yn,0(ζ̂i)dζ̂i =

âS

ao

(
I̊n + iL̊n

)
(1)

Def’n of ensemble.
ao − δ < aS < ao + δ

From eq’n (1):
∆âS

ao
=

∆În

I̊n

=
∆L̂n

L̊n

Answer for entropy: Same as in type (I) case!

S =
1
4

γ0

γ
ao, γ0 = 0.2375329579 . . .
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Synopsis

• Type II case reduces to type I case :

– Surface symplectic str. is Chern-Simons with V o
a

– Relation b/w V o
a and bulk is again given by

dV o = − 16π2γ
ao

(γ←Σ · r)
Do same quantization as before and get same entropy.

• However, physical interp. of V o
a in type II case is different:

concentrations of dV o at punctures are no longer simply deficit
angles. ζ̂, Ψ̂2,În,L̂n introduced to recover physical interp. in
type II case.

• Note: Takes us far beyond Kerr Isolated Horizons.

Kerr is a 2-parameter family, whereas the multipoles are an
infinite set of parameters.
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