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A remarkable feature of general relativity (GR) is that it admits a
connection formulation with a (unconstrained) phase space isomor-
phic to that of SU(2) Yang Mills theory [Ashtekar, Barbero].

From ADM variables
to Ashtekar-Barbero variables
(qabv Pab) — (Azm Eza)

From the (densitized) triad ¢¢®* = E¢E?6" and K] = ¢ 2 Ko EY define
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EciEdj '
- a b . . T a
W1 [E] = /EEdeE[iEj]aaW which gl1ves Fa = 5W1 [E]/CSEZ .

Gi=e€jxEYKF ~0— G; = D,"P{ ~ 0.



Are there more general connection variables than the ones obtained
above? Yes, take
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Another way: given a background independent functional W5[A]
PE— PR+ WhlA]/SAL.

Only possibility
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where 0 is a real parameter. Taking )\,, = 0 and defining B? = ‘[’ L we get
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There is a more geometric way to get the previous variables



Large SU(2) gauge transformations|Ashtekar-Balachandran]
Dirac procedure D, FE{>WV[A] =0

i.e., gauge invariance under ¥, C ¢ (¥, gauge transformations connected to
the identity). As ¢4 /¥, ~ Z. Elements [g(z)] € ¥ /¥, are characterized by

1
= tr(g~tdg A g 'dg A g~ tdg].
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Therefore, physical (¥,-invariant) are in ¢ = @, with 6 € [0, 27| such
that

wlg]

VAl € 4, and a € ¥ = apU[A] =vllw4].

Since local physical observables are ¢ invariant = 7) = super selected sectors.
The non-trivial transformation rule for states in .7 can be shifted to operators

Wo[A] = exp (—i0Scs[A])P[A] € =
TP = exp (—iW2[A]) P} exp (iW2[A])
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Effects on quantum geometry
The flux operators P (r, S) = [ r-(e"P) for r € su(2) have discrete spectrum
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Isolated horizons boundary condition
There are non-trivial degrees of freedom at the horizon encoded in the pull
back of the bulk connection on the horizon H = A N X; a U(1)-connection
A = A'r; and
21

Fop(A) = —a—eabcEcirz where a, is the macroscopic area of the horizon
H

The simplectic structure [Ashtekar-Corichi-Krasnov]|
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where (¢ - E)', = €ue(E°)", and the horizon contribution is a U(1) Chern-
Simons simplectic form of level k = apy/(47wyG). The previous simplectic
structure can be obtained as the curl of the simplectic potential
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Effect of 6 on the simplectic structure: introducing a new potential
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where W[A] = 0Scs(A) and we used that

1
0Scs|A] = ) /z Tr[F(A) NJA] — = /H A N JA + term vanishing at oc.
So in addition to the transformation "P — "°P, 6 shifts the CS level:
ag 0
k(6) = - —.
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The simplectic form takes the form
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The quantum boundary conditions |Ashtekar-Corichi-Krasnov-Baez|
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As the boundary condition and the spectrum of ﬁab depend on the 6 only
through the CS level the quantum boundary condition imposes the #-independent
matching

j h(A) > Py, = 't Yn
with F, = 21
Quantum boundary condition n = —2m

One can implement the constraints at the horizon as for 6 = 0.



The black hole horizon area spectrum. Using the quantum boundary

condition
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Therefore, here the quantum isolated horizon constraint implies that the quan-
tum operator associated to the (Dirac) physical observable A is well defined.
The counting techniques of [Meissner, Domagala-Lewandowski| one finds that
the 6-dependence does not change the leading term in the entropy: explicitly
Sy = log[ A (ag)] = (40,7) *vyam, where A (ag) is the number of horizon
states compatible with a macroscopic horizon area ax and v, = 0.23...




Conclusions:

As in QCD the effects of large SU(2) gauge transformations are encoded
in a real parameter 0 € |0,27]. Effects are expected in parity violating
systems, e.g. Black Holes.

From dimensional reasons we expect the former effects to be important
in the deep Planckian regime. However, we discover drastic implications
for certain kinematical geometric operators (Area and volume are ill

defined).

But what about quantum horizon area” Quantum horizon area remains
well defined thanks to the IH boundary condition BH entropy remains
finite and agrees with standard results in the semiclassical regime (poly-
nomial corrections in € = 002 /a,).

Some aspects of the result are reminiscent of the BH entropy calculation
in the presence of nonminimaly coupled scalar fields [Ashtekar-Corichi-

Sudarsky]|



Additional questions:
e Dirac vs. Kinematical observables [Thiemann-Dittrich]

e Can one study analytically the BH entropy behaviour for small black
holes for which the 6 effects will be important?

e It seems that for physical area and volume to be well defined for arbi-
trary € we need the curvature to be distributional. Link with simplicial
like geometry? Strings and branes of the kind studied in [Baez-AP,
Montesinos-AP, Fairbairn-AP]



