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Overview:

We consider a spherically symmetric quantum scalar field coupled to 
spherically symmetric quantum gravity. 

Since the problem has a constraint algebra with structure functions, we
will use the “uniform discretizations” approach.

We will construct the state corresponding to the vacuum and show that it
results in a quantum state peaked around flat space (minus a deficit angle)
for the gravitational variables and a state closely resembling the Fock
vacuum for the scalar field.



Plan

• Introduction: previous work.
• Spherically symmetric gravity.
• QFT in CST limit.
• A technique for minimizing the master • A technique for minimizing the master 

constraint.
• Definition of a vacuum for the matter fields.
• Minimization of the master constraint in the 

full theory.



Previous work:

Loop quantum gravity is being extended systematically to situations of greater
and greater complexity:

-Loop quantum cosmology (lots of people).

-Spherically symmetric vacuum gravity (our previous work)

-Gowdy cosmologies (Madrid group).

In all these cases, however, one has never had to confront “the problem of
dynamics”, namely, that the constraint algebra of gravity has structure functions.

In loop quantum cosmology there is only one constraint with trivial algebra.
In the spherically symmetric case, special gauge fixings were used that rendered
the constraint algebra Abelian. In the Gowdy case,  the issue was avoided by 
polymerizing only partially the variables.



Spherical symmetry with the new variables

It simplifies the constraints if one introduces a “polar” canonical transformation in
the variables Aϕ, Pϕ,β,Pβ

Previous work with the new variables, Bengtsson (1988) Kastrup and Thiemann (1993)
and Bojowald and Swiderski  (2005, 2006). Choose connections and triads adapted 
to spherical symmetry,

Λ’s are generators of su(2).

the variables Aϕ, Pϕ,β,Pβ

To fix asymptotic problems (Bojowald, Swiderski), one does a further canonical
change,
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One can introduce gauge invariant variables (Gauss’ law is then gone),

Their relation to the traditional metric variables is,

Kx

The quantization of this model directly is therefore a hard thing since it has the
“problem of dynamics”. 

The constraints take a relatively simple form with the usual 1+1 diffeo/Hamiltonian
algebra of constraints (with structure functions),



We will fix partially the gauge to simplify things. We choose Ex =x2. We then
eliminate the diffeomorphism constraint by solving for Kx

And rescaling the lapse,                                             we get: 

And the spatial integral of Hmatt gives the mass of the space-time.



QFT in CST
To gain intuition on what to expect, we will rederive well known results of 
quantum field theory in curved space-time in the notation we are using. We 
fix the background space-time to flat in usual spherical coordinates where Kϕ=0. 
One has,

With evolution equation:

And solution:

And from Hamilton’s equations:



One can define Fock states and the Hamiltonian has the usual singularities, 
which we regularize by working on a lattice, with usual conventions,

To quantize, start from

and one gets 



The VEV of the Hamiltonian in the large L limit can be approximated by the 
integral,

And can be computed in closed form using integral cosine functions. It is more
instructive to study the expansion in ε, the lattice spacing,

The first term has dimensions of energy density (in one dimension) and is
a “cosmological constant”. Except that in 1+1d the role of this type of 
cosmological constant is not to curve space locally but to produce a global
deficit solid angle. 



To see better the last point, we rewrite the Hamiltonian as,

So we cancel the divergent part of the matter part. The gravitational part
suffers what amounts to a rescaling of x, which was the factor in front of the
solid angle portion of the spherical metric of space-time. That is how a solid
deficit angle (“cosmic texture”) appears.



Full quantum theory:

We will use the uniform discretization procedure, in which one discretizes space
and time and the evolution is given by a discrete version of the master constraint.
The continuum limit is achieved when the master constraint vanishes.

Graphically,

Initial data
Constraint surface

Initial data

So our goal is to minimize the master constraint. We will use a variational technique
to seek for a minimum.



Variational technique to minimize the master constraint

And introduce a fiducial space           of square integrable functions of the 
configuration variables.

We will write the master constraint in self-adjoint fashion: 

We consider a one-parameter family of elements of             ,              with a
suitable ε<1 and

We also consider a subset of  “test” functions Φ of           that is infinitely 
differentiable and of compact support. 

We will assume that the sequence                  with some suitable p<1 is, in the limit 
ε going to 0, a distribution in the dual of F. 

That is,                                  is finite and non vanishing with



Therefore 

And                            is a distribution in the dual of Φ that is annihilated by the master 
constraint, if the limit exists. If the limit does not exist one gets a state that has small

Since                                     then                       has zero norm 

constraint, if the limit exists. If the limit does not exist one gets a state that has small
values of the master constraint for small values of ε.



The technique in an example:

We consider a mechanical system with two degrees of freedom q1, q2, p1, p2. and two 
constraints p1 =0 and p2 =0. The physical space will be given by the distribution,

Let us see how our technique reproduces this result. We start by fixing a gauge,
q –q =0. This is not needed in this example, but in more complicated cases oneq1 –q2 =0. This is not needed in this example, but in more complicated cases one
may have to fix a gauge, so we want to show it does not cause problems. The
conjugate variable to the gauge fixing, p1 –p2  is strongly zero. 

We start with a two-parameter set of states in            choosing as configuration
variables q1 –q2 and p1 +p2. 

These states describe wavepackets centered around the classical solutions
of the constraints q1 –q2=0, p1 –p2=0 and p1 +p2=0 .



The expectation value of the master constraint                         on these states is,

And one sees that the expectation value is not zero for finite values of the sigmas
(they are positive). However if one takes  σ−=ε2 and σ+=1/ε2 then in the limit ε->0− +
the master constraint is                          and the states become,

So the physical states are,



It is interesting to “break” the model a little bit by making the constraints be 
second class. This mimics to what happens to a real theory with first class
constraints when it is discretized on a lattice.  So if we take

And we now repeat the previous procedure, one gets,

And now there is no limit in parameter space in which the master constraint
vanishes. One can choose values of the sigmas that minimize the master
constraint. The resulting states approach the correct physical states in the
limit β->0 and the master constraint vanishes in that limit.

So the message is that one can ignore the problem that discretized constraints
fail to be first class, but one will have to live with a small but non-vanishing
master constraint.



Quantization of the full model:

We will consider only situations with weak fields, so to construct the ansatz for
the classical solution we ignore the matter Hamiltonian and solve the gravitational
part, which just yields flat space with a solid deficit angle, Kϕ=0 and Ex=x/(1-2Λ)1/2.

We take the complete Hamiltonian constraint,

We discretize it and polymerize the gravitational variables,



We now construct the master constraint,

or

And upon discretization,

Expanding out one has,Expanding out one has,



And the c’s are rather lengthy, but all can be written in terms of a few significant
quantum operators, e.g.,



Lengthy (trust me…)



Loop representation for the spherically symmetric case:

Manifold is a line. “Graph” is a set of edges,            . The variables are scalars, so in the 
Loop representation one uses “point holonomies” to represent them. What essentially
goes on is a “loop quantum cosmology at every point”:

The quantum state we pick as guess for the variational method is a Gaussian
centered around the classical solution 



We will now take the expectation value of the matter portion of the Hamiltonian
constraint on the above state. The result is an operator acting on the matter 
variables. We will construct the Fock vacuum for that operator. What we are doing
therefore is studying a quantum field theory on the curved space-time given by
the expectation values of the triad and the curvature given by the previous state.

Why the Fock vacuum? If you wish, this is just a trial, given that it is the first time
the problem is addressed. In the future, one should polymerize the matter part of 
the theory and show that the Fock vacuum arises from the polymerized theory.

Finding the vacuum:

Some hints of this already exist (Sahlmann and Thiemann, Ashtekar, Fairhurst, Willis),
although in different contexts.

To realize the matter part of the Hamiltonian constraint, 

We need to realize two operators



The first one is,

And people may recognize the similarity with an operator realized by Ashtekar,
Pawlowski and Singh in the context of LQC. With this operator one can compute,

The computation is done integrating over µ. This can be done exactly but the
result is lengthy, here we show only the expansion in powers of lp/ε.

The second operator is 

Which is easily seen to vanish since the Gaussian is even and sin is odd.



With the previous results the expectation value of the matter part of the Hamiltonian
on the gravitational states yields and “effective” matter Hamiltonian that is an
operator acting on the matter states,

Where,

And the second term in g(x) is a correction due to polymerization and 
the last term another quantum correction.

With this Hamiltonian we can get the equations of motion, yielding the 
effective “wave equation” for the fields,



Since the background is time independent , there is no obstruction to introducing
positive and negative frequency modes. The resulting equation can be cast in
Sturm-Liouville form,

With solution,

Where



Using Hamilton’s equations one gets, 

And at the end of the day the effective Hamiltonian is 

And we can immediately construct a Fock space and a vacuum for it.

We now will proceed to address the full theory using the variational method
and using as trial state,

And we will look for σ’s that minimize the master constraint. Notice that the
state is a direct product since we are in an eigenstate. If  we were studying
excitations one would expect entanglement. 



We need to realize as a quantum operator the master constraint. This requires
eight operators. We already realized one. The others are,



With the previous results we can compute the expectation value of the master
constraint on the gravitational state. The result is an operator acting on matter
states. The non-vanishing terms are,

To compute the expectation value on the matter states it is useful to use a
trick in which discretized derivatives and integrals are replaced by continuumtrick in which discretized derivatives and integrals are replaced by continuum
expressions to avoid dealing with summations and discrete equations.  The
integrals in ω are done with a cutoff nevertheless. For instance, the result for
the first operator is,

With



A more manageable expression can be obtained by ignoring corrections of lp4 and
and the highly oscillating terms involving sin(πx/ε) and cos(πx/ε) and Cin(πx/ε). The
result is,

Or, reverting to the discrete theory,



Completing the calculation of the master constraint is lengthy but manageable.
The result is,



One can analyze the behavior of the master constraint numerically. Here is the
minimum as a function of ε, the lattice spacing (in cms),

So we see that in this approximation the theory does not seem to have a good
continuum limit, but one can have very small values of the master constraint
for lattice spacings that are very small compared to the characteristic lengths of
all other non-gravitational interactions. 



Two final observations: 

a) what would have happened if instead of choosing for the gravitational variables the 
state peaked around flat space we had chosen “zero loop vacuum” state. Such a 
state corresponds to degenerate triads and is annihilated by the matter part of the 
Hamiltonian. One can compute the expectation value of the master constraint 
in closed form within the approximations used here,

And one sees that it has a much larger expectation value of the master constraint

b) The cosmological constant: Goes as                          and as we need to take
e much larger than lp, this means that Λ will be much smaller than the Planck
scale.

And one sees that it has a much larger expectation value of the master constraint
than the one we found for the other state.



Summary:
• One can study spherically symmetric gravity 

coupled to a spherical scalar field using 
techniques of loop quantum gravity.

• The lack of a Lie algebra of constraints is 
correctly handled by the uniform discretizationcorrectly handled by the uniform discretization
technique, but the master constraint has a non-
vanishing minimum that approximates the 
continuum well.

• The Fock vacuum in the matter portion appears 
to be compatible with the loop states for the 
gravitational variables.

• The cosmological constant is suggestively 
suppressed.


