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Combinatorial problem N(n) hard? Try and compute

G(z) =
∑

n

N(n)zn

In principle can get N(n) from that, but even more:

∑

n

N(n) = G(1),

G≤(z)
.
=
∑

n





∑

n ′≤n

N(n ′)



 zn =
1

1 − z
G(z),

etc., and asymptotic behavior. Heuristically:

R = |Pole of G(z) closest to 0| ⇒ N(n) ∝ R−n.



Sometimes generating functions are easy to calculate due to identities
such as

N(n) =

n∑

n ′=0

A(n ′)B(n − n ′) ⇒ GN(z) = GA(z)GB(z).



1. The Toy Black Hole



Black holes in LQG

Long, beautiful story (Rovelli, Ashtekar, Baez, Corichi, Krasnov, . . . ).
BH horizon punctured by spin-network edges.

Surface states: |(b1, b2, . . .)〉. bi ∈ Z mod k.

Bulk states: |(j1, m1; j2, m2; . . .)( more )〉. ji ∈ N∗/2,
mi ∈ {−j,−j + 1, . . . , j}.

j-labels←→ area: Aj = 8πγl2P
√

j(j + 1)

Details in previous talks.
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√

j(j + 1) = j +
1

2
−
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4(2j + 1)
−

1

16(2j + 1)3
+ . . .

so let us do fantasy LQG:

Aj = 8πγl2P
√

j(j + 1) Aj
.
= 8πγl2P

(

j +
1

2

)

This simplifies things tremendously.
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Counting

When counting BH states, two ways to count:

b-labels only

b-, m-, and j-labels

This talk: b-labels only.

A side remark: when counting in this way for the toy black hole

number of surface states for area in a small shell around A

number of surface states for area smaller or equal A

are exactly equal.
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Will actually look at slightly more general problem:

N(a, j)
.
=

∣

∣

∣

∣

∣

{

(m1, m2, . . .), mi ∈ Z∗ :
∑

i

mi = j,
∑

i

(|mi| + 1) = a

}∣
∣

∣

∣

∣

.



Generating function

G(g, z)
.
=

∞∑

a=0

a∑

j=−a

N(a, j)gazj.



Generating function

G(g, z)
.
=

∞∑

a=0

a∑

j=−a

N(a, j)gazj.

First determine the generating function for sequences of length 1:

G1(g, z) = g

∞∑

m=1

(gz)m +
(g

z

)m

= g2

(

1

z − g
+

z

1 − gz

)

.



Generating function

G(g, z)
.
=
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a=0

a∑

j=−a

N(a, j)gazj.

First determine the generating function for sequences of length 1:

G1(g, z) = g

∞∑

m=1

(gz)m +
(g

z

)m

= g2

(

1

z − g
+

z

1 − gz

)

.

GF for sequences of length 2 is (G1)2 etc. So altogether

G(g, z) =

∞∑

m=1

(G1(g, z))m =
g2
(

z2 − 2gz + 1
)

(g + 1) (2zg2 − (z2 + z + 1)g + z)
.



Derived generating functions
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Derived generating functions

G(j=0)(g)
.
=
∑

a

N(a, 0)ga =
1

2πi

∮

C

1

z
G(g, z) dz

=
(1 − g)g

(g + 1)
√

(g − 1)(2g − 1)(2g2 + g + 1)
−

g

g + 1

= 2g4 + 2g6 + 6g7 + 8g8 + 12g9 + 34g10 + 58g11 + . . .

T(g)
.
=
∑

j,a

N(a, j)ga= G(g, 1)= −
2g2

2g2 + g − 1
=

1

3

∑

a=1

(2(−1)a + 2a)ga



Asymptotics

Heuristics: If

f(x) =

∞∑

n=0

cnxn and R = |Pole of f(x) closest to 0|

expect cn ∝ R−n.



Asymptotics

Heuristics: If

f(x) =

∞∑

n=0

cnxn and R = |Pole of f(x) closest to 0|

expect cn ∝ R−n. For example:

G(j=0)(g) =
(1 − g)g

(g + 1)
√

(g − 1)(2g − 1)(2g2 + g + 1)
−

g

g + 1

Expect N(a, 0) ∝ 2a.
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Theorems show

N(a, 0) ∼
1

6
√

π

2a

√
a

,

a∑

b

N(b, 0) ∼
1

3
√

π

2a

√
a

and we already saw that

∑

j

N(a, j) ∼ 2a.
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2. Entropy Quantization



A. Corichi, J. Diaz-Polo and E. Fernandez-Borja, “Black hole entropy
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In fact, they find this behavior for both methods of state counting:

∆A = γχl2P, with χ ≈ χCDF = 8.80

What is more, they note that

χ ≈ 8 ln(3)

Something of that form expected from heuristics a la Bekenstein.

Furthermore: Phenomenon contingent on implementing quantum
boundary conditions
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GF not directly applicable (see however Fernando’s talk!)

But can take some lessons over:



Idea

Toy black hole shows staircase to perfection. (No surprise.)

Why is the real black hole so similar?

GF not directly applicable (see however Fernando’s talk!)

But can take some lessons over:

1. Look at the problem in terms of N(I, j):

N(I, j) =

∣

∣

∣

∣

∣

{

(m1, m2, . . .), mi ∈ Z∗/2 :
∑

i

mi = j,
∑

i

√

|mi|(|mi| + 1) ∈ I

}∣
∣

∣

∣

∣

2. View state labels as paths in a certain space

Then use statistics of steps in these paths to explain pattern.
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State label (m1, m2, . . .) gives a path through this space, starting at the

point (0, 0).



States as paths

Space (Area ×
∑

i mi ): R+ × Z/2

State label (m1, m2, . . .) gives a path through this space, starting at the

point (0, 0).

Physical states←→ paths that end on R+ × {0}



Plot endpoints of all paths
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if we had s(m) = I(m)s0, with I(m) ∈ N, then pattern would be
obvious.

we don’t have that

we have zillions of paths (with may steps each) whose endpoints
cluster in a pattern

use statistics!

maybe we have s(m) = I(m)s0, with I(m) ∈ N on average?
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Statistics of steps

Write

a(m) = I(m)∆a + ǫ(m)

Assume:

well defined probability distribution on physical n-step paths

individual steps in path ≈ independently distributed (p(m) for the

occurrence of step s(m))

For path P = (m1, m2, . . . , mn) let

δ(n, P) =

n∑

i=1

ǫ(mi).

Then the cental limit theorem says

〈δ(n)〉 ≈ n〈ǫ(m)〉, 〈δ(n)2 − 〈δ(n)〉2〉 ≈ n〈ǫ(m)2 − 〈ǫ(m)〉2〉,



This furnishes explanation of the clustering if

〈ǫ(m)〉 = 0

small variance:

√

n〈ǫ(m)2〉 << ∆a, or n <<
(∆a)2

〈ǫ(m)2〉 .



This furnishes explanation of the clustering if

〈ǫ(m)〉 = 0

small variance:

√

n〈ǫ(m)2〉 << ∆a, or n <<
(∆a)2

〈ǫ(m)2〉 .

How does this work out in practice? Will need

information about probability distributions

educated guess for I(m)

For probability distribution: Approximate by
Lewandowski-Domagala.



Determining I(m)
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Caveat

a(m) =

(

3

2
· 2m + 1

)

∆a + ǫ(m).

is the right thing to use to determine ∆a.

But it only explains a periodicity 3∆a for physical states.

The rest is in the initial conditions .

Better explanation by Agulló, Borja, Díaz-Polo: Uses

Maximal Degeneracy Distribution

Area degeneracy relation 4
√

1/2(1/2 + 1) =
√

3(3 + 1)

to arrive at the same result.
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Results

The requirement 〈ǫ(m)〉 = 0 implies

∆a =
〈a(m)〉

3〈m〉 + 1
and ǫ(m) = a(m) − (3m + 1)

〈a(m)〉
3〈m〉 + 1

.

This can be evaluated numerically. We find

∆a ≈ 0.34952, 〈ǫ(m)2〉 ≈ 0.00019156

What does that mean?
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Standard deviation for the ǫ(m) is very small compared to ∆a:

∆a
√

〈ǫ(m)2〉
≈ 25

That means: Pattern may get washed out after ≈ 625(= 252)

steps.

Result for ∆a compares nicely with CDF:

χ ≈ 8.7843, χCDF ≈ 8.80
χCDF − χ

χCDF
≈ 0.00129



We seem to be even closer to the conjectured value:

8 ln(3) ≈ 8.7889,
8 ln(3) − χ

χ
≈ 0.00053.
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The toy black hole is a simple testing ground. Generating functions
provide a powerful tool to study them.

Entropy quantization due to “resonance” in area spectrum.

How good is this explanation?



Conclusions

The toy black hole is a simple testing ground. Generating functions
provide a powerful tool to study them.

Entropy quantization due to “resonance” in area spectrum.

How good is this explanation?

can explain why pattern independent of counting

can explain why implementing boundary condition matters

does not say wether χ = 8 ln(3)

does not say why not 3∆a

does not say wether pattern persists for large black holes

Better: Analytic approach. See following talks.
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Space: R+ × Z/2

Step: m ∈ Z∗/2 7−→ s(m) ≡ (
√

|m|(|m| + 1), m)

Path: (m1, m1, . . .) 7−→ ((0, 0), s(m1), s(m1) + s(m2), . . .)

In this way we can associate a path to any of the state labels to be
counted
Physical states←→ paths that end on R+ × {0}



additional slide: Probability

distributions

Know (M. Domagala and J. Lewandowski):



additional slide: Probability

distributions

Know (M. Domagala and J. Lewandowski): Probability p ′(m) of

finding first step to be s(m) when randomly picking among all
physical paths:

p ′(m) ≈ exp
(

−2πγM

√

|m|(|m| + 1)
)

Need:



additional slide: Probability

distributions

Know (M. Domagala and J. Lewandowski): Probability p ′(m) of

finding first step to be s(m) when randomly picking among all
physical paths:

p ′(m) ≈ exp
(

−2πγM

√

|m|(|m| + 1)
)

Need: Probability p(m) of finding first step to be s(m) when randomly
picking among all physical n-step paths.

Assume:



additional slide: Probability

distributions

Know (M. Domagala and J. Lewandowski): Probability p ′(m) of

finding first step to be s(m) when randomly picking among all
physical paths:

p ′(m) ≈ exp
(

−2πγM

√

|m|(|m| + 1)
)

Need: Probability p(m) of finding first step to be s(m) when randomly
picking among all physical n-step paths.

Assume: p(m) ≈ p ′(m)
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