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Because of the isomorphismX → XA ∼= X ×A → X , the above
frame can be seen as an algebra.
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THE EXTENDED SCENE
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EQUATIONS

Definition

A set of equations is a bisimulation equivalenceE ⊆ A∗ ×A∗ on
the initial automaton (A∗, σ).

Definition

We say that the pointed automaton (X,α, x) satisfies E

(X,α, x) |= E ⇔ ∀(v, w) ∈ E, xv = xw

We define:

(X,α) |= E ⇔ ∀x : 1 → X, (X,α, x) |= E

15
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EQUATIONS

Let v, w ∈ A∗, we consider the shorthand v = w to denote the
smallest bisimulation equivalence on A∗ containing (v, w).

Example

x y

a

b

b a

(X,α, x) |= {b = ε, ab = ε, aa = a}

(X,α, y) |= {a = ε, ba = ε, bb = b}
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COEQUATIONS

Definition

A set of coequations is a subautomaton D ≤ 2A
∗
of the final

automaton (2A
∗
, τ).

Definition

We say that the coloured automaton (X,α, c) satisfiesD

(X,α, c) |= D ⇔ ∀x ∈ X, oc(x) ∈ D

We define:

(X,α) |= D ⇔ ∀c : X → 2, (X,α, c) |= D
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COEQUATIONS

Example

xx y

a

b

b a

Under the observability map we obtain:

oc(x) = (a∗b)∗ oc(y) = (a∗b)+

therefore,

(X,α, c) |= {(a∗b)∗, (a∗b)+}

18



Preliminaries Equations and coequations Free and Cofree A dual equivalence Related Work Equational Bisimulations

COEQUATIONS

Example

xx y

a

b

b a

Under the observability map we obtain:

oc(x) = (a∗b)∗ oc(y) = (a∗b)+

therefore,

(X,α, c) |= {(a∗b)∗, (a∗b)+}

18



Preliminaries Equations and coequations Free and Cofree A dual equivalence Related Work Equational Bisimulations

COEQUATIONS

Example

xx y

a

b

b a

Under the observability map we obtain:

oc(x) = (a∗b)∗ oc(y) = (a∗b)+

therefore,

(X,α, c) |= {(a∗b)∗, (a∗b)+}

18



Preliminaries Equations and coequations Free and Cofree A dual equivalence Related Work Equational Bisimulations

THE EXTENDED SCENE
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FREE

Let (X,α) be an arbitrary automaton. We show how to construct
an automaton that corresponds to the largest set of equations
satisfied by (X,α). And, dually, we construct an automaton that
corresponds to the smallest set of coequations satisfied by (X,α).

For notational convenience we assumeX to be finite but nothing
will depend on that assumption.

20
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FREE

LetX = {x1, . . . , xn} be the set of states of a finite automaton
(X,α). We define a pointed automaton free(X,α) in two steps, as
follows:

(i) First, we take the product of the n pointed automata
(X,xi, α) that we obtain by letting the initial element xi
range overX . This yields a pointed automaton (ΠX, x̄, ᾱ)
with

ΠX =
∏

x:1→X

Xx
∼= Xn

(whereXx = X), with x̄ = (x1, . . . , xn), and with
ᾱ : ΠX → (ΠX)A defined by

ᾱ(y1, . . . , yn)(a) = ((y1)a, . . . , (yn)a)

21
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FREE

(ii) Next we consider the reachability map rx̄ : A∗ → ΠX and
define:

Eq(X,α) = ker(rx̄) free(X,α) = A∗/Eq(X,α)

This yields the pointed automaton (free(X,α), [ε], [σ]):

ΠX

1

A∗ free(X,α)

x
[ε]ε

rx
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ALL TOGETHER NOW

Example

x y

a

b

b a
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ALL TOGETHER NOW

1st Step. Construct the product automaton.

Example

(x,y)

(y,x)

(x,x) (y,y)

a

b

b a

b a

b a
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ALL TOGETHER NOW

2nd Step. Take the image under the reachability map rx

Example

(x,y)

(x,x) (y,y)

a

b

b a

b a
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ALL TOGETHER NOW

We define Eq(X,α) as ker(rx).

Example

Eq(X,α) = {aa = a, bb = b, ab = b, ba = a}

x y

a

b

b a
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ALL TOGETHER NOW

free(X,α) is the quotient automaton of A∗ over Eq(X,α).

Example

[ε]

[b] [a]

a

b

b a

b a

free(X,α) = A∗/Eq(X,α)
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COFREE

Dually, letX = {x1, . . . , xn} be the set of states of a finite
automaton (X,α). We define a coloured automaton cofree(X,α)
in two steps, as follows:

(i) First, we take the coproduct of the 2n coloured automata
(X, c, α) that we obtain by letting c range over the setX → 2
of all colouring functions. This yields a coloured automaton
(ΣX, ĉ, α̂)with

ΣX =
∑

c:X→2

Xc

(whereXc = X), and with ĉ and α̂ defined component-wise.

28
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(whereXc = X), and with ĉ and α̂ defined component-wise.

28



Preliminaries Equations and coequations Free and Cofree A dual equivalence Related Work Equational Bisimulations

COFREE

(ii) Next we consider the observability map oĉ : ΣX → 2A
∗
and

define:

coEq(X,α) = im(oĉ) cofree(X,α) = coEq(X,α)

This yields the coloured automaton (cofree(X,α), ε?, τ):

2A
∗

2

ΣX cofree(X,α)

ĉ
ε? ε?

oĉ

29
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ALL TOGETHER NOW

Example

x y
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ALL TOGETHER NOW

1st Step. Construct the coproduct automaton.

Example

xx y

a

b

b a

x yy

a

b

b a

x y

a

b

b a

xx yy

a

b

b a
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ALL TOGETHER NOW

2nd Step. Take the image under the observability map oĉ.

Example

H=(a∗b)∗

I=(a∗b)+
HH I

a

b

b a

J=(b∗a)+

K=(b∗a)∗
J KK

a

b

b a

∅a,b

A∗A∗a,b
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ALL TOGETHER NOW

We define coEq(X,α) as im(oĉ) and cofree(X,α) = coEq(X,α).

Example

H=(a∗b)∗

I=(a∗b)+
HH I

a

b

b a

J=(b∗a)+

K=(b∗a)∗
J KK

a

b

b a

∅a,b

A∗A∗a,b

cofree(X,α) = coEq(X,α)

33
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A DUAL EQUIVALENCE

In this section, we shall first show that -- when suitably
restricted -- the constructions of free and cofree are in fact
functorial, that is, they act not only on automata but also on
homomorphisms.

We will be using the following categories:

A: the category of automata (X,α) and automata
homomorphisms

Am: the category of automata (X,α) and automata
monomorphisms

Ae: the category of automata (X,α) and automata epimorphisms

34
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FUNCTORIAL FREE

As it turns out, we can extend the definition of free to
monomorphisms, such that we obtain functors of the following
type:

free : Am → (Ae)
op

Here the superscript op indicates a reversal of arrows.

For monomorphisms,

(X,α)

(Y, β)

free
7−→

free(X,α)

free(Y, β)

m free(m)

where free(m) is defined simply by quotienting. Recall that the
existence of the monomorphismm implies Eq(Y, β) ⊆ Eq(X,α).

35
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FUNCTORIAL COFREE

Dually, we can extend the definition of cofree to epimorphisms,
such that we obtain functors of the following type:

cofree : Ae → (Am)op

For epimorphisms,

(X,α)

(Y, β)

cofree
7−→

cofree(X,α)

cofree(Y, β)

e cofree(e)

where cofree(e) is just set inclusion. Recall that the existence of
the epimorphism e implies coEq(Y, β) ⊆ coEq(X,α).
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CONGRUENCE QUOTIENTS

Definition

We introduce the category C of congruence quotients, which is
defined as follows:

objects(C) = { (A∗/C, [σ]) | C is a congruence relation }
arrows(C) = { e : A∗/C → A∗/D | e is an epimorphism }

Theorem

free(Am) = Cop

37
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VARIETIES OF LANGUAGES

Definition

A variety of languages, is a set V ⊆ 2A
∗
such that:

(i) V is a complete atomic Boolean subalgebra of 2A
∗
.

(ii) if L ∈ V then for all a ∈ A, both La and aL ∈ V

38
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VARIETY OF LANGUAGES

Definition

We introduce the category V of varieties of languages, which is
defined as follows:

objects(V) = { (V, τ) | V is a variety of languages }
arrows(V) = {m : V → W | m is an monomorphism }

Theorem

cofree(C) = Vop

39
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MAIN THEOREM

Our main result is a dual equivalence.

Theorem

cofree : C ∼= Vop : free
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ILLUSTRATING THE DUALITY

Example

x y

a

b

b a
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ILLUSTRATING THE DUALITY

Example

[ε]

[b] [a]

a

b

b a

b a

free(X,α)
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ILLUSTRATING THE DUALITY

Example

H=(a∗b)∗

I=(a∗b)+
HH I

a

b

b a

J=(b∗a)+

K=(b∗a)∗
J KK

a

b

b a

∅11

a,b

a,b

A∗A∗
A+

a,b

a,b

cofree ◦ free(X,α)
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ILLUSTRATING THE DUALITY

To better understand the duality, consider a quotient automaton
(A∗/C, [σ]). For a word w ∈ A∗, consider the following colouring:

δ[w] : A∗/C −→ 2

[v] 7−→
{

1 if [v] = [w]
0 otherwise

Under this colouring, it holds:

oδ[w]
([ε]) = [w]

Hence, every state [w] ∈ A∗/C also belongs to cofree(A∗/C, [σ]).
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ILLUSTRATING THE DUALITY

Example

1

I J

I=(a∗b)+
J=(b∗a)+

a

b

b a

b a

free(X,α)
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ILLUSTRATING THE DUALITY
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ILLUSTRATING THE DUALITY

Example

∅

(b∗a)+ 1 (a∗b)+

(b∗a)∗ A+ (a∗b)∗

A∗

cofree ◦ free(X,α)
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ILLUSTRATING THE DUALITY

Example

∅

[b] [a]

a

b

b a

b a

cofree
7−→

free7−→

∅

(b∗a)+ 1 (a∗b)+

(b∗a)∗ A+ (a∗b)∗

A∗
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ILLUSTRATING THE DUALITY

That is, forgetting all the automata structure we recover the
classical duality:

Set CABAop

powerset

atoms
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Example

[ε]

[b] [a]

a

b

b a

b a

∅

(b∗a)+ 1 (a∗b)+

(b∗a)∗ A+ (a∗b)∗

A∗

e

cofree7−→

free7−→

m

[ε]

[a] a,b

a,b

∅

A+1

A∗
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RELATED WORK

In the literature we have found examples of such duality [GGP08
Geh11, Rou11]. They start directly from the extended Stone
duality:

Stone
and n-ary
operations

Bool
and n+ 1-ary
relations

clopen

ultrafilters
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RELATED WORK

For a regular language L. They state the duality:

(trans(〈L〉), ·) (B(L), /, \)

clopen

ultrafilters

Where (trans(〈L〉), ·) is the transition monoid of 〈L〉 and
(B(L), /, \) is a boolean algebra with some residuation properties.
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RELATED WORK

Theorem

free(X,α) ∼= trans(X,α)

Proposition

Every variety of languages is a boolean algebra with residuation
properties (as in [GGP08]). In the finite case, both definitions
coincide.

For finite automata, our duality coincides with that of Gehrke et al.
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COMMUTATIVE LANGUAGES

Example

LetA = {a, b} and let ab=ba denote the smallest congruence on
A∗ containing the equation (ab, ba).

It is easy to prove that, for
all v, w ∈ A∗,

(v, w) ∈ ab=ba ⇔ |v|a = |w|a and |v|b = |w|b

Languages [w] in the congruence quotient A∗/ab=ba satisfy

[w] = { v ∈ A∗ | v is a permutation of w }

By the duality Theorem, we have that V = cofree(A∗/ab=ba) is
a variety of languages.
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COMMUTATIVE LANGUAGES

Example

We now call a language L commutative whenever L ∈ V .

This
terminology is justified by the following equivalences:

L ∈ V ⇔
L is the union of

permutation equivalence
classes [w]

⇔ 〈L〉 |= ab=ba

Corollary

L ∈ coEq(A∗/C, [σ]) ⇔ C ⊆ Eq(〈L〉, τ)
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EQUATIONAL BISIMULATIONS

Definition

Let C ⊆ A∗ ×A∗ be a congruence. We call a relationR ⊆ 2A
∗ ×

2A
∗
a C-bisimulation if for all (K,L) ∈ R,

1. ε ∈ K ⇔ ε ∈ L

2. ∀(v, w) ∈ C, (Kv, Lw) ∈ R

Proposition

If R is a C-bisimulation and (K,L) ∈ R then,

i. K = L

ii. 〈K〉 |= C
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COMMUTATIVE LANGUAGES

Example

Let K = aA∗ + b(a∗b)∗ + b(b∗a)+. We shall use last propositi-
on to show that K is commutative. Referring to the example of
commutative languages, we need to prove that 〈K〉 |= ab=ba.
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COMMUTATIVE LANGUAGES

Example

K=aA∗+b(a∗b)∗+b(b∗a)+

M=A∗

N=(a∗b)∗+(b∗a)+

O=(a∗b)++(b∗a)∗

K M
a

a,b

N O

a
a

b

b a

Let
R = {(K,K)} ∪ {M,N,O}2

Then R is an (ab=ba)-bisimulation. Thus 〈K〉 |= ab=ba.
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