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Basic notions Types of actions Building blocks Decomposition Theorem

MONOID

Definition

A Monoid is tuple (M, ·, 1) whereM is a set, · is an associative
binary operation and 1 is an element inM with the property:

1m = m1 = m

for allm ∈ M . Wewill usuallywriteM for the sake of simplicity.

Basic examples of monoids

For a setX , TX = {f : f is a function fromX toX}
For a set A, the free monoid A∗ over A.
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GROUP

Definition

Let a, b be two elements of the monoidM . We say that b is the
inverse of a if

ab = ba = 1

We say that a monoidM is a group if every element a ∈ M has
an inverse. We usually denote groups byG.

Basic examples of groups

For a setX , ΣX = {f : f is a bijective function fromX toX}
The integers with the sum (Z,+, 0).
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ACTION

Definition

LetM be a monoid and letX be any set. We say thatM acts on
the left ofX if there exists a mapping:

: M ×X −→ X
(m,x) 7−→ mx

for which the following properties hold:

a1. For allm1,m2 ∈ M and x ∈ X ,m2(m1x) = (m2m1)x.

a2. For all x ∈ X , 1x = x.

We will say thatX is a leftM-set.
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ACTION

The natural action

LetM be anymonoid. It can act on itself using the internal mul-
tiplication law onM :

: M ×M −→ M
(m1,m2) 7−→ m1m2
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ACTIONS

The natural action of T2
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ACTIONS

An arbitrary action of T2 on a set of 12 elements
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M-MORPHISM

Definition

If X and Y are twoM-sets, we define aM-morphism from X
to Y to be a function f : X → Y such that

f(m · x) = m · f(x)

for allm inM and all x ∈ X .

If f is bijective, we will say that the actions are equivalent.
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CONGRUENCES

Definition

LetX be anM-set. A relationΘ ⊆ X ×X is called left stable if
for each x, y ∈ X andm ∈ M , the condition

xΘy implies mxΘmy

A left congruence is any equivalence relation that is left stable.

One can define a natural left action on the quotientX/Θ in terms
of the action defined onX in such a way that the canonical
surjection πΘ : X → X/Θ is anM-epimorphism. Moreover, this
allow us to obtain a 1st Isomorphism Theorem onM-sets.

9



Basic notions Types of actions Building blocks Decomposition Theorem

CONGRUENCES

Definition

LetX be anM-set. A relationΘ ⊆ X ×X is called left stable if
for each x, y ∈ X andm ∈ M , the condition

xΘy implies mxΘmy

A left congruence is any equivalence relation that is left stable.

One can define a natural left action on the quotientX/Θ in terms
of the action defined onX in such a way that the canonical
surjection πΘ : X → X/Θ is anM-epimorphism. Moreover, this
allow us to obtain a 1st Isomorphism Theorem onM-sets.

9



Basic notions Types of actions Building blocks Decomposition Theorem

TYPES OF ACTIONS

Definition

LetX be anM-set. The action is said to be:

Transitive; If for each x, y ∈ X , there is an elementm ∈ M
withmx = y.

Cyclic; If there exists an element x ∈ X such thatMx = X .

Quasi-transitive; IfX is not the coproduct of two proper
invariant subsets.

The following implications hold:

Transitive ⇒ Cyclic ⇒ Quasi-transitive

They all coincide when we work with group actions.
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TYPES OF ACTIONS

An arbitrary action of T2 on a set of 12 elements
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TYPES OF ACTIONS

A transitive action
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TYPES OF ACTIONS

A cyclic action
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TYPES OF ACTIONS

A quasi-transitive action
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BUILDING BLOCKS

Theorem

LetX and Y be twoM-sets. Then the following statements are
equivalent:

i. X ∼= Y

ii. There exists a bijection h : π0(X) → π0(Y ) from the set of
quasi-transitive subsets ofX to the set of quasi-transitive
subsets of Y that relates equivalent actions, that is to say,
for eachX ′ ∈ π0(X), the action ofM onX ′ is equivalent to
the action ofM on h(X ′).
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BUILDING BLOCKS

So far we have seen that the usual definitions of transitivity on
group actions are useless to monoid actions.

Quasi-transitive actions are the building blocks for monoid
actions, but they are still difficult to handle. Instead, cyclic
actions are the easiest actions to work with.
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DECOMPOSITION THEOREM

Definition

Let X and Y be twoM-sets. Assume that they both have non-
empty invariant subsets which are equivalent to an M-set W .
Then we can consider the amalgamated sum of X and Y rela-
tive toW . It is again anM-set which will be denoted by:

X qW Y
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DECOMPOSITION THEOREM

Amalgamated Sum
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DECOMPOSITION THEOREM

Amalgamated Sum
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DECOMPOSITION THEOREM

Theorem

Let X be a finiteM-set. Assume that the action ofM on X is
quasi-transitive. Then there are invariant subsetsW,Y,Z of X
such that:

i. W is a common non-empty invariant subset of both Y and Z .

ii. Y is a cyclicM-set.

iii. Z is a quasi-transitiveM-set.

iv. X ∼= Y qW Z

Corollary

Every finite quasi-transitiveM-set can bewritten as an amalga-
mated sum of cyclicM-sets.
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DECOMPOSITION THEOREM

An arbitrary action of T2 on a set of 12 elements
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DECOMPOSITION THEOREM

W invariant subsets
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DECOMPOSITION THEOREM

Corollary

Let X be a finite quasi-transitiveM-set that is not cyclic. Then
theW subset that appears in the decomposition theorem is iso-
morphic to a quotient of the greatest proper left-ideal contained
inM .
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