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0. Introduction

Universal Coalgebra is a theory of
Systems

It suffices to:

• Model systems.

• Construct morphisms between systems.

• Detect behavioural equivalent states.

• Simplify systems.

• Define new concepts and operators via coinduction.
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1. Coalgebra

Definition
Given a category X, called the base category, and an endofunctor
F : X → X, a F-coalgebra (or F-system) consists of a pair (X , α),
where X is an object of X and α : X → FX an arrow in X. We call X
the base and α the structure map of the coalgebra.
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1. Example: Graphs

Definition
A graph is an ordered pair G = (V ,E ) comprising a set V of vertices
together with a set E ⊆ [V ]2 called edges.

Example

0

21 3

4

V = 5
E = {{0, 2}, {0, 3}, {1, 4}, {2, 3}, {2, 4}}
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1. Example: Posets

Definition
A partially ordered set (or poset) is a pair P = (P,≤) where P is a
set and ≤ is an order over P.

Example

0

1 2

3 4 5

To each p ∈ P we can
associate two subsets of P:

Its downset ↓ p = {q ∈ P : q ≤ p}
Its upset ↑ p = {q ∈ P : p ≤ q}
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2. Coalgebra Homomorphisms

Definition
Let X be any category. Let F be an endofunctor over X. Let (X , α)
and (Y , β) be two F -coalgebras. A F-coalgebra homomorphism,
f : (X , α) → (Y , β) is an arrow f : X → Y in X such that the
following diagram commutes:

FX FY

X Y
f

Ff

α β
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2. Example: P-Coalgebra Homomorphisms

Remark
Given a P-coalgebra (X , α), we can write it as (X ,Rα) with
Rα ⊆ X × X and x1Rαx2 ⇔ x2 ∈ α(x1). Notice that Rα can also play
the role of α by setting Rαx1 = {x2 ∈ X : x1Rαx2} = α(x1).

Proposition

Let (X ,Rα) and (Y ,Rβ) be two P-coalgebras. A function f : X → Y
is a P-coalgebra homomorphism if and only if:

• x1Rαx2 =⇒ f (x1)Rβf (x2)

• f (x1)Rβy =⇒ ∃x2 ∈ X (x1Rαx2 and f (x2) = y)
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3. Bisimulation

Definition
Let F be any endofunctor over Set. Let (X , α), (Y , β) be two
F -coalgebras. A subset Z ⊆ X × Y of the cartesian product of X and
Y is called a F-bisimulation if there exists a structure map
γ : Z → FZ such that the projections from Z to X and Y are
F -coalgebra homomorphisms.

FX

FZ

FY

X

Z

Y

π1

Fπ1

α

π2

∃ γ

β

Fπ2
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3. Bisimulation

Definition

• We will denote by B(X ,Y ) to the set of all bisimulations between
X and Y .

• If (X , α) = (Y , β), then (Z , γ) is called a bisimulation on (X , α).
We will write B(X ) instead of B(X ,X ). A bisimulation
equivalence is a bisimulation that is also an equivalence relation.

• Two states x ∈ X , y ∈ Y are called bisimilar if there exists a
bisimulation Z with 〈x , y〉 ∈ Z .

Example

The empty set, ∅ ⊆ X × Y , is always a bisimulation. ∅ ∈ B(X ,Y ).
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3. Basic Properties

Properties

Let (X , α), (Y , β) and (W , δ) be three F -coalgebras.

• f : X → Y is a F -coalgebra homomorphism iff G (f ) ∈ B(X ,Y ).

G (f ) = {〈x , f (x)〉 : x ∈ X}

• If Z ∈ B(X ,Y ) then Z−1 ∈ B(Y ,X ).

Z−1 = {〈y , x〉 : 〈x , y〉 ∈ Z}
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3. Basic Properties

Theorem
Let (X , α) and (Y , β) be two F -coalgebras and let {Zj : j ∈ J} be a
family of B(X ,Y ). Then the union of the family is also a bisimulation
between X and Y .

Corollary

B(X ,Y ) is a complete lattice for the inclusion order, with least upper
bound and greatest lower bound given by:∨

j∈J
Zj =

⋃
j∈J

Zj

∧
j∈J

Zj =
⋃

{Z : Z ∈ B(X ,Y ) and Z ⊆
⋂
j∈J

Zj}
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3. Example: Kripke Models

Definition
Given a set of atomic propositions Prop and an arbitrary set A, the
set of all multimodal formulas ML is defined inductively by:

p ∈Prop ⇒ p ∈ ML
⊥ ∈ ML

ϕ,ψ ∈ ML ⇒ ϕ→ ψ ∈ ML
ϕ ∈ ML, a ∈ A ⇒ �aϕ ∈ ML

As usual, >, ¬, ∧, ∨, can be defined from ⊥, →. The modal operator
♦a for each a ∈ A is defined as ¬�a¬.
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3. Example: Kripke Models

Definition
A Kripke Model is a triple X = (X , (Ra)a∈A,V ) consisting on a set X ,
a relation Ra ⊆ X × X for each a ∈ A and a valuation
V : X → P(Prop).
Elements of X are called states. Ra is called the accesibility relation
according to a. As usual we think of V as a mapping assigning to
each possible state the set of atomics propositions holding in x .

Remark
For A = 1 we reduce that construction for the case of the usual
modal logic.
We think of A as a set of agents and of �aϕ as ’agent a knows ϕ’.
Atomic propositions describe the facts agents can know.
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3. Example: Kripke Models

Example

0

{p q}

2{q}1{p r s} 3 {q r}

4

{p q r}
5

{r s}
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3. Example: Kripke Models

Definition
Given a Kripke Model X = (X , (Ra)a∈A,V ) and x ∈ X we define:

(X, x) |= p ⇔ p ∈ V (x)
(X, x) 6|= ⊥
(X, x) |= ϕ→ ψ ⇔ if (X, x) |= ϕ then (X, x) |= ψ
(X, x) |= �aϕ ⇔ ∀y ∈ X such that xRay then (X, y) |= ϕ

When the model X is clear from the context, we will write x |= ϕ
instead of (X, x) |= ϕ. We say that ϕ holds in a model X, written
X |= ϕ if and only if ∀x ∈ X x |= ϕ. Finally, ϕ is valid, written |= ϕ if
and only if ϕ holds in all models.
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3. Example: Kripke Models

Theorem
Given two Kripke Models X = (X , (Ra)a∈A,V ),
X′ = (X ′, (R ′

a)a∈A,V
′) and x ∈ X and x ′ ∈ X ′.

x , x ′ are bisimilar ⇒ for all ϕ ∈ ML (x |= ϕ⇔ x ′ |= ϕ)

Theorem (Hennesy and Milner)

Let K be the class of image-finite Kripke Models, i.e., for all
X = (X , (Ra)a∈A,V ) ∈ K and each x ∈ X , the set {y : xRay} is
finite for each a ∈ A. Then in the class K , the converse hold:

For all ϕ ∈ ML (x |= ϕ⇔ x ′ |= ϕ) ⇒ x , x ′ are bisimilar
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3. Pullbacks

Definition
A weak pullback of two mappings f : X → Z and g : Y → Z in the
category Set is a triple (P, πX , πY ) such that P is a set, πX : P → X
and πY : P → Y are such that:

• f πX = g πY

• For each triple (P ′, π′X , π
′
Y ) with π

′
X : P ′ → X and π′Y : P ′ → Y

and f π′X = gπ′Y , there is a mediating mapping p′ : P ′ → P such
that πXp

′ = π′X and πY p
′ = π′Y

Note that the mediating mapping p′ need not to be unique; adding
this requirement to the definition it would give the more familiar, and
stronger, notion of pullback.
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3. Pullbacks

X

Z

Y

P

P ′

p′π′X π′Y

πYπX

f g
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3. Pullbacks

Definition
Let F be an endofunctor over Set. We say that it preserves (weak)
pullbacks, written pwp, if for any (weak) pullback (P, πX , πY ) of
(f , g), the triple (FP,FπX ,FπY ) is a (weak) pullback of (Ff ,Fg).

Proposition

All endofunctors inductively defined upon:
• The Identity Functor I
• The Constant Functor C
• The Coproduct Functor q
• The Product Functor ×
• The Exponent Functor (·)C
• The Power Set Functor P

preserve
weak

pullbacks.
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3. Pullbacks and Bisimulations

Let F be a pwp endofunctor over Set.
Let (X , α), (Y , β), (W , δ) be three F -coalgebras.

Theorem
Let Z1 be a bisimulation between X and Y and let Z2 be a
bisimulation between Y and W . Then the composition Z1 ◦ Z2 is a
bisimulation between X and W .
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3. Pullbacks and Bisimulations

Let F be a pwp endofunctor over Set and let (X , α) be a
F -coalgebra, then:

Corollary

• X G X is a bisimulation equivalence on X .

Let (Y , β) be another F -coalgebra, let f : X → Y be a F -coalgebra
homomorphism, then:

Corollary

• Kerf is a bisimulation equivalence on X .

Kerf = {〈x1, x2〉 : f (x1) = f (x2)}
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3. Idempotent Semirings

Definition
An idempotent semiring, or dioid, is a 5-tuple, S = (S ,⊕,⊗, ε, e)
where:

• (S ,⊕, ε) is a commutative monoid.

• (S ,⊗, e) is a monoid.

• ⊗ distributes over ⊕, i.e., ∀s, t, u ∈ S

s ⊗ (t ⊕ u) = (s ⊗ t)⊕ (s ⊗ u)

(t ⊕ u)⊗ s = (t ⊗ s)⊕ (u ⊗ s)

• ⊕ is idempotent, i.e., ∀s ∈ S

s ⊕ s = s
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3. Associated Dioid

Let F be a pwp endofunctor over Set and let (X , α) be a
F -coalgebra, then:

Theorem
The set B(X ) togheter with the union of bisimulations and the
composition of bisimulations forms an idempotent semiring:

(B(X ),∪, ◦, ∅,∆X )

Definition
We say that (B(X ),∪, ◦, ∅,∆X ) is the associated diod of X , and we
denote it by π(X , α).
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3. Associated Dioid

Example

∅

{〈a, a〉}

{〈a, a〉, 〈a, b〉} {〈a, a〉, 〈b, a〉} ∆P

{〈a, a〉, 〈a, b〉, 〈b, a〉} {〈a, a〉, 〈a, b〉, 〈b, b〉} {〈a, a〉, 〈b, a〉, 〈b, b〉}

P G P
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3. Associated Dioid

Proposition

Let F be a pwp endofunctor over Set. Let (X , α) and (Y , β) be two
F -coalgebras. Let f : X → Y be a F -coalgebra homomorphism. It
holds:

• Z ∈ B(X ) ⇒ f (Z ) ∈ B(Y )

• Z ∈ B(Y ) ⇒ f −1(Z ) ∈ B(Y )

Remark

• f (∆X ) = ∆f (X )

• For each Z bisimulation on X holds that f (Z−1) = f (Z )−1

• If f is a F -coalgebra embedding, for each Z1,Z2 bisimulations on
X holds that f (Z1 ◦ Z2) = f (Z1) ◦ f (Z2)
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4. Subcoalgebras

Definition
Let F be an arbitrary functor over Set. Let (X , α) be a F -coalgebra.
Let W ⊆ X be any subset of X .
We say that W is a subcoalgebra of X , written W ≤ X , if there
exists an structure map αW on W such that it turns the inclusion
mapping i : W → X into a F -coalgebra homomorphism.

FW

W

FX

X

Fi

∃ αW α

i
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4. Basic Properties

Properties for arbitrary functors

• W ≤ X ⇔ ∆W ∈ B(X )

• B(W ) ⊆ B(X )

Properties for pwp functors

• ∆W ◦ B(X ) ◦∆W = B(W )

Let f : X → Y be a coalgebra homomorphism, then:

• W ≤ X ⇒ f (W ) ≤ Y

• W ≤ Y ⇒ f −1(W ) ≤ X
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4. Basic Properties

Theorem
Let F be a pwp endofunctor over Set and let (X , α) be a
F -coalgebra. The collection of all subcoalgebras of X is a complete
lattice in which least upper bounds and greatest lower bounds are
given by union and intersection.

Definition
Let Y ⊆ X be any subset of X . We define:
The subcoalgebra generated by Y , denoted by 〈Y 〉,
• 〈Y 〉 =

⋂
{W : W ≤ X and Y ⊆ W }

The greatest subcoalgebra contained in Y , denoted by [Y ],

• [Y ] =
⋃
{W : W ≤ X and W ⊆ Y }
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5. Quotients

Theorem
Let F be an arbitrary endofunctor over Set. Let (X , α) be a
F -coalgebra. Let Z be a bisimulation equivalence on X . Then there
exists a unique map structure γZ : X/Z → F (X/Z ) that turns
πZ : X → X/Z (the quotient mapping), into a F -coalgebra
homomorphism.

FX

X

F (X/Z )

X/Z

FπZ

∃! γZα

πZ
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6. Isomorphism Theorems

1st Isomorphism Theorem

Let F be a pwp endofunctor over Set, let (X , α) and (Y , β) be two
F -coalgebras and let f : X → Y be a F -coalgebra homomorphism.
Then there is the following factorization of f :

X

f (X )

Y

X/Kerf

f

πKerf h

f ′ i

ϕ ∼=

Where:
• i is the inclusion morphism.
• h is a monomorphism.
• f ′ is a epimorphism with

f (x) = f ′(x) for each x ∈ X .
• πKerf is the quotient morphism.
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6. Isomorphism Theorems

2nd Isomorphism Theorem

Let F be a pwp endofunctor over Set, let (X , α) be a F -coalgebra,
let W ≤ X and let Z be a bisimulation equivalence on X .
Let W Z be defined as

W Z = {x ∈ X : ∃w ∈ W (〈x ,w〉 ∈ Z )}

The following facts hold:

• W Z ≤ X .

• Z ∩ (W ×W ) is a bisimulation equivalence on W .

• W /(Z ∩ (W ×W )) ∼= W Z/Z .
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6. Isomorphism Theorems

3rd Isomorphism Theorem

Let F be a pwp endofunctor over Set. Let (X , α) be a F -coalgebra
and let Z1 and Z2 be two bisimulation equivalences on X such that
Z2 ⊆ Z1. It holds:

• There is a unique F -coalgebra homomorphism h : X/Z2 → X/Z1

such that hπZ2 = πZ1 . That is to say that the following diagram
commutes:

X X/Z2

X/Z1

πZ1

πZ2

h∃!
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6. Isomorphism Theorems

3rd Isomorphism Theorem

• Let Z2/Z1 denote Kerh. It holds that Z2/Z1 is a bisimulation
equivalence on X/Z2 and induces a F -coalgebra isomorphism
h′ : (X/Z2)/(Z2/Z1) → X/Z1 such that h = h′πZ2/Z1

.
That is to say that the following diagram commutes:

X/Z2 (X/Z2)/(Z2/Z1)

X/Z1

h

πZ2/Z1

h′
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7. Simple Coalgebras

Definition
Let F be a pwp endofunctor on Set. We say that a F -coalgebra,
(X , α), is simple if it has no proper quotients. That is to say, if Z is a
bisimulation equivalence on X , then X/Z ∼= X .
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7. Basic Properties

Theorem
The following statements are equivalent:

• (X , α) is a simple F -coalgebra.

• Every epimorphism f : X → Y is an isomorphism.

• Let Z be a bisimulation on X , then Z ⊆ ∆X .

• ∆X is the only bisimulation equivalence on X .

• Let f : Y → X and g : Y → X be two F -coalgebra
homomorphisms, then f = g .

• The quotient homomorphism πG : X → X/(X G X ) is a
F -coalgebra isomorphism.

• Any F -coalgebra homomorphism, f : X → Y , is injective.
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7. Example: NFAs

Definition
A nondeterministic finite automaton or NFA is a quintuple
M = (Q,Σ, δ, q0,F ), where:

• Q is a finite set of states.

• Σ is a finite set of symbols, known as alphabet. The elements of Σ
are called letters.

• δ : Q × Σ → P(Q) is a partial function named transition function.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of final states.
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7. Example NFAs

Example

Let M = ({q0, q1, q2}, {a, b, c}, δ, q0, {q0, q1, q2}) be a NFA with the
corresponding transition diagram given by:

q0start q1 q2

a

a, b

a, b, c

b

b, c

c
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7. Example: NFAs

Definition
In order to define the behaviour of a NFA on a string it is necessary to
extend the transition function to a function acting on states and
strings. Therefore, we define the extended transition function
δ̂ : Q × Σ? → P(Q) in the following way:

• ∀q ∈ Q, x ∈ Σ?, a ∈ Σ:

• δ̂(q, λ) = {q}
• δ̂(q, xa) =

⋃
p∈δ̂(q,x) δ(p, a)

Item 2. means that a NFA can not change its state until it gets a
symbol; The 3rd item states the recursive definition of δ̂ on
non-empty strings.
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7. Example: NFAs

Definition
Let M = (Q,Σ, δ, q0,F ) be a NFA, and let x ∈ Σ? be a string. We
say that x is accepted by M whenever δ(q0, x) ∩ F 6= ∅ holds. We
define the accepted language of the NFA M as:

L(M) = {x ∈ Σ? : δ(q0, x) ∩ F 6= ∅}

Definition
Let M = (Q,Σ, δ, q0,F ) be a NFA. The mapping N : Q → P(2) is
defined for each p ∈ Q as:

• 0 ∈ N(p) if and only if p = q0.

• 1 ∈ N(p) if and only if p ∈ F .

We say that N(p) is the nature of the state p.
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7. Example: NFAs

Theorem
Let M = (Q,Σ, δ, q0,F ) and M′ = (Q ′,Σ, δ′, q′0,F

′) be two NFA. If
q0 and q′0 are bisimilar, then L(M) = L(M′).

Theorem
Let L be a regular language, there exists a minimal NFA that accepts
L. It is unique up to isomorphism.
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8. Final Coalgebras

Definition
Let F be a pwp endofunctor on Set. We say that a F -coalgebra,
(X , α), is final if for any other F -coalgebra (Y , β) there exists a
unique F -coalgebra homomorphism fY : Y → X .

Theorem
Let (X , α) be a final F -coalgebra, then α is a F -coalgebra
isomorphism. Final coalgebras if they exist are uniquely determined
up to isomorphism.

They are fixed points of the functor, i.e., F (X ) ∼= X .

Proposition

Let (X , α) be a final F -coalgebra, then (X , α) is simple.
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8. Coinduction

Example

Let A be an arbitrary set, we define the endofunctor G as:

G : Set −→ Set
X 7−→ A× X
f 7−→ idA × f

Let (X , α) be an arbitrary G -coalgebra. The structure map on X can
be splitted in two functions X → A and X → X which we will call
value : X → A and next : X → X . With these operations we can do
two things, given an element x ∈ X :

• Produce an element in A, namely value(x).

• Produce a next element in X , namely next(x).
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8. Coinduction

Example

Now we can repeat this process and therefore form another element in
A, namely value(next(x)). By preceding in this way we can get for
each element x ∈ X an infinite sequence (a0, a1, a2, · · · ) ∈ Aω of
elements an = value(next(n)(x)) ∈ A, where next(0)(x) denotes x .
This sequence of elements that x gives rise to is what we can observe
about x .

Proposition

(Aω, 〈head , tail〉) is a final G -coalgebra.
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