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Universal Coalgebra Final Coalgebras

INTRODUCTION

Universal Coalgebra is a theory
of Systems

It suffices to:

Model systems.

Construct morphisms between systems.

Detect behavioural equivalent states.

Simplify systems.

Define new concepts and operators via coinduction.
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COALGEBRA

Given a categoryX, called the base category, and an endofunctor
F : X → X.

Definition

A F -coalgebra consists of a pair (X,α), whereX is an object of
X and α : X → FX an arrow inX.

We callX the base and α the structure map of the coalgebra.
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COALGEBRA

Two buttons machine

V N

This machine can be described as a coalgebra:

(v, n) : X −→ A×X
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COALGEBRA HOMOMORPHISMS

Definition

Let (X,α) and (Y, β) be two F -coalgebras. An F -coalgebra ho-
momorphism, f : (X,α) → (Y, β) is an arrow f : X → Y in X
such that the following diagram commutes:

FX FY

X Y
f

Ff

α β
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SUBCOALGEBRAS

Definition

Let (X,α) be an F -coalgebra. LetW ⊆ X be any subset of X .
We say thatW is a subcoalgebra ofX , writtenW ≤ X , if there
exists an structuremapαW onW such that it turns the inclusion
mapping i : W → X into an F -coalgebra homomorphism.

FW

W

FX

X

Fi

∃ αW α

i
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BISIMULATION

Definition

Let (X,α), (Y, β) be two F -coalgebras. A subset Z ⊆ X × Y
of the cartesian product ofX and Y is called a F -bisimulation if
there exists a structure map γ : Z → FZ such that the projec-
tions from Z toX and Y are F -coalgebra homomorphisms.

FX

FZ

FY

X

Z

Y

π1

Fπ1

α

π2

∃ γ

β

Fπ2
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BISIMULATION

Definition

If (X,α) = (Y, β), then (Z, γ) is called a bisimulation on (X,α).
A bisimulation equivalence is a bisimulation that is also an equi-
valence relation.

Two states x ∈ X , y ∈ Y are called bisimilar if there exists a
bisimulation Z with 〈x, y〉 ∈ Z .

Example

The empty set, ∅ ⊆ X×Y , is always a bisimulation. ∅ ∈ B(X,Y ).
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BISIMULATION

Example

The diagonal set,∆X ⊆ X ×X , is always a bisimulation equiva-
lence onX .

Two buttons machine

Let (X, (v, n)) and (Y, (v, n)) be two 2BMs. The elements x ∈ X
and y ∈ Y are bisimilar if and only if:

v(x) = v(y)

n(x) and n(y) are bisimilar.
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QUOTIENTS

Theorem

Let (X,α) be a F -coalgebra. LetZ be a bisimulation equivalence
on X . Then there exists a unique map structure γZ : X/Z →
F (X/Z) that turns πZ : X → X/Z (the quotient mapping), into
a F -coalgebra homomorphism.

FX

X

F (X/Z)

X/Z

FπZ

∃! γZα

πZ
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FINAL COALGEBRAS

Definition

We say that a F -coalgebra, (X,α), is a final F -coalgebra if for
any other F -coalgebra (Y, β) there exists a unique F -coalgebra
homomorphism ! : Y → X .

Theorem

Let (X,α) be a final F -coalgebra, then α is a F -coalgebra iso-
morphism. Final coalgebras if they exist are uniquely determined
up to isomorphism.

They are fixed points of the functor, i.e., F (X) ∼= X .
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FINAL COALGEBRAS

Two buttons machine

Consider the following 2BM of infinite streams (AN, (h, t)) with
structural map:

(h, t) : AN −→ A×AN

(ai)i∈N 7−→ (a0, (ai+1)i∈N)

Proposition

(AN, (h, t)) is the final 2BM, with the unique morphism given by:

! : (X, (v, n)) −→ (AN, (h, t))
x 7−→ (v(ni(x)))i∈N
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FINAL COALGEBRAS

The existance of the final coalgebra allow us to define new
elements and new operators.

Let (X,α) and (Y, β) be two coalgebras. Let x ∈ X and y ∈ Y .

Theorem

x and y are bisimilar ⇔ !(x) =!(y)

This theorem allow us to prove propositions via coinduction.
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