AUTÓMATA Vida útil y métodos de reciclaje

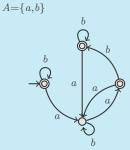
XIX **ENEM** València, 2018

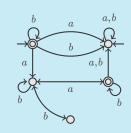
Enric Cosme Llópez

Departament de Matemàtiques
Universitat de València

AUTÓMATAS

Ejemplos





AUTÓMATAS

Un autómata es un par (X, α) , donde X es un conjunto de estados y, para un alfabeto A, α una aplicación de transición

$$\alpha \colon \quad \begin{array}{ccc} X \times A & \longrightarrow & X \\ (x, a) & \longmapsto & x_a \end{array}$$

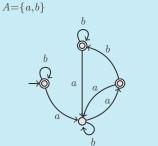
que se puede extender a A^* , donde

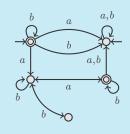
$$A^* = \bigcup_{n \in \mathbb{N}} \operatorname{Hom}(n, A)$$

es el conjunto de todas las palabras sobre el alfabeto A.

AUTÓMATAS

Ejemplos





Aceptan aabbababbb y bbb pero no abb ni bbaabbaabba.

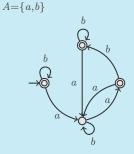
El lenguaje reconocido por (X, α) es el conjunto

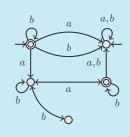
$$\mathcal{L}(X,\alpha) = \{ w \in A^* \mid w \text{ es reconocida por } (X,\alpha) \}$$

En general, para un lenguaje $L\subseteq A^*$, diremos que L es reconocible si existe un autómata finito (X,α) tal que

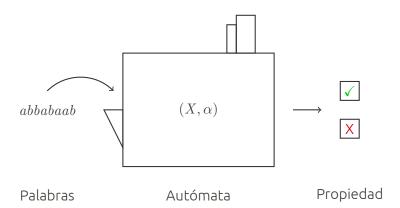
$$L = \mathcal{L}(X, \alpha)$$

Ejemplos





$$\mathcal{L}(X,\alpha) = \{ w \in A^* \mid |w|_a \equiv 0 \pmod{2} \}$$

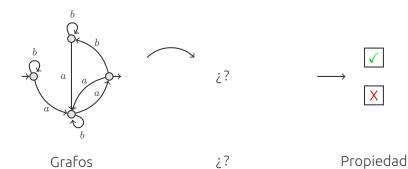


Los autómatas son objetos matemáticos muy útiles para el estudio de propiedades sobre lenguajes.

Así, por ejemplo, si L y K son lenguajes reconocibles, a partir de los autómatas que reconocen estos lenguajes, somos capaces de construir autómatas que reconocen $L \cap K$, $L \cup K$ o $A^* - L$.

El problema surge cuando queremos reconocer otro tipo de objetos matemáticos. Por ejemplo grafos.

RECONOCIBILIDAD



RECONOCIBILIDAD

It is not clear at all how an automaton should traverse a graph. A "general" graph has no evident structure, whereas a word or a tree is (roughly speaking) its own algebraic structure.

B. Courcelle, 1991

MINIMIZACIÓN

La minimización es el proceso de transformar un autómata dado en uno equivalente que reconozca el mismo lenguaje y que tenga el menor número de estados posibles.

Dado $L\subseteq A^*$ podemos definir una relación de equivalencia \sim_L en A^* como sigue:

Dados $w, v \text{ en } A^*$

$$w \sim_L v \Leftrightarrow \forall x, y \in A^* (xwy \in L \Leftrightarrow xvy \in L)$$

MINIMIZACIÓN

Notamos que $\mathbf{A}^* = (A^*, \lambda, \lambda)$ es un monoide.

Se comprueba que \sim_L es una congruencia en \mathbf{A}^* .

Si $w_1 \sim_L w_2$ y $v_1 \sim_L v_2$, entonces

$$w_1v_1 \sim_L w_2v_2$$
.

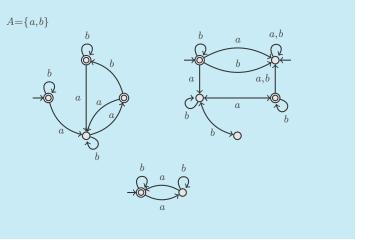
La relación \sim_L se le llama la congruencia sintáctica asociada a L. Es la mayor congruencia en \mathbf{A}^\star que satura a L.

El cociente A^*/\sim_L tiene estructura de monoide y autómata. Como autómata, A^*/\sim_L es el mínimo autómata que reconoce L. En particular,

$$L = \mathcal{L}(A^{\star}/\sim_L).$$

MINIMIZACIÓN

Ejemplos



LENGUAJES RECONOCIBLES

Para un lenguaje $L \subseteq A^*$ son equivalentes:

- 1. L es reconocible.
- 2. \sim_L tiene índice finito en \mathbf{A}^* .
- 3. L está saturado por una congruencia de índice finito en A^* .
- 4. Existe un monoide finito M, un homomorfismo de monoides $f \colon A^* \longrightarrow M$ y un subconjunto $C \subseteq M$ tal que

$$L = f^{-1}[C].$$

Esta caracterización no depende de ningún tipo de autómata y, por tanto, puede generalizarse a cualquier álgebra.

Dada una signatura $\Sigma=(\Sigma_n)_{n\in\mathbb{N}}$, una Σ -álgebra es un par $\mathbf{A}=(A,F)$, donde A es un conjunto y F una estructura de Σ -álgebra en A. Esto es

$$F: \quad \begin{array}{ccc} \Sigma_n & \longrightarrow & \operatorname{Hom}(A^n, A) \\ \sigma & \longmapsto & \sigma^{\mathbf{A}} \end{array}$$

Dadas dos Σ -álgebras $\mathbf{A} = (A, F)$ y $\mathbf{B} = (B, G)$, un Σ -homomorfismo $f \colon \mathbf{A} \to \mathbf{B}$ es una aplicación de A a B tal que para todo $n \in \mathbb{N}$, $\sigma \in \Sigma_n$ y $(a_i)_{i \in n} \in A^n$ se tiene que

$$f(\sigma^{\mathbf{A}}((a_i)_{i\in n})) = \sigma^{\mathbf{B}}((f(a_i))_{i\in n})$$

Dada una Σ -álgebra $\mathbf{A}=(A,F)$, una congruencia en \mathbf{A} es una relación de equivalencia Φ en A tal que para todo $n\in\mathbb{N}$, $\sigma\in\Sigma_n$, $(a_i)_{i\in n}\in A^n$ y $(b_i)_{i\in n}\in A^n$, si $(a_i,b_i)\in\Phi$ para todo $i\in n$, entonces

$$(\sigma^{\mathbf{A}}((a_i)_{i\in n}), \sigma^{\mathbf{A}}((b_i)_{i\in n})) \in \Phi$$

Sea ${\bf A}$ una Σ -álgebra.

Decimos que una aplicación $T\in \operatorname{Hom}(A,A)$ es una traslación elemental, $T\in \operatorname{Etl}(\mathbf{A})$, si y sólo si existe un símbolo de operación $\sigma\in \Sigma_n$, $i\in n$, una família $(a_j)_{j\in i}\in A^i$ y una família $(a_k)_{k\in n-(i+1)}\in A^{n-(i+1)}$ tal que, para cada $x\in A$,

$$T(x) = \sigma^{\mathbf{A}}(a_0, \dots, a_{i-1}, x, a_{i+1}, \dots, a_{n-1})$$

Denotamos por $\mathsf{Tl}(\mathbf{A})$ el subconjunto de aplicaciones de $\mathsf{Hom}(A,A)$ para las que existe un $m \in \mathbb{N}-1$ y una família de traslaciones elementales $(T_i)_{i \in m} \in \mathsf{Etl}(\mathbf{A})^m$ tales que

$$T = T_{m-1} \circ \cdots \circ T_0$$

Llamaremos a los elementos de $Tl(\mathbf{A})$ traslaciones de \mathbf{A} . Además id $_{\mathbf{A}}$ también será considerada un aplicación en $Tl(\mathbf{A})$.

Sea ${\bf A}$ una Σ -álgebra y Φ una relación de equivalencia en A.

Son equivalentes:

- 1. Φ es una congruencia en \mathbf{A} .
- 2. Φ está cerrada por traslaciones elementales en ${f A}.$
- 3. Φ está cerrada por traslaciones en \mathbf{A} .

Esto es, si $T \in \text{Etl}(\mathbf{A}) \left(\text{Tl}(\mathbf{A}) \right) \text{ y } (a,b) \in \Phi$, entonces

$$(T(a), T(b)) \in \Phi$$

Sea **A** una Σ -álgebra y $L \subseteq A$.

Definimos la relación $\Omega^{\mathbf{A}}(L)$ en A como sigue.

Dados $a, b \in A$

$$(a,b) \in \Omega^{\mathbf{A}}(L) \quad \Leftrightarrow \quad \forall T \in \mathsf{Tl}(\mathbf{A}) \, (T(a) \in L \Leftrightarrow T(b) \in L)$$

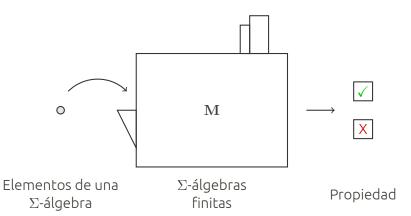
Se tiene que $\Omega^{\mathbf{A}}(L)$ es la mayor congruencia en \mathbf{A} que satura L. Esta congruencia se llama la congruencia sintáctica de L.

La definición de reconocibilidad se debe a Mezei y Wright.

Dada una Σ -álgebra $\mathbf{A}=(A,F)$ y un lenguaje $L\subseteq A$. Decimos que L es reconocible si cumple cualquiera de las siguientes propiedades.

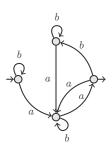
- 1. $\Omega^{\mathbf{A}}(L)$ tiene índice finito en \mathbf{A} .
- 2. L está saturado por una congruencia de índice finito en ${f A}.$
- 3. Existe una Σ -álgebra finita $\mathbf M$, un homomorfismo de Σ -álgebras $f\colon \mathbf A\to M$ y un subconjunto $C\subseteq M$ tal que

$$L = f^{-1}[C].$$



GRAFOS

¿Son los grafos elementos de una Σ -álgebra?



ALEGORÍAS

Las alegorías son álgebras para la signatura

$$\Sigma = \{\cdot, \cap, \cdot^{\circ}, 1, \top\}$$

Fueron introducidas por Freyd y Scedrov en 1990.

Han sido intensivamente estudiadas por Andréka y Bredikhin.

GRAFOS 2-PUNTEADOS SOBRE A

El conjunto ${\sf G}(A)$ de todos los grafos 2-punteados sobre un alfabeto A tiene estructura de alegoría.

$$G \cdot H = \xrightarrow{G} \xrightarrow{G} \xrightarrow{H} \xrightarrow{O} \xrightarrow{H}$$

$$G \cap H = \rightarrow \bigcirc$$

$$G^{\circ} = \longleftrightarrow G \longrightarrow G \longleftrightarrow$$

$$1 = \rightarrow 0 \rightarrow$$

$$\top = \rightarrow 0$$
 0-

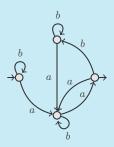
Si además interpretamos cada letra $a \in A$ como el grafo

$$G(a) = \rightarrow 0 \xrightarrow{a} 0 \rightarrow$$

Entonces, todo término bien formado sobre las alegorías admite una representación única como grafo.

Ejemplo

El grafo asociado a $(1 \cap b)a(1 \cap b)((a^{\circ}(1 \cap b)b^{\circ}) \cap a^{\circ} \cap a)$ es



No todo grafo en G(A) es el grafo de un término.

Ejemplo

El grafo completo de 4 vértices, K_4 , independientemente de la orientación de los ejes y su etiquetado, así como la elección de la entrada o salida no es el grafo de ningún término.

Un $G \in G(A)$ es el grafo de un término si y sólo si $G \in TW_2(A)$, esto es, si G tiene amplitud de árbol G.

Diferentes términos pueden representar el mismo grafo.

Ejemplo

Los términos $(1 \cap a)b$ y $((1 \cap a)\top) \cap b$ designan el mismo grafo.

$$b \rightarrow 0$$

2P-ÁLGEBRAS

Una 2p-álgebra es una alegoría que cumple:

A1.
$$a \cap (b \cap c) = (a \cap b) \cap c$$

A2.
$$a \cap b = b \cap a$$

A3.
$$a \cap T = a$$

A4.
$$a(bc) = (ab)c$$

A5.
$$a1 = a$$

A6.
$$a^{\circ \circ} = a$$

A7.
$$(a \cap b)^{\circ} = b^{\circ} \cap a^{\circ}$$

A8.
$$(ab)^{\circ} = b^{\circ}a^{\circ}$$

A9.
$$1 \cap 1 = 1$$

A10.
$$1 \cap (ab) = 1 \cap ((a \cap b^{\circ}) \top)$$

A11.
$$a \cap \top = (1 \cap (a\top))\top$$

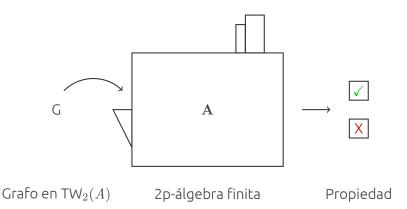
A12.
$$(1 \cap a)b = ((1 \cap a)\top) \cap b$$

2P-ÁLGEBRAS

 $\mathsf{TW}_2(A)$ es la 2p-álgebra libre.

En particular, del conjunto de axiomas se deduce una ecuación e = f entre términos si y sólo si G(e) y G(f) son isomorfos.

2P-ÁLGEBRAS



BIBI IOGRAFÍA

A. Ballester Bolinches, E. Cosme Llópez, J.J.M.M. Rutten The dual equivalence of equations and coequations for automata,

Information and Computation, 244:49–75, 2015.

J. Climent Vidal , E. Cosme-Llópez Eilenberg theorems for many-sorted formations To appear in Houston Journal of Mathematics, 2017.

E. Cosme-Llópez, D. Pous K4-free graphs as a free algebra. In Proc. MFCS of LIPIcs, 83:76:1 - 76:14, 2017.

BIBLIOGRAFÍA

- B. Courcelle, J. Engelfriet Graph Structure and Monadic Second-Order Logic, a Language Theoretic Approach, 2011.