
COALGEBRAS

Enric Cosme





Contents

Chapter 1. Coalgebras 1
1. Basic concepts 1
2. Coalgebras for an endofunctor 2
3. Coproducts 3
4. Coequalizers 5
5. Pullbacks 6
6. Amalgamated sum 8

Chapter 2. Coalgebraic View of Logical Structures 11
1. P-coalgebras 11
2. Graphs as P-coalgebras 12
3. Posets as P-coalgebras 13
4. P(A×−)qB-coalgebras 14
5. Multimodal Logic 15
6. Bisimulation 17
7. Kripke Structures as P(A×−)qB-coalgebras 18
8. Nondeterministic Finite Automaton 19
9. Bisimilarity on NFA 20
10. NFA as P(A×−)qB-coalgebras 21
11. (−×A)B-coalgebras 21
12. Turing Machines as (−×A)B-coalgebras 22

Chapter 3. Bisimulations 25
1. Generalisation of Bisimulation 25
2. Basic Results 27
3. Pullbacks and Bisimulations 31

Chapter 4. Associated Dioid 37
1. Previous Definitions on Semiring Theory 37
2. Structure of B(X) 38
3. Usefulness 41

Chapter 5. SubCoalgebras 43
1. Basic Facts 43
2. More on Semiring Theory 45
3. Pullbacks and Subcoalgebras 45

Chapter 6. Isomorphism Theorems 51
1. 1st Isomorphism Theorem 51
2. 2nd Isomorphism Theorem 52
3. 3rd Isomorphism Theorem 54

iii



iv

Chapter 7. Simple Coalgebras 55
1. Simple Coalgebras 55
2. Subcoalgebras and Simple Coalgebras 57
3. More on Semiring Theory 57
4. Bisimulation Permutability 60

Chapter 8. Final Coalgebras 65
1. Final Coalgebras 65
2. Cofree Coalgebras 66
3. An Application of Coinduction 66

Chapter 9. On Bisimilarity 73
1. Towards a general Theory 73
2. Bisimilarity and Simple Coalgebras 74

Bibliography 77

Universitat de València Enric Cosme



CHAPTER 1

Coalgebras

1. Basic concepts

We present in this section the most fundamental definitions of category theory;
the definition of category and the definition of functor between categories.

Definition 1.1. Category
A category X is given by a collection X0 of objects and a collection X1 of arrows

which have the following structure:

• Each arrow has a domain and a codomain which are objects. One writes
f : X → Y if X is the domain of the arrow f and Y its codomain. One
also writes X = dom(f) and Y = cod(f).

• Given two arrows f and g such that cod(f) = dom(g) the composition
of f and g written gf , is defined and has domain dom(f) and codomain
cod(g), i.e.:

f : X → Y
g : Y → Z

7−→ gf : X → Z

• Composition is associative, that is: given f : X → Y , g : Y → Z and
h : Z →W it holds that h(gf) = (hg)f .

• For every object X there is an identity arrow idX : X → X, satisfying
idXg = g for every g : Y → X and fidX = f for every f : X → Y .

Example 1.2. We present here the category of sets, Set. Set is given by the
collection Set0 consisting in sets and Set1 of usual mappings between sets.

Definition 1.3. Functor
Given two categories X and X′, a functor F : X → X′ consists of operations

F0 : X0 → X′0 and F1 : X1 → X′1 such that:

• For each f : X → Y , F1(f) : F0(X)→ F0(Y ).
• For each f : X → Y , g : Y → Z it holds that F1(gf) = F1(g)F1(f).
• For each X ∈ X0, F1(idX) = idF0(X).

When X and X′ are the same category, we say that F is an endofunctor.

We introduce here a useful proposition on functors.

Proposition 1.4. Let F be an arbitrary functor over Set. Let X and Y be
arbitrary sets with X 6= ∅. If f : X → Y is mono, then Ff : FX → FY is mono
as well.

Proof. Let x0 ∈ X and define g : Y → X as:

g(y) =

 x if there is a unique x ∈ X
such that y = f(x)

x0 otherwise

1



2 2. Coalgebras for an endofunctor

Clearly gf = IdX , therefore

FgFf = F (gf) = F (IdX) = IdF (X)

Thus, Ff is injective, that is, mono. �

2. Coalgebras for an endofunctor

Definition 1.5. Coalgebra
Given a category X, called the base category, and an endofunctor F : X→ X,

a F -coalgebra (or F -system) consists of a pair (X,α), where X is an object of X
and α : X → FX an arrow in X. We call X the base and α the structure map of
the coalgebra. When the endofunctor is clear we will refer to the pair simply as a
coalgebra (or system).

One can see coalgebras as structures that allow us to focus our attention on
the decomposition of elements.

Definition 1.6. Coalgebra Homomorphism
Let X be any category. Let F be an endofunctor over X. Let (X,α) and (Y, β)

be two F -coalgebras. A F -coalgebra homomorphism,

f : (X,α)→ (Y, β)

is an arrow f : X → Y in X such that the following diagram commutes.

X
α−−−−→ FX

f

y yFf
Y −−−−→

β
FY

The F -coalgebras and their homomorphisms form a category, denoted by CoAlg(F ).

We introduce here some useful results on coalgebra homomorphisms.

Proposition 1.7. Consider any category X and any endofunctor F over it.
Let (X,α) and (Y, β) be two F -coalgebras and let f : X → Y be a F -coalgebra
homomorphism over them. If g : Y → X is an inverse of f as arrow, then g is also
a F -coalgebra homomorphism

Proof. Since g is an inverse of f and F is an endofunctor follows that FgFf =
IdFX . Therefore holds that:

Y FY

X FX
α

β

f Ffg Fg
αg = (FgFf)αg

= Fg(Ffα)g
= Fg(βf)g
= Fgβ(fg)
= Fgβ

Therefore g makes the diagram commute. �

Proposition 1.8. Consider any category X and any endofunctor F over it.
Let (X,α), (Y, β) and (Z, γ) be three F -coalgebras and let f : X → Y , g : X → Z
and h : Z → Y be arbitrary functions. Then holds:
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1. Coalgebras 3

• If f = hg, f and g are F -coalgebra homomorphisms and g is surjective
then h is a F -coalgebra homomorphism.

• If f = hg, f and h are F -coalgebra homomorphisms and h is injective
then g is a F -coalgebra homomorphism.

Proof. We will do the proof for the first statement. The other is quite similar.
Consider any z ∈ Z. Since g is surjective there exists some x ∈ X with g(x) = z.

Since f = hg and F is an endofunctor we obtain that Ff = FhFg. Therefore holds
that:

FX FZ

X Z

FY

Y

α β

f

Ff

g

Fg

h

Fh

γ
βh(z) = βhg(x)

= βf(x)
= Ffα(x)
= FhFgα(x)
= Fhγg(x)
= Fhγ(z)

Therefore h makes the diagram commute. �

In the rest of this work we will focus our attention only on the category X =Set.

3. Coproducts

Definition 1.9. Coproduct of sets
Let {Xj : j ∈ J} be a family of sets. We define the coproduct,

∐
j∈J Xj , of the

family to be the set: ∐
j∈J

Xj =
⋃
j∈J

(Xj × {j})

We can associate to each j ∈ J the injection mapping, iXj : Xj →
∐
j∈J Xj ,

defined as:
iXj : Xj −→

∐
j∈J Xj

x 7−→ 〈x, j〉

Proposition 1.10. Universal Property of Coproduct
Let {Xj : j ∈ J} be a family of sets and let Y be an arbitrary set. Assume

that for each j ∈ J there exists some mapping fj : Xj → Y . Then there exists a
unique mapping h :

∐
j∈J Xj → Y such that for each j ∈ J , it makes the following

diagram commute:

Xj ∐
j∈J

Xj

Yfj

iXj

h∃!

Proof. Notice that each z ∈
∐
j∈J has the form 〈x, j〉 for some j ∈ J and

x ∈ Xj . Therefore we define the mapping h as:
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4 3. Coproducts

h :
∐
j∈J Xj −→ Y

z 7−→ fj(x)

where z = 〈x, j〉.
This mapping makes the preceding diagram commute. For each j ∈ J and for

each x ∈ Xj it holds:
hiXj (x) = h(〈x, j〉) = fj(x)

We only need to prove unicity. Assume there exists another g :
∐
j∈J Xj → Y

such that for each j ∈ J it holds that giXj = fj . Take any z ∈
∐
j∈J Xj , as we

have seen there exists some j ∈ J and some x ∈ Xj such that z = 〈x, j〉 = iXj (x).
Then, g(z) = g(iXj (x)) = fj(x) = h(z). It finally holds that g = h. �

Remark 1.11. Notice that in Proposition 1.10, the resulting mapping is uniquely
determined by the given mappings fj , therefore we will use

∐
j∈J fj instead of h.

Definition 1.12. Coproduct of Coalgebras
Let F be any endofunctor over Set.
Assume (X,α) and (Y, β) are F -coalgebras.
The coproduct of this two systems is defined as the pair (XqY, γ), where XqY

is the coproduct of X and Y and γ is an structure map γ : X q Y → F (X q Y )
that turns the injections iX : X ↪→ X q Y and iY : Y ↪→ X q Y into F -coalgebra
homomorphisms.

That means that γ that the following diagram is commutative:

FX

F (X q Y )

X

X q Y FY

Y

α β
iX

FiX

iY

FiY
γ

Remark 1.13. Notice that γ exists and it is unique. It is due to the Universal
Property of the Coproduct 1.10. In fact, γ = FiXα q FiY β.

Proposition 1.14. Universal Property of Coproduct of Coalgebras
Let F be an endofunctor over Set.
Let (X,α) and (Y, β) be two F -coalgebras.
For any F -coalgebra (W, δ) and any F -coalgebra homomorphisms f : X → W

and g : Y →W , there exists a unique F -coalgebra homomorphism h : X q Y →W
making the following diagram commute:

X

X q Y

W

Y

f g

∃! h

iX iY

Proof. Notice that h exists by the Universal Property of Coproduct 1.10. In
fact, h = f q g. Let us see it is a F -coalgebra homomorphism. Hence take any
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1. Coalgebras 5

z ∈ X q Y , then it must happen that z = 〈x, 1〉 for some x ∈ X or z = 〈y, 2〉 for
some y ∈ Y . In both cases hold that δh = Fhγ:

z = 〈x, 1〉, x ∈ X z = 〈y, 2〉, y ∈ Y

δh(z) = δf(x)
= Ffα(x)

Fhγ(z) = FhFiXα(x)
= F (h iX)α(x)
= Ffα(x)

δh(z) = δg(y)
= Fgβ(y)

Fhγ(z) = FhFiY β(y)
= F (h iY )β(y)
= Fgβ(y)

Thus, h is the desired F -coalgebra homomorphism. �

Remark 1.15. One can easily extend the notion of coproduct to an arbitrary
set of F -coalgebras, {(Xj , αj)}j∈J , by defining its coproduct as the F -coalgebra
that turns all the injections iXj into F -coalgebra homomorphisms. We will denote
this F -coalgebra as

(
∐
j∈J

Xj , γ)

4. Coequalizers

Definition 1.16. Coequalizer
Let X and Y be two sets. Let f : X → Y and g : X → Y be two mappings.

We define the coequalizer of f and g, to be the pair (Z, h) where Z is a set and
h : Y → Z with the properties:

1. hf = hg
2. For any other set Z ′ and any other h′ : Y → Z ′ accomplishing property

1., we can find a unique mapping l : Z → Z ′ with lh = h′

That is to say that the following diagram is commutative:

X Y Z

Z ′

f

g

h

h′
l∃!

Proposition 1.17. Let X and Y be two sets. Let f : X → Y and g : X → Y
be two mappings. Then the coequalizer of f and g exists.

Proof. Let ∼ be the minimal equivalence relation on Y for which holds that

∀x ∈ X f(x) ∼ g(x)

Take Z to be the quotient of Y under this relation, i.e., Z = Y/ ∼ and let h = π∼
be the quotient mapping:

π∼ : Y −→ Y/ ∼
y 7−→ [y]∼

Let us check that all the properties from Definition 1.16 hold for (Y/ ∼, π∼):
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6 5. Pullbacks

1. Take any x ∈ X it holds that hf(x) = [f(x)]∼ and hg(x) = [g(x)]∼.
Notice that the classes coincide since ∼ contains all the pairs of the form
〈f(x), g(x)〉 for each x ∈ X.

2. Assume there exists another Z ′ and another h′ : Y → Z ′ for which h′f =
h′g. Define l as the mapping:

l : Y/ ∼ −→ Z ′

[y]∼ 7−→ h′(y)

l is well defined since h′f = h′g and using the condition of miminality
upon ∼. It also holds that lh = h′ and moreover from that follows that l
is uniquely determined.

�

We will see that if X and Y have also a coalgebraic structure, one can find an
structure map for the coequalizer of f and g with some good properties.

Proposition 1.18. Let F be an endofunctor over Set. Let (X,α), (Y, β) be two
F -coalgebras. Let f : X → Y and g : X → Y be two F -coalgebra homomorphisms.
Let (Z, h) be a coequalizer of f and g. Then there exists a unique structure map
γ : Z → F (Z) that turns h into a F -coalgebra homomorphism. That is to say that
the following diagram commutes:

X Y Z

FX FY FZ

f

g

Ff

Fg

h

α β

Fh

γ∃!

Proof. Consider the mapping Fhβ : Y → FZ
It holds that:

Fhβf = (Fh)(Ff)α
= F (hf)α
= F (hg)α
= (Fh)(Fg)α = Fhβg

So using the 2nd property for h, there exists a unique mapping γ : Z → F (Z) for
which it holds that γh = Fhβ �

5. Pullbacks

We introduce some notions that will be useful on the next chapters, specially
on some results of Chapter 3.

Definition 1.19. Weak Pullback
A weak pullback of two mappings f : X → Z and g : Y → Z in the category

Set is a triple (P, πX , πY ) such that P is a set, πX : P → X and πY : P → Y are
such that:

i) f πX = g πY
ii) For each triple (P ′, π′X , π

′
Y ) with π′X : P ′ → X and π′Y : P ′ → Y and

fπ′X = gπ′Y , there is a mediating mapping p′ : P ′ → P such that πXp
′ =

π′X and πY p
′ = π′Y
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1. Coalgebras 7

That is to say that the following diagram commutes:

X

Z

Y

P

P ′

p′
π′X π′Y

πYπX

f g

Note that the mediating mapping p′ need not to be unique; adding this re-
quirement to the definition it would give the more familiar, and stronger, notion of
pullback.

Proposition 1.20. The category Set has pullbacks.

Proof. Let f : X → Z and g : Y → Z be any two mappings in Set.
Consider the set

P = {〈x, y〉 ∈ X × Y : f(x) = g(y)}
Let us see that the triple (P, π1, π2) consisting on the set P and the usual

projections, form a weak pullback for (f, g).
The first property from Definition 1.19 trivially holds.
In order to check the second one, consider any (P ′, π′X , π

′
Y ) with π′X : P ′ → X

and π′Y : P ′ → Y and fπ′X = gπ′Y . Then define the mediating mapping p′ as:

p′ : P ′ −→ P
w 7−→ 〈π′X(w), π′Y (w)〉

p′ is well defined since f π′X = g π′Y . Furthermore also holds that π1p
′ = π′X and

π2p
′ = π′Y .
Therefore, (P, π1, π2) is a weak pullback for (f, g).

�

Example 1.21. The intersection of a collection {Wj : j ∈ J} of subsets of a
set X can be constructed by means of generalized pullbacks, which is so to speak a
pullback of a whole family of mappings at the same time. The intersection of the
family appears as the pullback of each inclusion, i.e.:

Wj Wk · · · Wl

X

⋂
j∈J

Wj

i i i

ij

ik

il

where {ij : Wj → X : j ∈ J} are the inclusion mappings. Notice that all functions
are mono.
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8 6. Amalgamated sum

Definition 1.22. Pullback Preservation
A functor F :Set→Set preserves (weak) pullbacks if for any (weak) pullback

(P, πX , πY ) of (f, g) holds that the triple (FP, FπX , FπY ) is a (weak) pullback of
(Ff, Fg).

Proposition 1.23. Let F be an endofunctor on Set that preserves weak pull-
backs. Then F preserves intersections, i.e.:

F (
⋂
j∈J

Wj) ∼=
⋂
j∈J

FWj

for a given family {Wj : j ∈ J} of subsets of a set X.

Proof. Let {Wj : j ∈ J} be a family of subsets of X. Since F preserves
weak pullbacks, the diagram of Example 1.21 is transformed by F into a new weak
pullback diagram:

FWj FWk · · · FWl

FX

F (
⋂
j∈J

Wj)

Fi F i F i

F ij

Fik

Fil

Since all the mappings in the diagram of Example 1.21 are mono, we can apply
Proposition 1.4 to affirm that each function Fij for j ∈ J is mono as well. This
diagram is again a weak pullback in Set. Thus, F (

⋂
j∈JWj) is isomorphic to⋂

j∈J FWj since we can find mediating mappings from one to another and viceversa.
�

Many but not all endofunctors on Set in fact preserve weak pullbacks:

Proposition 1.24. All endofunctors inductively defined upon:

• The Identity Functor I
• The Constant Functor C
• The Coproduct Functor q
• The Product Functor ×
• The Exponent Functor (·)C
• The Power Set Functor P

preserve weak pullbacks.

See [Ven05] for more details.
Proposition 1.24 guarantee us that each endofunctor on Set used in this work

preserves weak pullbacks.

6. Amalgamated sum

Once we have obtained that the coproduct of two arbitrary coalgebras is again
a coalgebra and also that the coequalizer of two coalgebra homomorphisms is again
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1. Coalgebras 9

a coalgebra, we can derive a new kind of operation among coalgebras: the amalga-
mated sum.

Proposition 1.25. Let F be any endofunctor over Set. Assume (X,α) and
(Y, β) and (W,λ) are three F -coalgebras, for which there are also two F -coalgebra
homomorphisms f : W → X and g : W → Y . Then there is an F -coalgebra (Z, η)
together with two F -coalgebra homomorphisms ıX : X → Z and ıY : Y → Z with
the following properties:

S1. ıXf = ıY g.
S2. For any other F -coalgebra (Z, η) and any other pair of F -coalgebra ho-

momorpshims ıX : X → Z and ıY : Y → Z accomplishing the equation
ıXf = ıY g, then there is a unique F -coalgebra homomorphism t : Z → Z
such that tıX = ıX and tıY = ıY .

This can be depicted in the following commutative diagram:

W X

Y Z

Z

f

g ıX

ıY

ıX

ıY

∃!t

Proof. Let us prove this Proposition step by step. Consider the coproduct
of the F -coalgebras (X,α) and (Y, β): (X q Y, γ). Thus, we obtain the following
diagram:

W X

Y X q Y

f

g iX

iY

Notice that the mappings f = iXf and g = iY g are F -coalgebra homomor-
phisms between the coalgebras W and X q Y . Let (Z, h) be defined precisely as
the coequalizer of this two F -coalgebra homomorphism as seen on Proposition 1.18.
Thus, one can find some structure map η for which (Z, η) is a coalgebra and the
function h is an F -coalgebra homomorphism for which hf = hg. It can be depicted
as follows:

W X q Y Z
f

g

h

We, therefore, define ıX = hiX and ıY = hiY . Let us check that the properties
S1. and S2. hold:

S1. Notice the following identities:

ıXf = (hiX)f = h(iXf) = hf = hg = h(iY g) = (hiY )g = ıY g

Universitat de València Enric Cosme



10 6. Amalgamated sum

S2. Assume that there is an F -coalgebra (Z, η) and some F -coalgebra homo-
morphisms ıX and ıY with the desired properties. Since ıX : X → Z
and ıY : Y → Z are F -coalgebra homomorphisms, using the Universal
Property of the Coproduct of F -coalgebras, 1.14, there exists a unique
F -coalgebra homomorphism h : X q Y → Z that makes the following
diagram commute:

X

Y X q Y

Z

iX

iY

ıX

ıY

∃!h

Notice that we get the identities:

ıX = hiX , ıY = hiY .

If we develop the composition ıXf we obtain that

ıXf = (hiX)f = h(iXf) = hf

Analogously, we obtain that ıY g = hg. By assumption those two com-
positions are equal, which implies that hf = hg. We are now allowed
to use the Universal Property of the Coequalizer; There exists a unique
F -coalgebra homomorphism t : Z → Z that makes the following diagram
commute:

W X q Y Z

Z

f

g

h

h
t∃!

Notice that we get the equation th = h. Composing both sides of the last
equation by iX we get that

(th)iX = t(hiX) = tıX = ıX = hiX

therefore tıX = ıX , analogously we can derive the equation tıY = ıY .

�

Definition 1.26. Amalgamated Sum
Let F be any endofunctor over Set. Assume (X,α) and (Y, β) and (W,λ)

are three F -coalgebras, for which there are also two F -coalgebra homomorphisms
f : W → X and g : W → Y . The resulting F -coalgebra arising from Proposition
1.25 will be called the amalgamated sum of X and Y under W relative to f and g
and it will be denoted by X qW Y .
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CHAPTER 2

Coalgebraic View of Logical Structures

Our aim in this chapter is to present some logical structures as coalgebras for
an specific endofunctor.

In each section we present an endofunctor F and we characterise its F -coalgebra
homomorphisms. After this work, one can easily consider a natural structure map
for those logical structures and conclude that some well-known mappings or notions
are easily described in a coalgebraic sense.

1. P-coalgebras

In this section, we will develop the first important exemple of endofunctor over
Set, the power set functor P:

P : Set −→ Set
X 7−→ P(X)

For each f : X → Y in Set, Pf : P(X) → P(Y ) is a function that map each
subset W of X to the subset of the images of the elements of W .

Pf(W ) = f [W ] = {f(x) : x ∈W}

As in the example seen before, given two P-coalgebras (X,α), (Y, β), it will
important to describe what properties must a mapping f : X → Y have in order
to be a P-coalgebra homomorphism. The next Proposition establishes which are
those properties, but first of all we need to fix notation.

Remark 2.1. Given a P-coalgebra (X,α), we can write it as (X,R) with
R ⊂ X ×X and x1Rx2 ⇔ x2 ∈ α(x1). Notice that R can also play the role of α by
setting Rx1 = {x2 ∈ X : x1Rx2} = α(x1).

Proposition 2.2. Let (X,R) and (X ′, R′) be two P-coalgebras. A function
f : X → X ′ is a P-coalgebra homomorphism if and only if:

P1) x1Rx2 =⇒ f(x1)R′f(x2)
P2) f(x1)R′y =⇒ ∃x2 ∈ X (x1Rx2 and f(x2) = y)

Proof. For a f : X → X ′ being P-coalgebra homomorphism we need that the
following diagram commutes:

X
R−−−−→ P(X)

f

y yPf
X ′ −−−−→

R′
PX ′

11



12 2. Graphs as P-coalgebras

It means that for each x1 ∈ X, Pf(Rx1) = R′f(x1), which lead us to the following
equality between sets:

A := {f(x2) : x1Rx2} = {y : f(x1)R′y} =: B

Hence, any f : X → X ′ is a P-coalgebra homomorphism if and only if A = B.
Notice that A ⊆ B corresponds to property P1) and A ⊇ B corresponds to property
P2). �

2. Graphs as P-coalgebras

Once we have presented P -coalgebras and characterised the P -coalgebra ho-
momorphisms, let us see how can we use those notions to present graphs. First of
all, let us remember some previous definitions.

Definition 2.3. Graph
A graph is an ordered pair G = (V,E) comprising a set V of vertices together

with a set E ⊂ [V ]2 containing two element subsets of V called edges.

Example 2.4. Any graph can be represented by a figure with vertices and
edges according to the considered sets, for example:

V = 5

E = {{0, 2}, {0, 3}, {1, 4}, {2, 3}, {2, 4}}

0

21 3

4

Definition 2.5. Blockmodels
Let G = (V,E) and G′ = (V ′, E′) be two graphs. f : G → G′ is a complete

graph homomorphism if and only if f : V → V ′ is a surjective function such that
∀x1, x2 ∈ V and ∀y1, y2 ∈ V ′ holds:

BM1) {x1, x2} ∈ E =⇒ {f(x1), f(x2)} ∈ E′
BM2) {y1, y2} ∈ E′ =⇒ ∃x1, x2 ∈ V such that {x1, x2} ∈ E and f(x1) = y1,

f(x2) = y2

G′ is called a Blockmodel of G by [WR83].

Remark 2.6. Viewing Graphs as P-coalgebras
Given any graph G = (V,E), we could see G as a P-coalgebra by taking

G = (V, ξ), where ξ is defined according to E as follows:

ξ : V −→ PV
x1 7−→ {x2 : {x1, x2} ∈ E}

Notice that ξ is the adjacency mapping for the graph.

Doing this way we can identify some notions presented before.
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2. Coalgebraic View of Logical Structures 13

Proposition 2.7. Given G = (V,E), G = (V ′, E′) two graphs, and f : V → V ′

any mapping, then it holds that f is a complete graph homomorphism if and only
if f is a surjective P-coalgebra homomorphism.

3. Posets as P-coalgebras

We use the notions seen before to present a coalgebraic approach to posets.
First of all, we must recall some definitions concerning poset theory.

Definition 2.8. Poset
A partially ordered set (or poset) is a pair P = (P,≤) where P is a set and ≤

is an order over P .
To each p ∈ P we can associate two subsets of P :

Its downset ↓ p = {q ∈ P : q ≤ p}
Its upset ↑ p = {q ∈ P : p ≤ q}

Definition 2.9. Order morphisms
Given two posets P1 = (P1,≤1), P2 = (P2,≤2) and f : P1 → P2 a map.
We say that f is:

Monotone ⇔ ∀p, q ∈ P1 (p ≤1 q ⇒ f(p) ≤2 f(q))
Order-reflecting ⇔ ∀p, q ∈ P1 (f(p) ≤2 f(q) ⇒ p ≤1 q)

Order embedding ⇔ f is monotone and order-reflecting.
Order isomorphism ⇔ f is a surjective order embedding.

Remark 2.10. Viewing Posets as P-coalgebras
Given any poset P = (P,≤) we can associate with it, in a very natural way, a

P-coalgebra by taking the structure map η that maps each p ∈ P to its downset
(or to its upset).

η : P −→ P(P )
p 7−→ ↓ p

Remark 2.11. Using Remark 2.1 we can associate to η a relation R. This
relation states that for each p, q ∈ P hold:

pRq ⇔ q ∈ η(p) ⇔ q ∈↓ p ⇔ q ≤ p

Proposition 2.12. Let P1 = (P1,≤1), P2 = (P2,≤2) be two posets with associ-
ated P-coalgebras (P1, η) and (P2, η) respectively. Let f : P1 → P2 be any mapping
between the base sets. It holds that f is a P-coalgebra homomorphism if and only
if for each p, q ∈ P1 and each r ∈ P2

P1) p ≤1 q =⇒ f(p) ≤2 f(q)
P2) r ≤2 f(p) =⇒ ∃q ∈ P1 (q ≤1 p and f(q) = r)

Proof. Using Proposition 2.2 and remark 2.11. �

Corollary 2.13. Let P1 = (P1,≤1), P2 = (P2,≤2) be two posets with associ-
ated P-coalgebras (P1, η) and (P2, η) respectively. Let f : P1 → P2 be any mapping
between the base sets. It holds that f is a P-coalgebra homomorphism if and only
if f commutes with downsets, i.e.:

∀p ∈ P1 f [↓ p] =↓ f(p)

Theorem 2.14. Let P1 = (P1,≤1), P2 = (P2,≤2) be two posets with associated
P-coalgebras (P1, η) and (P2, η) respectively. Then the following statements are
equivalent:
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14 4. P(A×−)qB-coalgebras

a) f is a P-coalgebra isomorphism.
b) f is an order isomorphism.

Proof. � By assumption f is a bijection. By Prop. 2.12 P1) f is
monotone. In order to see that f is order-reflecting, consider any p, q ∈ P1

such that f(p) ≤2 f(q), again by Prop. 2.12 P2) there exists some r ∈ P1

with r ≤1 q and f(r) = f(p). Since f is injective follows that r = p and
hence, p ≤1 q. Finally, f is an order isomorphism.
� By assumption f is a monotone bijection. Consider any p ∈ P1

and r ∈ P2 such that r ≤2 f(p), since f is surjective, there exists some
q ∈ P1 such that f(q) = r and using that f is order reflecting, we conclude
that q ≤1 p. Therefore applying Prop. 2.12, we conclude that f is a P-
coalgebra isomorphism.

�

4. P(A×−)qB-coalgebras

We want now to introduce more important examples. In this section we will
talk about P(A×−)qB-coalgebras. Let us present this kind of coalgebras and let
us characterise its morphisms.

Consider A,B ∈Set. Let us define the endofunctor F = P(A×−)qB as:

P(A×−)qB : Set −→ Set
X 7−→ P(A×X)qB

For each f : X → Y in Set, P(idA× f)q idB : P(A×X)qB → P(A×Y )qB
is a function that acts on each element of P(A×X)qB just by applying f on the
elements of X and leaving the rest unchanged.

Now it will important to describe what properties must a function f : X → Y
have in order to be a P(A×−)qB-coalgebra homomorphism. The next Proposition
establishes which are those properties, but first of all we need to fix notation.

Remark 2.15. Given a P(A×−)qB-coalgebra (X,α), recall that we can write
it as (X, (Ra)a∈A, αB) with Ra ⊂ X ×X for each a ∈ A and x1Rax2 ⇔ 〈a, x2〉 ∈
α(x1). And αB : X → B is a function that maps each x ∈ X to the element of B
according to α. Notice that

∐
a∈A

Ra can also play the role of α by setting

∐
a∈A

Ra(x1) =
∐
a∈A

({a} × {x2 ∈ X : x1Rax2}) = α(x1)

This means that there is a bijection between P(A×X) and
∐
a∈A

({a} × P(X)).

Proposition 2.16. Let (X, (Ra)a∈A, αB) and (X ′, (R′a)a∈A, α
′
B) be two P(A×

−)qB-coalgebras. A function f : X → X ′ is a P(A×−)qB-coalgebra homomor-
phism if and only if:

P1) αB = α′Bf
P2) x1Rax2 =⇒ f(x1)R′af(x2)
P3) f(x1)R′ay =⇒ ∃x2 ∈ X (x1Rax2 and f(x2) = y)
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2. Coalgebraic View of Logical Structures 15

Proof. For a f : X → X ′ being P(A×−) q B-coalgebra homomorphism we
need that the following diagram commutes:

X
α−−−−→ P(A×X)qB

f

y yP(idA×f)qidB

X ′ −−−−→
α′

P(A×X ′)qB

That is equivalent to say that the following two diagrams commute:

X
αB−−−−→ B

f

y yidB
X ′ −−−−→

α′
B

B

X
α−−−−→ P(A×X)

f

y yP(idA×f)

X ′ −−−−→
α′

P(A×X ′)

The first diagram commutes if and only if P1).
For the second one, recall that there exists a bijection between P(A×X) and∐

a∈A({a} × P(X)).
Therefore, the second diagram being commutative is equivalent to say that, for

each a ∈ A, the following diagrams commute:

X
Ra−−−−→ {a} × P(X)

f

y yid{a}×P(f)

X ′ −−−−→
R′
a

{a} × P(X ′)

Proposition 2.2 says that all the preceding diagrams commute if and only if
P2) and P3) �

Corollary 2.17. For the case A = 1 and B = ∅, Proposition 2.16 reduces to
Proposition 2.2.

5. Multimodal Logic

We present in this section some previous definitions concerning Multimodal
Logic, Semantics and Kripke Structures.

Definition 2.18. Multimodal Language
Given a set of atomic propositions Prop and an arbitrary set A, the set of all

multimodal formulas ML is defined inductively by:

p ∈Prop ⇒ p ∈ML
⊥ ∈ML

ϕ,ψ ∈ML ⇒ ϕ→ ψ ∈ML
ϕ ∈ML, a ∈ A ⇒ �aϕ ∈ML

As usual, >, ¬, ∧, ∨, can be defined from ⊥, →. The modal operator ♦a for
each a ∈ A is defined as ¬�a¬.

Definition 2.19. Kripke Model
A Kripke Model is a triple (X, (Ra)a∈A, V ) consisting on a set X, a relation

Ra ⊂ X ×X for each a ∈ A and a valuation V : X → P(Prop).
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16 5. Multimodal Logic

Elements of X are called states. Ra is called the accesibility relation according
to a. As usual we think of V as a mapping assigning to each possible state the set
of atomics propositions holding in x.

Example 2.20. Any Kripke Model (X, (Ra)a∈A, V ) can be seen as a Graph
with Vertices the states of X and colored edges according to Ra. Next to each state
x we write V (x). As an example take:

0

{p q}

2{q}1{p r s} 3 {q r}

4

{p q r}
5

{r s}

For A = 1 we reduce that construction for the case of the usual modal logic.
We think of A as a set of agents and of �aϕ as ’agent a knows ϕ’. Atomic

propositions describe the facts agents can know. A Kripke Model (X, (Ra)a∈A, V )
can be understood as follows: X is a set of possible worlds and V describes the
facts holding in each world; xRay means that agent a considers y as an alternative
world for x; x |= �aϕ means that ϕ holds in all worlds which are considered as
alternative worlds by agent a, i.e. a knows ϕ.

Example 2.21. Hennessy-Milner Logic
Consider a multimodal logic without atomic propositions and with modalities

�a, a ∈ A, where we think of A as a set of actions and �aϕ as ’ϕ holds after a’. A
Kripke Model is then a transition system (X, (Ra)a∈A) (remember that there are
no atomic propositions and hence no valuation).

Definition 2.22. Semantics of Modal Logic
Given a Kripke Model (X, (Ra)a∈A, V ) and x ∈ X we define:

(X, (Ra)a∈A, V, x) |= p ⇔ p ∈ V (x)
(X, (Ra)a∈A, V, x) 6|= ⊥
(X, (Ra)a∈A, V, x) |= ϕ→ ψ ⇔ if (X, (Ra)a∈A, V, x) |= ϕ then (X, (Ra)a∈A, V, x) |= ψ
(X, (Ra)a∈A, V, x) |= �aϕ ⇔ ∀y ∈ X such that xRay then (X, (Ra)a∈A, V, y) |= ϕ

When the model (X, (Ra)a∈A, V ) is clear from the context, we will write x |= ϕ
instead of (X, (Ra)a∈A, V, x) |= ϕ. We say that ϕ holds in a model (X, (Ra)a∈A, V ),
written (X, (Ra)a∈A, V ) |= ϕ if and only if ∀x ∈ X x |= ϕ. Finally, ϕ is valid,
written |= ϕ if and only if ϕ holds in all models.

Definition 2.23. Kripke Frames
A Kripke Frame (X, (Ra)a∈A) consists of a set X and a relation Ra ⊂ X ×X

for each a ∈ A. Kripke Models (X, (Ra)a∈A, V ), for any V : X → P(X), are said
to be based on (X, (Ra)a∈A) and (X, (Ra)a∈A) is called the frame of the model.
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2. Coalgebraic View of Logical Structures 17

A frame (X, (Ra)a∈A) satisfies a formula ϕ ∈ ML if and only if all models
based on the frame (X, (Ra)a∈A) satisfy ϕ:

(X, (Ra)a∈A) |= ϕ ⇔ for all V : X → P(Prop) holds that (X, (Ra)a∈A, V ) |= ϕ

6. Bisimulation

Once we have presented all the previous definitions and concepts, it is natural
to ask what would be an appropiate notion of morphism for the Kripke structures.

Definition 2.24. Bisimilar
Given two Kripke Models (X, (Ra)a∈A, V ), (X ′, (R′a)a∈A, V

′) and x ∈ X and
x′ ∈ X ′. We say that x and x′ are bisimilar if and only if:

V (x) = V ′(x′)
∀a ∈ A xRay ⇒ ∃y′ ∈ X ′ (x′Ray

′ and y, y′ are bisimilar)
∀a ∈ A x′R′ay

′ ⇒ ∃y ∈ X (xRay and y, y′ are bisimilar)

The set B = {〈x, x′〉 : x and x′ are bisimilar } ⊂ X×X ′ is called a bisimulation.
Bisimulations for frames can be obtained as a special case by ignoring the clause

concerning the valuations V and V ′.

Theorem 2.25. Given two Kripke Models (X, (Ra)a∈A, V ), (X ′, (R′a)a∈A, V
′)

and x ∈ X and x′ ∈ X ′.

x, x′are bisimilar⇒ for all ϕ ∈ML (x |= ϕ⇔ x′ |= ϕ)

Proof. Assume x and x′ are bisimilar. We will do the proof by induction on
the structures of formulas.

p ∈Prop) x |= p ⇔ p ∈ V (x)

By bisimilarity, V (x) = V ′(x′)
⇔ p ∈ V ′(x′)
⇔ x′ |= p

⊥) x 6|= ⊥ and x′ 6|= ⊥ therefore
x 6|= ⊥ ⇔ x′ 6|= ⊥

Assume the statement holds for ϕ, ψ ∈MP (IH).
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18 7. Kripke Structures as P(A×−)qB-coalgebras

→) x |= ϕ→ ψ ⇔ if x |= ϕ then x |= ψ
⇔IH if x′ |= ϕ then x′ |= ψ
⇔ x′ |= ϕ→ ψ

�a) x |= �aϕ ⇒ ∀y ∈ X such that xRay then y |= ϕ

Consider any y′ ∈ X ′ such that x′Ray
′

By bisimilarity, ∃y ∈ X (xRay and y, y′ are bisimilar)
Hence y |= ϕ and by (IH) y′ |= ϕ

⇒ ∀y′ ∈ X ′ such that x′Ray
′ then y′ |= ϕ

⇒ x′ |= �aϕ

The other implication is analogous:
x′ |= �aϕ ⇒ x |= �aϕ

Last case hold for each a ∈ A.

Thus, we conclude that for each ϕ ∈ML:

x |= ϕ ⇔ x′ |= ϕ

�

Definition 2.26. Kripke Structure Morphisms
Given two Kripke Models (X, (Ra)a∈A, V ), (X ′, (R′a)a∈A, V

′), a Kripke model
morphism f : (X, (Ra)a∈A, V ) → (X ′, (R′)a∈A, V

′) is a function f : X → X ′ such
that its graph {(x, f(x)) : x ∈ X} is a bisimulation.

We use the same definition for Kripke Frames.

7. Kripke Structures as P(A×−)qB-coalgebras

Remark 2.27. Viewing Kripke Structures as P(A×−)qB-coalgebras
Once we have presented P(A×−)qB-coalgebras and characterised the P(A×

−) q B-coalgebra homomorphisms, let us see how can we use those notions to
present Kripke Structures.

Given any Kripke Model (X, (Ra)a∈A, V ) we associate them a P(A×−) qB-
coalgebra structure by setting B = P(Prop) and taking the structure map µ:

µ : X −→ P(A×X)q P(Prop)
x 7−→ {〈a, y〉 : xRay} q V (x)

And analogously, to each Kripke Frame (X, (Ra)a∈A) we can associate in a very
natural way a P(A×−) q B-coalgebra structure by setting B = ∅ and taking the
structure map ρ:

ρ : X −→ P(A×X)
x 7−→ {〈a, y〉 : xRay}

Remark 2.28. Using Remark 2.15 the relation Ra for each a ∈ A stated for µ
and ρ precisely correspond to the relations in the Kripke Model and in the Kripke
Frame, respectively. Furthermore for the Kripke Model case also holds that

µB = µP(Prop) = V
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2. Coalgebraic View of Logical Structures 19

Theorem 2.29. Given two Kripke Models (X, (Ra)a∈A, V ) and (X ′, (R′a)a∈A, V
′)

together with the structure map µ and f : X → X ′. Then the following are equiva-
lent:

a) f is a P(A×−)q P(Prop)-coalgebra morphism.
b) f is a Kripke Model morphism.

Proof. The proof is done by noticing that the characterisation of P(A×−)qB-
coalgebra morphism done in Proposition 2.16 coincide with the definition of beign
a bisimulation stated in 2.24.

�

Corollary 2.30. Given two Kripke Frames (X, (Ra)a∈A) and (X ′, (R′a)a∈A)
together with the structure map ρ and f : X → X ′. Then the following statements
are equivalent:

a) f is a P(A×−)-coalgebra morphism.
b) f is a Kripke Frame morphism.

Proof. Any Kripke Frame can be seen as a Kripke Model together with the
empty valuation. �

8. Nondeterministic Finite Automaton

Another interesting example of applications of the P(A×−)qB-coalgebras is
in the field of nondeterministic finite automatas.

Definition 2.31. Nondeterministic Finite Automaton
A nondeterministic finite automaton or NFA is a quintuple M = (Q,Σ, δ, q0, F ),

where:

• Q is a finite set of states.
• Σ is a finite set of symbols, known as alphabet. The elements of Σ are

called letters.
• δ : Q× Σ→ P(Q) is a partial function named transition function.
• q0 ∈ Q is the initial state.
• F ⊆ Q is the set of final states.

When the transition function is total we will say that the automaton is com-
pletely specified.

Remark 2.32. One can represent the transition function of a given NFA as a
transition diagram, i.e., a directed graph in which:

1. The number of nodes is |Q|. Each node correspond to one state of Q.
2. For each qi, qj ∈ Q and for each ak ∈ Σ. If qj ∈ δ(qi, ak), then the graph

has one edge labelled with ak from the node qi to the node qj .
3. The initial state is depicted together with a short entering arrow on it.
4. The final nodes are depicted as two concentric circles.

Example 2.33. Let M = ({q0, q1, q2}, {a, b, c}, δ, q0, {q0, q1, q2}) be a NFA with
the following definition of δ:

δ(q0, a) = {q0, q1, q2} δ(q1, a) = ∅ δ(q2, a) = ∅
δ(q0, b) = {q1, q2} δ(q1, b) = {q1, q2} δ(q2, b) = ∅
δ(q0, c) = {q2} δ(q1, c) = {q2} δ(q2, c) = {q2}

The corresponding transition diagram is given by:
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20 9. Bisimilarity on NFA

q0start q1 q2

a

a, b

a, b, c

b

b, c

c

Definition 2.34. Extended transition function
In order to define the behaviour of a NFA on a string it is necessary to extend

the transition function to a function acting on states and strings. Therefore, we

define the extended transition function δ̂ : Q× Σ? → P(Q) in the following way:

∀q ∈ Q, x ∈ Σ?, a ∈ Σ:

1. δ̂(q, λ) = {q}
2. δ̂(q, xa) =

⋃
p∈δ̂(q,x) δ(p, a)

Item 1. means that a NFA can not change its state until it gets a symbol; Item 2.

states the recursive definition of δ̂ on non-empty strings.

Remark 2.35. Notice that the behaviour of the extended transition function
behaves as the initial one when we restrict it to the domain Q × Σ. Therefore we

will write δ instead of δ̂. Moreover we introduce some useful conventions for the
study of NFA:

p, q, · · · are reserved for states. The initial state will be q0.
a, b, · · · are reserved for letters of the alphabet.
w, x, y, z, · · · are reserved for strings.

We will write p
a−→ q for q ∈ δ(p, a). This notation can also be generalized for

strings, p
x−→ q.

Definition 2.36. Accepted Language of a NFA
Let M = (Q,Σ, δ, q0, F ) be a NFA, and let x ∈ Σ? be a string. We say that x

is accepted by M whenever δ(q0, x)∩F 6= ∅ holds. We define the accepted language
of the NFA M as:

L(M) = {x ∈ Σ? : δ(q0, x) ∩ F 6= ∅}

9. Bisimilarity on NFA

Definition 2.37. Nature of a state
Let M = (Q,Σ, δ, q0, F ) be a NFA. The mapping N : Q → P(2) is defined for

each p ∈ Q as:

0 ∈ N(p) if and only if p = q0.
1 ∈ N(p) if and only if p ∈ F .
∅ otherwise.

We say that N(p) is the nature of the state p.

Definition 2.38. Bisimilar states
Let M1 and M2 be two NFA over the same alphabet Σ. We say that the states

p1 ∈ Q1 and p2 ∈ Q2 are bisimilar if and only if:

N(p1) = N(p2)

∀a ∈ Σ p1
a−→ q1 ⇒ ∃q2 ∈ Q2 (p2

a−→ q2 and q1, q2 are bisimilar)
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2. Coalgebraic View of Logical Structures 21

∀a ∈ Σ p2
a−→ q2 ⇒ ∃q1 ∈ Q1 (p1

a−→ q1 and q1, q2 are bisimilar)

The set B = {〈p1, p2〉 : p1, p2 are bisimilars} is called a bisimulation between
M1 and M2.

It is straightforward to see that the definition can be rewritten changing the
letter a ∈ Σ for any string x ∈ Σ?. This is due to the recursive definition of δ on
strings.

Theorem 2.39. Let M = (Q,Σ, δ, q0, F ) and M′ = (Q′,Σ, δ′, q′0, F
′) be two

NFA. If q0 and q′0 are bisimilar, then L(M) = L(M′).

Proof. Let us check that L(M) ⊆ L(M′). Consider any x ∈ L(M). We
distinguish two cases:

|x| = 0 Therefore x = λ. Hence δ(q0, λ) = {q0} ⊆ F which means that q0 is also
a final state. Therefore 1 ∈ N(q0). Since q0 and q′0 are bisimilars, we get
that 1 ∈ N(q′0), i.e., q′0 is also a final state and also λ is accepted by M′.

|x| ≥ 0 Therefore it holds that δ(q0, x) ∩ F 6= ∅. That is to say that there exists

some p ∈ Q such that q0
x−→ p and p ∈ F . Since p is final it holds that

1 ∈ N(p). Since q0 and q′0 are bisimilar, applying Definition 2.38 one

can find some p′ ∈ Q′ such that q′0
x−→ p′ with p and p′ bisimilar, i.e.,

1 ∈ N(p) = N(p′), thus p′ ∈ F ′. Finally, p′ ∈ δ′(q′0, x) ∩ F ′ which means
that x ∈ L(M′).

The inclusion L(M′) ⊆ L(M) has a similar proof. �

10. NFA as P(A×−)qB-coalgebras

Remark 2.40. Viewing NFA as P(A×−)qB-coalgebras
At this point, one can easily picture which will be the associated coalgebra

structure associated to a given NFA, M. Given any NFA M = (Q,Σ, δ, q0, F ) we
associate to it a P(A×−)qB-coalgebra structure by setting A = Σ and B = P(2)
and taking the structure map τ :

τ : Q −→ P(Σ×Q)q P(2)

p 7−→ {〈a, q〉 : p
a−→ q} qN(p)

11. (−×A)B-coalgebras

We introduce in this section the last example of coalgebras: the (− × A)B-
coalgebras. Let us present this kind of coalgebras and let us characterise its mor-
phisms. But first of all, we need to fix notation.

Remark 2.41. Consider X,Y ∈ Set. We denote by XY the set of functions
from Y to X, i.e.:

XY = {g : g : Y → X}

Thus, we are able to define a new kind of endofunctor. Consider A,B ∈ Set.
Let us define the endofunctor F = (−×A)B as:

(−×A)B : Set −→ Set
X 7−→ (X ×A)B

The endofunctor (−×A)B maps each f : X → Y to (f × idA)B , where the last
mapping acts as:

(f × idA)B : (A×X)B −→ (A× Y )B

g 7−→ (f × idA) ◦ g
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22 12. Turing Machines as (−×A)B-coalgebras

As in every example shown before, it is useful to characterise how are the
(−×A)B-coalgebra homomorphisms. But before we do that, let us fix again some
notation.

Remark 2.42. Let (X,α) be a (−×A)B-coalgebra. Since α maps the elements
of X to mappings from B to A×X, let us use, for each x ∈ X, αx instead of α(x)
in order to avoid extra brackets.

Notice that αx is a mapping from a set to a product of sets.
Let us denote b αix to the respective compositions with each projection, i.e.:

αix = πi αx i ∈ {1, 2}

Proposition 2.43. Let (X,α), (Y, β) be two (− × A)B-coalgebras. Let f :
X → Y be any mapping between them. It holds that f is a (− × A)B-coalgebra
homomorphism if and only if for each x ∈ X holds:

P1) fα1
x = β1

f(x)

P2) α2
x = β2

f(x)

Proof. Assume f is a (−×A)B-coalgebra homomorphism, then f makes the
following diagram commute:

X
f−−−−→ Y

α

y yβ
(X ×A)B −−−−−−→

(f×ctA)B
(Y ×A)B

Thus, for each x ∈ X holds that (f×ctA)B αx = βf(x). The equality also holds
for its projections, therefore we conclude that P1) and P2) must hold. Conversely,
if we assume that P1) and P2) hold we get again the equality written before and
consequently the diagram commutes. �

12. Turing Machines as (−×A)B-coalgebras

We introduce here some previous definitions.

Definition 2.44. Turing Machine
A Turing Machine is a 6-tuple M = (Q,Σ,Γ, δ, q0, q+) where:

• Q is a finite set of states.
• Σ is a finite alphabet, called the Input Alphabet.
• Γ is a finite alphabet that contains Σ and the blank symbol, � ∈ Γ. Γ is

called the Tape Alphabet.
• q0 ∈ Q. The Initial State.
• q+ ∈ Q. The Accepting State.
• δ : Q × Γ → Q × Γ × {L,N,R} is a partial function (possibly undefined

for some elements) called the Transition Function.

One can imagine a Turing Machine as a device that can read an input. Then,
it processes that input according to δ and when it reaches the accepting state, it
writes a final result on an output tape.

Remark 2.45. Let M = (Q,Σ,Γ, δ, q0, q+) be any Turing Machine. In order to
represent a Turing Machine, we will depict a set of vertices according to the states
in Q and arrows between them according to δ
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2. Coalgebraic View of Logical Structures 23

For example, if δ is such that δ(〈q, a〉) = 〈q′, b, L〉, we will depict:

q q′
a | b, L

The special case of the states q0 and q+ will be respectively depict as:

q0start q+

Example 2.46. We will depict the Turing Machine that adds one to any input
given in binary. For this example: Q = {q0, q1, q+} Σ = {0, 1} Γ = Σ ∪ {�}

q0start q1 q+

0 | 0, R
1 | 1, R 1 | 0, L

� | �, L
� | 0, N
0 | 1, N

Remark 2.47. Viewing Turing Machines as (−×A)B-coalgebras
Let M = (Q,Σ,Γ, δ, q0, q+) be a Turing Machine. We associate to M a (−×A)B-

coalgebra structure by setting A = Γ × {L,N,R} and B = Γ and taking the
structure map:

δ : Q −→ (Q× Γ× {L,N,R})Γ

q 7−→ δq
Where δq is defined as usual:

δq : Γ −→ (Q× Γ× {L,N,R})
a 7−→ δ(〈q, a〉)
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CHAPTER 3

Bisimulations

1. Generalisation of Bisimulation

We introduce in this section a more general definition of bisimulation on the
category X = Set1

Definition 3.1. Bisimulation
Let F be any endofunctor over Set. Let (X,α), (Y, β) be F -coalgebras.
A subset Z ⊂ X × Y of the cartesian product of X and Y is called a F -

bisimulation if there exists a structure map γ : Z → F (Z) such that the projections
from Z to X and Y are F -coalgebra homomorphisms.

That means that (Z, γ) makes the following diagram commute:

F (X)

F (Z)

F (Y )

X

Z

Y

π1

Fπ1

α

π2

∃ γ

β

Fπ2

We shall also say, making explicit reference to the structure map, that (Z, γ)
is a bisimulation between (X,α) and (Y, β). We will denote by B(X,Y ) the set of
all bisimulations between X and Y .

If (X,α) = (Y, β), then (Z, γ) is called a bisimulation on (X,α). We will write
B(X) instead of B(X,X). A bisimulation equivalence is a bisimulation that is also
an equivalence relation.

Two states x ∈ X, y ∈ Y are called bisimilar if there exists a bisimulation Z
with 〈x, y〉 ∈ Z.

It will be useful to characterise the bisimulations between P-coalgebras. Re-
member that given any P-coalgebra, (X,α), using Remark 2.1 one can write (X,Rα)
instead of (X,α)

Proposition 3.2. Let (X,Rα) and (Y,Rβ) be two P-coalgebras. Consider any
Z ⊆ X × Y . It holds that Z is a bisimulation between X and Y if and only if for
each 〈x0, y0〉 ∈ Z the following two properties hold:

a) ∀x ∈ X x0Rαx =⇒ ∃yx ∈ Y (〈x, yx〉 ∈ Z and y0Rβyx)
b) ∀y ∈ Y y0Rβy =⇒ ∃xy ∈ X (〈xy, y〉 ∈ Z and x0Rαxy)

Notice that this Proposition requires the Axiom of Choice.

1See [Hug01] for a definition on arbitrary categories.
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26 1. Generalisation of Bisimulation

Proof. � Assume towards a contradiction that (Z, γ) is a bisimulation but
one of these properties does not hold. Without loss of generality, assume that
property a) does not hold, that is there exists some 〈x0, y0〉 ∈ Z for which,

∃x ∈ X x0Rαx but ∀y ∈ Y (〈x, y〉 6∈ Z or ¬(y0Rβy))

Since x0Rαx holds, it follows that there must be at least some yx ∈ Y such that
〈x, yx〉 ∈ γ(〈x0, y0〉) (otherwise the left hand side of the diagram in Definition 3.1
does not commute). Notice that yx ∈ Y , therefore applying the previous statement,
it could happen that

• 〈x, yx〉 6∈ Z; Which contradicts that 〈x, yx〉 ∈ γ(〈x, yx〉) ⊆ Z
• ¬(y0Rβyx)); Which contradicts that (Z, γ) is a bisimulation since the right

hand side of the diagram in Definition 3.1 does not commute.

� By hypothesis for each 〈x0, y0〉 ∈ Z, using the Axiom of Choice, for each
x ∈ X such that x0Rαx we can take some yx ∈ Y with 〈x, yx〉 ∈ Z and y0Rβyx.
Using again the Axiom of Choice, for each y ∈ Y such that y0Rβy we can take
some xy ∈ X with 〈xy, y〉 ∈ Z and x0Rαxy.

Just take the structure map for Z:

γ : Z −→ P(Z)

〈x0, y0〉 7−→

( ⋃
x0Rαx

{〈x, yx〉}

)
∪

( ⋃
y0Rβy

{〈xy, y〉}

)

In order to see that Z is a bisimulation between X and Y , we must see that
the diagram of Definition 3.1 commutes. We will do the proof just for the left
hand side of the diagram, the other is quite analogous. Take any 〈x0, y0〉 ∈ Z.
Notice that π1α(〈x0, y0〉) = α(x0) = Rα(x0). On the other side, Fπ1γ(〈x0, y0〉) =
(
⋂
x0Rαx

{x}) ∩ (
⋂
y0Rβy

{xy}) = Rα(x0) ∩ (
⋂
y0Rβy

{xy}). Notice that by the choice

of each xy, it holds that x0Rαxy, therefore the sets Fπ1γ(〈x0, y0〉) and π1α(〈x0, y0〉)
are equal.

�

Example 3.3. Let (X, (Ra)a∈A, V ) and (X ′, (R′a)a∈A, V
′) be two Kripke Mod-

els considered as coalgebras with structure map µ, as seen on Remark 2.27. Let
f : X → X ′ be a P(A × −) q P(Prop)-coalgebra morphism. Then there is a
bisimulation for X and X ′.

Proof. Consider the set

Z = {〈x, f(x)〉 : x ∈ X} ⊂ X ×X ′

together with the structure map:

γ : Z −→ P(A× Z)q P(Prop)
〈x, f(x)〉 7−→ {〈a, 〈y, f(y)〉〉 : xRay} q V (x)

Let us see that (Z, γ) makes the following diagram commute:
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3. Bisimulations 27

P(A×X)q P(Prop)

P(A× Z)q P(Prop)

P(A×X ′)q P(Prop)

X

Z

X ′

π1

Fπ1

µ

π2

γ

µ

Fπ2

Let’s see it works for the right side of the diagram. Conside any 〈x, f(x)〉 ∈ Z,
then holds:

µπ2(〈x, f(x)〉) = {〈a, y′〉 : f(x)R′ay
′} q V ′(f(x))

Fπ2γ(〈x, f(x)〉) = {〈a, f(y)〉 : xRay} q V (x).

By Theorem 2.29 and Definition 2.24 we know that V (x) = V ′(f(x)) and by
Proposition 2.16 we obtain the different inclusions on the other sets. Therefore
µπ2 = Fπ2γ

The left side of the diagram is even easier. �

We finish this section by showing another important example.

Example 3.4. Let F be an endofunctor on Set. Let (X,α), (Y, β) be two
F -coalgebras. It holds that the empty set, ∅ ⊆ X × Y , is a bisimulation between
X and Y .

Proof. Just take γ as the empty mapping. The diagram of 3.1 trivially com-
mutes. �

2. Basic Results

The Example 3.3 (and also the Theorem 2.29) could be seen as an immediate
consequence of the following Theorem.

Theorem 3.5. Let F be an arbitrary endofunctor over Set. Let (X,α) and
(Y, β) be two F -coalgebras and let f : X → Y be an arbitrary map. It holds that
f is a F -coalgebra homomorphism if and only if G(f) is a bisimulation between
(X,α) and (Y, β), where G(f) represents the graph of the function f :

G(f) = {〈x, f(x)〉 : x ∈ X} ⊂ X × Y.

Proof. � By assumption f is a F -coalgebra homomorphism therefore holds
that βf = Ffα

Notice that π1 is a bijection and so is Fπ1, so we can take (Fπ1)−1. Notice
that (Fπ1)−1 = F (π−1

1 ). Let γ be the structure map for G(f) defined as γ =
(Fπ1)−1απ1.

By composition holds that γ is a structure map. Let us check that γ makes the
following diagram commute:
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28 2. Basic Results

FX

FG(f)X

G(f)

FY

Y

α β
Ff

π1

Fπ1

π2

Fπ2

fγ

Obviously γ makes the left side of the diagram commutative.
For the right side, consider any 〈x, f(x)〉 ∈ G(f).

βπ2(〈x, f(x)〉) = βf(x)

Fπ2γ(〈x, f(x)〉) = Fπ2(Fπ−1
1 )απ1(〈x, f(x)〉)

= Fπ2F (π−1
1 )α(x)

= F (π2π
−1
1 )α(x)

= Ffα(x)
= βf(x)

Hence (G(f), γ) is a bisimulation between (X,α) and (Y, β).
� On the converse, assume G(f) is a bisimulation between (X,α) and (Y, β).

Therefore one can find an structure map (G(f), γ) that makes the preceding dia-
gram commute. Since π1 is bijective it has an inverse π−1

1 which is a F -coalgebra
homomorphism by Property 1.7. Since f = π2π

−1
1 , follows that f is a composition

of F -coalgebra homomorphisms and hence so is f . �

The previous theorem would give us some basic results.

Corollary 3.6. Let F be any endofunctor over Set. Let (X,α) be any F -
coalgebra. Then the diagonal ∆X is a bisimulation on (X,α).

Proof. Notice that idX : X → X is a F -coalgebra homomorphism. Therefore
by previous Theorem (3.5) its Graph is a Bisimulation on (X,α). Notice that
G(idX) = ∆X . �

Theorem 3.7. Let F be any endofunctor over Set. Let (X,α) and (Y, β) be
any two F -coalgebras and let (Z, γ) be a bisimulation between (X,α) and (Y, β).
Then the inverse of Z, Z−1, is a bisimulation between (Y, β) and (X,α).

Proof. Let i be the natural bijection between Z and Z−1:

i : Z −→ Z−1

〈x, y〉 7−→ 〈y, x〉

Consider the structure map γı = Fi γ i−1. (Z−1, γı) turns a F -coalgebra.
We must check that (Z−1, γı) is a bisimulation between (Y, β) and (X,α),

therefore it must make the following diagram commute:
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3. Bisimulations 29

F (X) F (X)

F (Z) F (Z−1)

F (Y )

X

Z Z−1

Y

X

π1

Fπ1

α

π2

γ

β

Fπ2

α

Fπ1 Fπ2

π1
π2

γı

i

F i

Consider any 〈y, x〉 ∈ Z−1:

Left hand side Right hand side

βπ1(〈y, x〉) = β(y)

Fπ1γ
ı(〈y, x〉) = Fπ1Fi γ i

−1(〈y, x〉)
= F (π1 i)γ(〈x, y〉)
= Fπ2γ(〈x, y〉)
= βπ2(〈x, y〉)
= β(y)

απ2(〈y, x〉) = α(x)

Fπ2γ
ı(〈y, x〉) = Fπ2Fi γ i

−1(〈y, x〉)
= F (π2 i)γ(〈x, y〉)
= Fπ1γ(〈x, y〉)
= απ1(〈x, y〉)
= α(x)

Therefore, Z−1 is a bisimulation between Y and X. �

Theorem 3.8. Let F be an endofunctor over Set. Let (X,α), (Y, β) and
(W, δ) be three F -coalgebras. Consider f : W → X and g : W → Y be two F -
coalgebra homomorphisms. Then the image 〈f, g〉(W ) = {〈f(w), g(w)〉 : w ∈ W}
is a bisimulation between X and Y .

Proof. Let us set Z = 〈f, g〉(W ).
Consider the mapping

j : W −→ Z
w 7−→ 〈f(w), g(w)〉

Clearly j is a surjective mapping, so one can find using the Axiom of Choice any
right inverse for j, namely i. That means that j i = idZ . And thus, the following
diagram commutes:

X W Y

Z

π1 π2

f g

j i

Define the structure map γ = Fj δ i, then (Z, γ) turns a F -coalgebra.
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W Z

FW FZ

j

i

δ γ

Fj

Let us prove that (Z, γ) is a bisimulation for X and Y by checking that it makes
commute the diagram from the definition 3.1 of bisimulation. Take any w ∈W :

Left hand side

απ1(〈f(w), g(w)〉) = α f(w)
= Ff δ(w)

Fπ1γ(〈f(w), g(w)〉) = Fπ1 Fj δ i(〈f(w), g(w)〉)
= F (π1 j)δ (i j)(w)
= Ff δ(w)

The other side is analogous. �

Theorem 3.9. Let F be an endofunctor over Set.
Let (X,α) and (Y, β) be two F -coalgebras and let {Zj ⊂ X × Y }j∈J be a

family of bisimulations between X and Y . Then the union of the family is also a
bisimulation between X and Y .

Proof. Consider the coproduct of the whole family
∐
j∈J Zj

It is a F -coalgebra by remark 1.15.
Notice that for each j ∈ J , Zj is a bisimulation between X and Y , therefore

each projection πj1 : Zj → X and πj2 : Zj → Y is a F -coalgebra homomorphism.
By the universal property of the coproduct 1.14, there exists h1 and h2 making

the following diagrams commute:

Zj ∐
j∈J

Zj

Xπj1

iZj

∃ h1 Zj ∐
j∈J

Zj

Yπj2

iZj

∃ h2

Notice that h1 and h2 are precisely the componentwise projections.
Applying Theorem 3.8 holds that 〈h1, h2〉(

∐
j∈J Zj) is a bisimulation between

X and Y .
Let us prove that 〈h1, h2〉(

∐
j∈J Zj) =

⋃
j∈J Zj .

⊆ Any element of 〈h1, h2〉(
∐
j∈J Zj) has the form 〈h1(z), h2(z)〉 for some

z ∈
∐
j∈J Zj . Hence, there exists j0 ∈ J for which z ∈ Zj0 ⊂ X×Y holds.

Notice that z = 〈z1, z2〉 with z1 ∈ X and z2 ∈ Y , therefore:

〈h1(z), h2(z)〉 = 〈h1(〈z1, z2〉), h2(〈z1, z2〉)〉 = 〈z1, z2〉 = z ∈ Zj0 ⊆
⋃
j∈J

Zj

⊇ Analogous.
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3. Bisimulations 31

�

Corollary 3.10. Let F be an endofunctor over Set. Let (X,α) and (Y, β) be
two F -coalgebras. Then it holds that B(X,Y ) is a complete lattice for the inclusion
order, with least upper bound and greatest lower bound given by:∨

j∈J
Zj =

⋃
j∈J

Zj

∧
j∈J

Zj =
⋃
{Z : Z ∈ B(X,Y ) and Z ⊆

⋂
j∈J

Zj}

We will refer to B(X,Y ) when we explicitly want to remark the lattice structure
of B(X,Y ). This corollary also proves, as a particular case, the existence of the
greatest bisimulation between X and Y , denoted by X G Y . It is the union of all
the bisimulations:

X G Y =
⋃
B(X,Y )

We end this section by showing a useful result concerning quotients.

Proposition 3.11. Let F be an endofunctor over Set. Let (X,α) be a F -
coalgebra. Let Z be a bisimulation equivalence on X. Let πZ : X → X/Z be the
quotient mapping. Then there exists a unique map structure γZ : X/Z → F (X/Z)
that turns πZ into a F -coalgebra homomorphism.

Proof. We will prove that (X/Z, πZ) is a coequalizer of π1 : Z → X and
π2 : Z → X, so we must show that the properties of Definition 1.16 hold

1. πZπ1 = πZπ2

It is equivalent to say that for each 〈x1, x2〉 ∈ Z, [x1]Z = [x2]Z which
trivially holds in X/Z

2. Analogous to proof done in Proposition 1.17

Therefore, (X/Z, πZ) is the coequalizer of the projections mappings. More-
over, since Z is a bisimulation it holds that the projections are also F -coalgebra
homomorphisms. Using Proposition 1.18 we conclude that there exists a unique
map structure γZ : X/Z → F (X/Z) that turns πZ into a F -coalgebra homomor-
phism. �

3. Pullbacks and Bisimulations

In the following section we will introduce some useful results concerning endo-
functors that preserve weak pullbacks.

Theorem 3.12. Let F :Set→Set be an endofunctor that preserves weak pull-
backs. Let (X,α), (Y, β) and (Z, γ) be three F -coalgebras and let f : X → Z,
g : Y → Z be two F -coalgebra homomorphisms. Then the weak pullback (P, π1, π2)
of (f, g) from Proposition 1.20 is a bisimulation between X and Y .

Proof. Since F preserves weak pullbacks and (P, π1, π2) is a pullback for
(f, g), then (FP, Fπ1, Fπ2) is a pullback for (Ff, Fg).

Consider the triple (P, απ1, βπ2). Let us see that Ff απ1 = Fg βπ2

Consider any 〈x, y〉 ∈ P
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32 3. Pullbacks and Bisimulations

Ff απ1(〈x, y〉) = Ffα(x)
= γf(x)

Fg βπ2(〈x, y〉) = Fgβ(y)
= γg(y)

Last term comes from the fact that f and g are F -coalgebra homomorphims. Notice
finally that by definition of P f(x) = g(y), so we conclude that Ff απ1 = Fg βπ2.

Now by the 2nd property of (FP, Fπ1, Fπ2) being a pullback for (Ff, Fg)
one can find a mediating mapping ζ : P → FP such that the following diagram
commutes:

FX

X

FZ

FY

Y

FP

P

ζ∃
π1 π2

Fπ1 Fπ2

Ff Fg

α β

Therefore, P is a bisimulation between X and Y . �

Theorem 3.13. Let F be an endofunctor over Set that preserves weak pull-
backs. Let (X,α), (Y, β), (Z, γ) be three F -coalgebras. Let Q be a bisimulation
between X and Y and let R be a bisimulation between Y and Z.

Then the composition Q ◦R is a bisimulation between X and Z.

Proof. Since Q and R are bisimulations, the following diagram holds and all
the mappings are F -coalgebra homomorphisms.

X Y Z

Q RπQ1 πQ2 πR1 πR2

Let us focus on Q, R and the mappings πQ2 and πR1 .

By Theorem 3.12, the pullback (P, πP1 , π
P
2 ) of (πQ2 , π

R
1 ) is a bisimulation be-

tween Q and R.
Hence, the following diagram commutes and all the mappings are F -coalgebras

X Y Z

Q R

P

πQ1 πQ2 πR1 πR2

πP1 πP2

Notice that by construction

P = {〈〈x, y1〉, 〈y2, z〉〉 ∈ Q×R : πQ2 (〈x, y1〉) = πR1 (〈y2, z〉)}
= {〈〈x, y1〉, 〈y2, z〉〉 ∈ Q×R : y1 = y2}
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Now consider f = πQ1 π
P
1 and g = πR2 π

P
2 .

They are F -coalgebra homomorphisms by composition.
By Theorem 3.8 〈f, g〉(P ) is a bisimulation between X and Z.
Let us prove that 〈f, g〉(P ) = Q ◦R
⊆ Take any 〈〈x, y1〉, 〈y2, z〉〉 ∈ P . It holds that f(〈〈x, y1〉, 〈y2, z〉〉) = x and
g(〈〈x, y1〉, 〈y2, z〉〉) = z. The elements of 〈f, g〉(P ) are of the form 〈x, z〉
for which there is some y ∈ Y (y = y1 = y2) such that 〈x, y〉 ∈ Q and
〈y, z〉 ∈ R. Therefore 〈x, z〉 ∈ Q ◦R

⊇ Analogous

�

Corollary 3.14. Let F be an endofunctor over Set that preserves weak pull-
backs. Let (X,α) be a F -coalgebra. Then X G X is a bisimulation equivalence.

Proof. As seen on Corollary 3.10, X G X is a bisimulation. Also holds:

• ∆X ⊆ X G X
Since ∆X is a bisimulation by Corollary 3.6 and using the fact that

X G X is the greatest bisimulation on X.
• (X G X)−1 ⊆ X G X

Since (X G X)−1 is a bisimulation by Theorem 3.7 and using the fact
that X G X is the greatest bisimulation on X.

• (X G X) ◦ (X G X) ⊆ X G X
Since (X G X)◦ (X G X) is a bisimulation by Theorem 3.13 and using

the fact that X G X is the greatest bisimulation on X.

�

Remark 3.15. Let F be an endofunctor that preserves weak pullbacks. Let
(X,α) be a F -coalgebra. It holds:

X G X = {〈x1, x2〉 ∈ X ×X : x1 and x2 are bisimilar }

Corollary 3.16. Let F be an endofunctor that preserves weak pullbacks. Let
(X,α) and (Y, β) be two F -coalgebras. Let f : X → Y be any F -coalgebra ho-
momorphism. It holds that the Kernel of f , denoted by Kerf , is a bisimulation
equivalence. Where:

Kerf = {〈x1, x2〉 ∈ X ×X : f(x1) = f(x2)}

Proof. Since f is a F -coalgebra homomorphism, we can use Theorem 3.5 to
conclude that G(f) is a bisimulation between X and Y . Moreover, using Theorem
3.7 we get that G(f)−1 is a bisimulation between Y and X. Using now Theorem
3.13 we conclude that G(f) ◦G(f)−1 is a bisimulation on X.

Notice that

G(f) = {〈x, f(x)〉 : x ∈ X}
G(f) ◦G(f)−1 = {〈x1, x2〉 : ∃y ∈ Y (〈x1, y〉 ∈ G(f) and 〈y, x2〉 ∈ G(f)−1)}

It holds that (〈x1, y〉 ∈ G(f) and 〈y, x2〉 ∈ G(f)−1) if and only if y = f(x1) = f(x2).
Thus, G(f)◦G(f)−1 = Kerf and we conclude that Kerf a bisimulation on X. By
definition of Kerf one can easily check that it is also an equivalence relation on
X. �
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34 3. Pullbacks and Bisimulations

Proposition 3.17. Let F be an endofunctor over Set that preserves weak
pullbacks. Let (X,α) and (Y, β) be two F -coalgebras and let f : X → Y be a
F -coalgebra homomorphism between them. It holds that:

1. If Z is a bisimulation on X, then f(Z) is a bisimulation on Y . Where:

f(Z) = {〈f(x1), f(x2)〉 : 〈x1, x2〉 ∈ Z}
2. If Z is a bisimulation on Y , then f−1(Z) is a bisimulation on X. Where:

f−1(Z) = {〈x1, x2〉 : 〈f(x1), f(x2)〉 ∈ Z}

Proof. Proof for 1.
Since f is a F -coalgebra homomorphism, applying Theorem 3.5, G(f) is a

bisimulation between X and Y . Also by Theorem 3.7, G(f)−1 is a bisimulation
between Y and X. Using Theorem 3.13, we conclude that the composition G(f)−1◦
Z ◦G(f) is a bisimulation on Y .

Let us see, step by step, what is this composition:

G(f) = {〈x, f(x)〉 : x ∈ X}

G(f)−1 = {〈f(x), x〉 : x ∈ X}

Z ◦G(f) = {〈t1, t2〉 : ∃x ∈ X(〈t1, x〉 ∈ Z and 〈x, t2〉 ∈ G(f))}
= {〈t1, f(x2)〉 : 〈t1, x2〉 ∈ Z}

G(f)−1 ◦ (Z ◦G(f)) = {〈t1, t2〉 : ∃x ∈ X(〈t1, x〉 ∈ G(f)−1 and 〈x, t2〉 ∈ Z ◦G(f))}
= {〈f(x1), f(x2)〉 : 〈x1, x2〉 ∈ Z}
= f(Z)

Thus, f(Z) is a bisimulation on Y .
The proof for 2. is analogous, just notice that f−1(Z) = G(f) ◦Z ◦G(f)−1 �

Remark 3.18. We can prove a stronger version of the first point of the preced-
ing Theorem by removing the assumption of F being an endofunctor that preserves
weak pullbacks. This due to the fact that f(Z) = 〈fπ1, fπ2〉(Z) and we can apply
Theorem 3.8.

We will end this section by checking how the preceding construction interacts
with some special kinds of bisimulations.

Proposition 3.19. Let F be an endofunctor over Set that preserves weak
pullbacks. Let (X,α) and (Y, β) be two F -coalgebras. Let f : X → Y be a F -
coalgebra homomorphism. It holds:

1. f(∆X) = ∆f(X)

2. For each Z bisimulation on X holds that f(Z−1) = f(Z)−1

3. If f is a F -coalgebra embedding, for each Z1, Z2 bisimulations on X holds
that f(Z1 ◦ Z2) = f(Z1) ◦ f(Z2)

Proof. This proof reduces to show equality between sets. Let us write in each
case what this sets consist of:

For 1.

f(∆X) = {〈f(x1), f(x2)〉 : 〈x1, x2〉 ∈ ∆X}
= {〈f(x), f(x)〉 : x ∈ X} = ∆f(X)
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3. Bisimulations 35

For 2.

f(Z−1) = {〈f(x1), f(x2)〉 : 〈x1, x2〉 ∈ Z−1}
= {〈f(x2), f(x1)〉 : 〈x1, x2〉 ∈ Z} = f(Z)−1

For 3.

f(Z1 ◦ Z2) = {〈f(x1), f(x3)〉 : ∃x2 ∈ X(〈x1, x2〉 ∈ Z1 and 〈x2, x3〉 ∈ Z2)}
f(Z1) ◦ f(Z2) = {〈f(x1), f(x3)〉 : ∃y ∈ Y (〈f(x1), y〉 ∈ f(Z1) and 〈y, f(x3)〉 ∈ f(Z2))}

We want to see that
f(Z1 ◦ Z2) = f(Z1) ◦ f(Z2)

⊆ This always hold. Just take y = f(x2)
⊇ In that inclusion we need f to be injective. Notice that 〈f(x1), y〉 ∈ f(Z1),

so y must be of the form f(x2) for some x2 ∈ X such that 〈x1, x2〉 ∈ Z1.
On the other side, 〈y, f(x3)〉 ∈ f(Z2), so y must be of the form f(x′2) for
some x′2 ∈ X such that 〈x′2, x3〉 ∈ Z2. Since f is injective we conclude
that x2 = x′2, therefore, 〈x1, x3〉 ∈ Z1 ◦ Z2

�
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CHAPTER 4

Associated Dioid

1. Previous Definitions on Semiring Theory

Definition 4.1. Semigroup
A semigroup is a 2-tuple, M = (M,+) where:

• M is a nonempty set.
• + : M ×M →M is an associative operation.

That is, for each m1,m2,m3 ∈M it holds:

m1 + (m2 +m3) = (m1 +m2) +m3

An element m ∈M is said to be idempotent if m+m = m.

Definition 4.2. Monoid
A monoid is a 3-tuple, M = (M,+, 0) where:

• (M,+) is a semigroup.
• 0 ∈M is an identity element. That is, for each m ∈M it holds:

0 +m = m = m+ 0

We say that a monoid is commutative if for each m1,m2 ∈M holds that:

m1 +m2 = m2 +m1

A monoid M = (M,+, 0) is partially-ordered iff there exists a partial order
relation ≤ defined on M satisfying that for each m1,m2,m3 ∈M , it holds:

m1 ≤ m2 ⇒ m1 +m3 ≤ m2 +m3

m1 ≤ m2 ⇒ m3 +m1 ≤ m3 +m2

Remark 4.3. Any idempotent commutative monoid (M,+, 0) can be equipped
with the natural order relation. For all m1,m2 ∈M , we define:

m1 ≤ m2 ⇔ m1 +m2 = m2

Definition 4.4. Hemiring
An hemiring is a 4-tuple, S = (S,+, ·, 0, ) where:

• (S,+, 0) is a commutative monoid.
• (S, ·) is a semigroup.
• distributes over +, i.e., ∀s, t, u ∈ S

s(t+ u) = (st) + (su)

(t+ u)s = (ts) + (us)

• For all s ∈ S, s0 = 0 = 0s.

Definition 4.5. Semiring A semiring is a 5-tuple, S = (S,+, ·, 0, 1) where:

• (S,+, ·, 0) is a hemiring.
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38 2. Structure of B(X)

• (S, ·, 1) is a monoid.

We say that S is a commutative semiring when (S, ·, 1) is a commutative
monoid. We say that S is an idempotent semiring, or dioid, if + is idempotent.
In that case, S can be equipped with the natural order relation. We say that it is
complete if it is a complete lattice with the natural order relation.

We say that S is a multiplicatively idempotent, if · is idempotent.

Example 4.6. Boolean Matrices
Consider Mn(B1) the set of all square boolean matrices of size n ∈ N. Mn(B1)

together with the usual sum and product of matrices forms a complete idempotent
semiring.

Proposition 4.7. Let S be an idempotent semiring. The operations + and
are compatible with ≤ in the sense:

For each s, t, u, v ∈ S,

s ≤ t, u ≤ v ⇒ s+ u ≤ t+ v

s ≤ t ⇒ su ≤ tu, us ≤ ut

Proof. Assume that s ≤ t and u ≤ v. It holds:

(s+ u) + (t+ v) = (s+ t) + (u+ v) = t+ v

Last statement is equivalent to say that s+ u ≤ t+ v.
For the multiplication,

(su) + (tu) = (s+ t)u = tu

Last statement is equivalent to say that su ≤ tu.
�

2. Structure of B(X)

In the following let F be an endofunctor over Set. Given a F -coalgebra (X,α)
we denote by B(X), as before, the set of all bisimulations on (X,α)

Proposition 4.8. The set B(X) together with the union of sets forms a com-
mutative idempotent monoid with identity element ∅.

Proof. Theorem 3.9 states that the union of bisimulations is a bisimulation.
In example 3.4 we have seen that ∅ is a bisimulation. As we know, the union of
sets is commutative, associative, idempotent and has ∅ as the identity element.

Thus, (B(X),∪, ∅) forms a commutative idempotent monoid with identity ele-
ment. �

Remark 4.9. Every commutative idempotent monoid with identity element is
a join-semilattice with zero and viceversa.

Assume from now that F in this chapter preserves weak pullbacks. We will see
that we will get a richer structure on B(X).

Proposition 4.10. The set B(X) together with the composition of relations
forms a monoid.
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Proof. The composition of relations is always associative.
Theorem 3.13 states that the composition of two bisimulations is a bisimulation.
Corollary 3.6 states that the diagonal relation is a bisimulation. Notice that

∆X is the neutral element for the composition of relations. Thus, (B(X), ◦,∆X)
forms a monoid. �

Proposition 4.11. The composition of relations is compatible with the lattice
structure on P(X ×X). Also for each Z1, Z2, Z3 ∈ P(X ×X) holds:

Z1 ⊆ Z2 ⇒ Z3 ◦ Z1 ⊆ Z3 ◦ Z2

Z1 ⊆ Z2 ⇒ Z1 ◦ Z3 ⊆ Z2 ◦ Z3

Proof. We will prove only the first statement, the other one is quite similar.
Notice that:

Z3 ◦ Z1 = {〈x3, x1〉 : ∃x0 ∈ X(〈x3, x0〉 ∈ Z3 and 〈x0, x1〉 ∈ Z1)} ⊆ Z3 ◦ Z2

Last equality holds because 〈x0, x1〉 ∈ Z1 ⊆ Z2 �

Proposition 4.12. The composition of relations distributes over the union.
That is to say that for each Z1, Z2, Z3 ∈ P(X ×X) it holds that:

Z1 ◦ (Z2 ∪ Z3) = (Z1 ◦ Z2) ∪ (Z1 ◦ Z3)

Proof. We must check the two inclusions.

⊆ Let 〈x1, y〉 ∈ Z1◦(Z2∪Z3). We know that there exists some x′ ∈ (Z2∪Z3)
for which it holds that 〈x1, x

′〉 ∈ Z1 and 〈x′, y〉 ∈ (Z2∪Z3). If 〈x′, y〉 ∈ Z2

holds, then 〈x1, y〉 ∈ Z1 ◦Z2 ⊆ (Z1 ◦Z2)∪ (Z1 ◦Z3). If 〈x′, y〉 ∈ Z3 holds,
then 〈x1, y〉 ∈ Z1 ◦ Z3 ⊆ (Z1 ◦ Z2) ∪ (Z1 ◦ Z3). And we get one inclusion.

⊇ Using Proposition 4.11

Z2 ⊆ Z2 ∪ Z3 ⇒ Z1 ◦ Z2 ⊆ Z1 ◦ (Z2 ∪ Z3)

Z3 ⊆ Z2 ∪ Z3 ⇒ Z1 ◦ Z3 ⊆ Z1 ◦ (Z2 ∪ Z3)

And finally,

(Z1 ◦ Z2) ∪ (Z1 ◦ Z3) ⊆ Z1 ◦ (Z2 ∪ Z3)

�

Theorem 4.13. The set B(X) togheter with the union of bisimulations and the
composition of bisimulations forms a semiring.

Proof. By Proposition 4.8, (B(X),∪, ∅) is a commutative monoid with iden-
tity element ∅.

By Proposition 4.10, (B(X), ◦,∆X) is a monoid with identity element ∆X .
By Proposition 4.12, the composition of relations distributes over the union of

sets.
Finally, ∅ annihilates B(X) with respect to composition of relations. That is

to say that for each Z ∈ B(X) holds:

Z ◦ ∅ = ∅ ◦ Z = ∅
Thus, (B(X),∪, ◦, ∅,∆X) forms a semiring. �

Remark 4.14. Semirings in which the correspondent addition operation is
idempotent are called idempotent semirings or dioids. In our case, B(X) is a dioid
since the union of sets is idempotent.
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40 2. Structure of B(X)

Definition 4.15. Associated Dioid
Let (X,α) be a F -coalgebra.
We define its associated diod, denoted by π(X,α), to the dioid (B(X),∪, ◦, ∅,∆X)

Theorem 4.16. Let (X,α) be a F -coalgebra. Then holds:

|π(X,α)| ≤ 2|X|
2

Proof. Notice that each Z ∈ π(X,α) is a bisimulation on X, so Z ⊆ X ×X
and therefore holds that B(X) ⊆ P(X ×X). Hence

|π(X,α)| = |B(X)| ≤ |P(X ×X)| = 2|X×X| = 2|X|
2

�

Corollary 4.17. Let (X,α) be a F -coalgebra. If X is finite, so is π(X,α)

Example 4.18. Let us calculate the associated dioid for the following Poset
(P,≤)

a

b

as P-coalgebra, in the sense of the construction shown in 2.10.

Notice first that by the preceding Corollary |π(P, η)| ≤ 2|X|
2

= 16
Let us prove a previous lemma, which tells us which are all the possible bisim-

ulations on P .

Lemma 4.19. Let (P,≤) be any Poset. Let Z be any subset of P × P . It holds
that Z ∈ B(P ) if and only if for each 〈p, q〉 ∈ Z the following two properties hold:

a) ∀p ∈ P p ≤ p0 =⇒ ∃qp ∈ P (〈p, qp〉 ∈ Z and qp ≤ q0)
b) ∀q ∈ P q ≤ q0 =⇒ ∃pq ∈ P (〈pq, q〉 ∈ Z and pq ≤ p0)

Proof. It follows from Proposition 3.2 and Remark 2.10. �

Consequently, we can conclude that |π(P, η)| = 9
We present the Hasse Diagram of all possible bisimulations on P :

∅

{〈a, a〉}

{〈a, a〉, 〈a, b〉} {〈a, a〉, 〈b, a〉} ∆P

{〈a, a〉, 〈a, b〉, 〈b, a〉} {〈a, a〉, 〈a, b〉, 〈b, b〉} {〈a, a〉, 〈b, a〉, 〈b, b〉}

P G P
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4. Associated Dioid 41

We have coloured in blue all the idempotent elements of the multiplicative
monoid and bordered in red all the bisimulations of the form graph of some F -
coalgebra homomorphism.

Example 4.20. Let us calculate the associated dioid for the following Graph
(V, ξ) as a P-coalgebra in the sense of 2.6:

1 2

It also holds |π(V, ξ)| ≤ 2|V |
2

= 16
The dioid is given by:

∅

∆V {〈1, 2〉, 〈2, 1〉}

{〈1, 1〉, 〈1, 2〉, 〈2, 2〉} {〈1, 1〉, 〈2, 1〉, 〈2, 2〉} {〈1, 1〉, 〈1, 2〉, 〈2, 1〉} {〈1, 2〉, 〈2, 1〉, 〈2, 2〉}

V G V

We have coloured in green all the idempotent elements of the multiplicative
monoid and bordered in red all the bisimulations of the form graph of some F -
coalgebra homomorphism.

3. Usefulness

The associated dioid is a useful tool to characterize F -coalgebras. The following
proposition tell us how can we use that dioid.

Proposition 4.21. Let (X,α), (Y, β) be two F -coalgebras. If f : X → Y is a
F -coalgebra isomorphism between X and Y , then

π(X,α) ∼= π(Y, β)

Proof. Just take as dioid isomorphism the mapping f

f : π(X,α) −→ π(Y, β)
Z 7−→ f(Z)

Notice that every mapping respects the union of sets, thus f(Z1∪Z2) = f(Z1)∪
f(Z2). Since f is injective, we can use the 3rd point of Proposition 3.19 to conclude
that f respects the composition. Moreover, since f is surjective we can apply the
1st point of the same Proposition to conclude that

f(∆X) = ∆f(X) = ∆Y

Therefore it maps the unit of π(X,α) to the unit of π(Y, β) and it also holds that
f(∅) = ∅. Thus, we conclude that π(X,α) ∼= π(Y, β)

�
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CHAPTER 5

SubCoalgebras

1. Basic Facts

Definition 5.1. Subcoalgebra
Let F be an arbitrary functor over Set. Let (X,α) be a F -coalgebra. Let

W ⊆ X be any subset of X.
We say that W is a subcoalgebra of X, written W ≤ X, if there exists an

structure map αW on W such that turns the inclusion mapping i : W → X into a
F -coalgebra homomorphism. That is to say that the following diagram commutes:

FW

W

FX

X

Fi

αW α

i

Proposition 5.2. Let F be an arbitrary functor over Set.
Let (X,α) be a F -coalgebra. Let W ⊆ X be any subset of X.
If there exists a structure map on W , namely αW , that turns the inclusion

mapping into a F -coalgebra homomorphism, then αW is uniquely determined.

Proof. For the case W = ∅ it is straightforward to see that αW is the empty
mapping and we can conclude that it is uniquely determined.

Now assume that W 6= ∅. Let α′W be another structure map on W that makes
the diagram of 5.1 commute. Hence:

FiαW = αi = Fiα′W

Since i is mono, by Proposition 1.4 so is Fi, therefore αW = α′W �

So far, one can easily see that the empty set, ∅, and X are always subcoalgebras
of (X,α).

Definition 5.3. Minimal Coalgebras
Let F be any endofunctor over Set. A F -coalgebra (X,α) is called minimal if

it does not have any proper subcoalgebra (i.e., different from ∅ and X).

Subcoalgebras can be characterized in terms of bisimulations as follows:

Proposition 5.4. Let F be an arbitrary functor over Set.
Let (X,α) be a F -coalgebra. Let W ⊆ X be any subset of X.
W ≤ X if and only if the diagonal of W , ∆W , is a bisimulation on X.

Proof. � Assume that W ≤ X, therefore there exists an structure map αW
that turns the inclusion mapping into a F -coalgebra homomorphism. Therefore, by
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Theorem 3.5 the graph of i is a bisimulation between (W,αW ) and (X,α). Notice
that

G(i) = {〈w, i(w)〉 : w ∈W} = ∆W

So there exists an structure map γ : ∆W → F∆W such that the following
diagram commutes:

FW

F∆W

FX

W

∆W

X

π1

Fπ1

αW

π2

∃ γ

α

Fπ2

If ∆W must be a bisimulation on X, we must be able to replace (W,αW ) by
(X,α) in the left hand side of the preceding diagram. Notice also that αW turns the
inclusion mapping into a F -coalgebra homomorphism, so we obtain the following
commutative diagram:

FW

F∆W

FX

W

∆W

X

π1

Fπ1

αW

∃ γ

α

i

F i

π1

Fπ1

Notice that π1 = π1i and therefore, Fπ1Fi = F (π1i) = Fπ1. We can get
analogous results for the other projection.

So finally, ∆W is a bisimulation on X.
� For the converse. Assume that ∆W is a bisimulation on X. So there exists

a structure map γ and that makes the diagram of Definition 3.1 commute. So we
get the equality Fπ1γ = απ1

So if we take

αW : W −→ FW
w 7−→ Fπ1γ(〈w,w〉)

We can conclude that ∆W = G(i) is a bisimulation between W and X and
therefore using Theorem 3.5 we see that αW turns the including map i into a
F -coalgebra homomorphism. �

The kind of proof done in the first part of the previous statement can be easily
extended to each bisimulation on W . Thus, we get the following Proposition:
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5. SubCoalgebras 45

Proposition 5.5. Let F be an arbitrary endofunctor on Set. Let (X,α) be a F -
coalgebra and let (W,αW ) be any subcoalgebra of X. It holds that every bisimulation
on W is also a bisimulation on X. That is to say that:

B(W ) ⊆ B(X)

Proof. Let Z be any bisimulation on W , we must check that Z ∈ B(X). As
before, since Z is a bisimulation on W , it makes the following diagram commute:

FW

FZ

FW

W

Z

W

X

FX

π1

Fπ1

αW

π2

∃ γ

αW
Fπ2

i

α

F i

π1

Fπ1

Notice that αW turns the inclusion mapping into a F -coalgebra homomorphism. We
have depicted that fact in the preceding diagram. As in the previous Proposition,
π1 = π1i and therefore, Fπ1Fi = F (π1i) = π1 and also for the other projection.
Thus, Z is a bisimulation on X.

�

2. More on Semiring Theory

With the last proposition we can determine the relation between the associated
dioid of W and the associated dioid of X.

Definition 5.6. Subhemiring, Subsemiring
Let S = (S,+, ·, 0) be a hemiring. Let H be a subset of S. We say that H is a

subhemiring of S if 0 ∈ H and it is closed under + and ·. We will denote this fact
by H � S.

Moreover, if S is a semiring and 1 ∈ H we say that H is a subsemiring. We
will denote this fact by H ≤ S.

Remark 5.7. Let F be an arbitrary endofunctor on Set. Let (X,α) be a F -
coalgebra and let W ≤ X be any subcoalgebra. It holds that π(W,αW ) � π(X,α).

3. Pullbacks and Subcoalgebras

In this section we will work with endofunctors that preserve weak pullbacks.
This extra assumption turns into extra nice properties on the subcoalgebras of a
given coalgebra.

Proposition 5.8. Let F be an endofunctor over Set that preserves weak pull-
backs. Let (X,α) be a F -coalgebra and let (W,αW ) be any subcoalgebra of X. It
holds that:

∆W ◦B(X) ◦∆W = B(W )

Where ∆W ◦B(X) ◦∆W = {∆W ◦ Z ◦∆W : Z ∈ B(X)}
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46 3. Pullbacks and Subcoalgebras

Proof. We must check the two inclusions.

⊆ Let Z be any bisimulation on X.
Since W is a subcoalgebra of X, we know by Proposition 5.4 that

its diagonal is a bisimulation on X. Moreover, since F preserves weak
pullbacks, we know that the composition of bisimulations is a bisimulation
by Theorem 3.13. Hence, ∆W ◦ Z ◦∆W is a bisimulation on X.

Therefore, the following diagram commutes:

FX

F (∆W ◦ Z ◦∆W )

FX

X

∆W ◦ Z ◦∆W

X

π1

Fπ1

α

π2

∃ γ

α

Fπ2

We must notice two important facts:
i. ∆W ◦ Z ◦∆W ⊆W ×W
ii. Since W is a subcoalgebra of X, we get that the inclusion map-

ping i is a F -coalgebra homomorphism. Moreover, id|W : X → W is also
a F -coalgebra homomorphism by Proposition 1.7, since it is an inverse
mapping of i.

Thus, we get the following commutative diagram:

F (X)

F (∆W ◦ Z ◦∆W )

F (W )

X

∆W ◦ Z ◦∆W

W

π1

Fπ1

α

∃ γ

αW

id|W

Fid|W

π1

Fπ1

Notice that π1 = π1id|W and therefore, Fπ1Fi = F (π1id|W ) = Fπ1.
We can get analogous results for the other projection.

So finally, ∆W ◦ Z ◦∆W is a bisimulation on W .
⊇ Let ZW be any bisimulation on W . By Proposition 5.5 it holds that ZW is

also a bisimulation on X. One can easily check that ZW = ∆W ◦ZW ◦∆W

Thus, B(W ) ⊆ ∆W ◦B(X) ◦∆W

�

It also holds that when the considered endofunctor preserves weak pullbacks,
we get that the image and the inverse image of subcoalgebras are still subcoalgebras.

Proposition 5.9. Let F be an endofunctor over Sets that preserves weak
pullbacks. Let (X,α), (Y, β) be two F -coalgebras and let f : X → Y be any F -
coalgebra homomorphism between them. It holds:
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1. If W ⊆ X is a subcoalgebra of X, then f(W ) is a subcoalgebra of Y .
2. If W ⊆ Y is a subcoalgebra of Y , then f−1(W ) is a subcoalgebra of X.

Proof. We will do the proof for the first statement. The proof for the other
statement is quite similar.

Assume W ⊆ X is a subcoalgebra of X, then by Proposition 5.4 it holds
that ∆W is a bisimulation on X. Using Proposition 3.17 we get that f(∆W ) is a
bisimulation on Y . Moreover, using Proposition 3.19 it holds that f(∆W ) = ∆f(W ),
therefore ∆f(W ) is a bisimulation on Y . Finally, using again Proposition 5.4 we
conclude that f(W ) is a subcoalgebra of Y . �

Remark 5.10. Using Remark 3.18, we can get a stronger version of the first
statement of the preceding theorem by not requiring F to preserve weak pullbacks.

We finish this chapter by stating also an important Theorem about the struc-
ture of all the subcoalgebras.

Theorem 5.11. Let F be an endofunctor over Set that preserves weak pull-
backs.

Let (X,α) be a F -coalgebra. The collection of all subcoalgebras of X is a com-
plete lattice in which least upper bounds and greatest lower bounds are given by
union and intersection.

Proof. Let {Wj : j ∈ J} be a family of subcoalgebras of X. We want to see
that the union and the intersection of the family are again subcoalgebras of X.⋃

: Notice that for each j ∈ J , Wj is a subcoalgebra of X. Therefore, applying
Proposition 5.4, it holds that ∆Wj is a bisimulation on X. Thus, {∆Wj :
j ∈ J} is a set of bisimulations on X. Applying Theorem 3.9 it holds that⋃
j∈J ∆Wj

is also a bisimulation on X. Notice that

∆ ⋃
j∈J

Wj
=
⋃
j∈J

∆Wj

therefore, applying again Proposition 5.4, we get that
⋃
j∈JWj is a sub-

coalgebra of X.⋂
: By Proposition 1.23, since F preserves weak pullbacks, it also preserves

intersections. More specifically, F transforms the (generalized) pullback
diagram of the intersection of the subsets {Wj : j ∈ J} into a pullback
diagram of the sets FWj for each j ∈ J . In particular, for a fixed j0 ∈ J
it holds:

FWj0 FX

⋂
j∈J

FWj

Wj0 X

⋂
j∈J

Wj

i

F i

αWj0
α⋂

α

ij0

Fij0

i

F i
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Which means that the inclusion mapping i :
⋂
j∈JWj → X is a F -

coalgebra homomorphism, thus
⋂
j∈JWj is a subcoalgebra of X.

�

The preceding Theorem allow us to give the following definitions of the smallest
subcoalgebra generated by a subset and the greatest subcoalgebra that contains a
subset.

Definition 5.12. Smallest Subcoalgebra containing Y
Let F be an endofunctor that preserves weak pullbacks. Let (X,α) be a F -

coalgebra and let Y ⊆ X be any subset of X. The subcoalgebra generated by Y ,
denoted by 〈Y 〉, is defined as

〈Y 〉 =
⋂
{W : W is a subcoalgebra of X and Y ⊆W}

〈Y 〉 is the smallest subcoalgebra of X containing Y .
If X = 〈Y 〉 for some subset Y of X, then X is said to be generated by Y
The subcoalgebra generated by a singleton set {x} is denoted by 〈x〉

We also get its dual notion:

Definition 5.13. Greatest Subcoalgebra contained in Y
Let F be an endofunctor that preserves weak pullbacks. Let (X,α) be a F -

coalgebra and let Y ⊆ X be any subset of X. The greatest subcoalgebra contained
in Y , denoted by [Y ], is defined as

[Y ] =
⋃
{W : W is a subcoalgebra of X and W ⊆ Y }

We finish this chapter with two Properties stating the characterisations of a
system that can be reduced to a single state - coalgebra.

Proposition 5.14. Let F be an endofunctor that preserves weak pullbacks. Let
(X,α) be a F -coalgebra. Let x0 ∈ X be an arbitrary element on X. If ctx0 : X → X
is a F -coalgebra homomorphism, where:

ctx0 : X −→ X
X 7−→ x0

then {x0} is a subcoalgebra of X.

Proof. Since ctx0
is a F -coalgebra homomorphism, we get by Theorem 3.8

that 〈ctx0
, ctx0

〉(X) is a bisimulation on X. Notice that:

〈ctx0 , ctx0〉(X) = {〈x0, x0〉} = ∆{x0}

Applying Proposition 5.4 we get that {x0} is a subcoalgebra of X. �

Proposition 5.15. Let F be an endofunctor that preserves weak pullbacks. Let
(X,α) be a F -coalgebra. Let x0 ∈ X be an arbitrary element on X. If ctx0

: X → X
is a F -coalgebra homomorphism, then X G X = X2.

Proof. We must check the two inclusions.

⊆ It always hold.
⊇ Let x, y ∈ X. We must check that 〈x, y〉 ∈ X G X. Notice that G(ctx0

),
the graphic of ctx0

, is a bisimulation on X applying Theorem 3.5, thus
we get that 〈x, x0〉, 〈y, x0〉 ∈ G(ctx0

), moreover it holds that G(ctx0
)−1 is

again a bisimulation applying Theorem 3.7 and 〈x0, y〉 ∈ G(ctx0)−1. Since
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5. SubCoalgebras 49

F preserves weak pullbacks, we get that the composition of bisimulations
is again a bisimulation and since X G X is the greatest bisimulation on X
we get that:

〈x, y〉 ∈ G(ctx0) ◦G(ctx0)−1 ⊆ X G X
�
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CHAPTER 6

Isomorphism Theorems

1. 1st Isomorphism Theorem

Theorem 6.1. 1st Isomorphism Theorem
Let F be an endofunctor over Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras and let f : X → Y be a F -coalgebra

homomorphism. Then there is the following factorization of f :

X

f(X)

Y

X/Kerf

f

πKerf h

f ′ i

ϕ ∼=

where i is the inclusion homomorphism, h is a F -coalgebra monomorphism, f ′ is
a F -coalgebra epimorphism with f(x) = f ′(x) for each x ∈ X and πKerf is the
quotient homomorphism.

Proof. X is subcoalgebra of itself, so using Theorem 5.9, f(X) is a subcoal-
gebra of Y and hence the inclusion mapping i turns into a F -coalgebra monomor-
phism. Notice that f = if ′, so using Proposition 1.8, f ′ is a surjective F -coalgebra
homomorphism, i.e., an epimorphism.

On the other hand, Corollary 3.16 states that Kerf is a bisimulation equiv-
alence on X, and using Proposition 3.11 πKerf turns into a F -coalgebra epimor-
phism. Moreover in the proof of that theorem we prove that (X/Kerf, πKerf ) is a
coequalizer of the F -coalgebra homomorphisms π1 : Kerf → X and π2 : Kerf →
X, so by the universal property we obtain the mappings:

Kerf X X/Kerf

f(X)

π1

π2

πKerf

f ′
ϕ∃!

Kerf X X/Kerf

f(X)

π1

π2

πKerf

f
h∃!

Again by Theorem 5.9, h and ϕ are F -coalgebra homomorphisms.
It is important to remark how ϕ acts on the elements of X/Kerf . It follows

from the construction of the coequalizers done in the Proposition 1.17 that ϕ is
defined as:
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52 2. 2nd Isomorphism Theorem

ϕ : X/Kerf −→ f(X)
[x]Kerf 7−→ f(x)

Clearly ϕ is surjective and injective, and hence ϕ becomes a F -coalgebra isomor-
phism. Finally h = iϕ where ϕ is a bijection and i is an injective mapping, therefore
we conclude that h is an injective mapping, and thus it is a F -coalgebra monomor-
phism. �

Notice that the argument used before to obtain the F -coalgebra homomor-
phisms h and ϕ can be generalized in the following way:

Theorem 6.2. Let F be an endofunctor that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras and let f : X → Y be a F -coalgebra

homomorphism. Let Z be a bisimulation equivalence on X contained in Kerf , that
is Z ⊆ Kerf . Then there is a unique homomorphism h : X/Z → Y such that
f = hπZ . That is to say that h makes the following diagram commute:

X X/Z

Y

πZ

f
h∃!

Proof. Using Proposition 3.11 πZ , turns into a F -coalgebra epimorphism.
Moreover in the proof of that theorem we prove that (X/Z, πZ) is a coequalizer of
the F -coalgebra homomorphisms π1 : Z → X and π2 : Z → X, so by the universal
property we obtain the unique mapping:

Z X X/Z

Y

π1

π2

πZ

f
h∃!

Notice that f = hπZ and by Theorem 5.9, h is a F -coalgebra homomorphism. �

2. 2nd Isomorphism Theorem

The 2nd Isomorphism Theorem states that there is a one-to-one correspon-
dence between subcoalgebras of a quotient of a given coalgebra and quotients of
subcoalgebras of the coalgebra considered.

Theorem 6.3. 2nd Isomorphism Theorem
Let F be an endofunctor over Set that preserves weak pullbacks. Let (X,α)

be a F -coalgebra. Let W ⊆ X be a subcoalgebra of X and let Z be a bisimulation
equivalence on X. Let WZ be defined as

WZ = {x ∈ X : ∃w ∈W (〈x,w〉 ∈ Z)}
The following facts hold:

1. WZ is a subcoalgebra of X
2. Z ∩ (W ×W ) is a bisimulation equivalence on W
3. W/(Z ∩ (W ×W )) ∼= WZ/Z

Universitat de València Enric Cosme



6. Isomorphism Theorems 53

Proof. We will do a proof for each item:

1. Let us see that WZ = π1π
−1
2 (W )

π−1
2 (W ) = {〈x1, x2〉 ∈ Z : x2 ∈W}

π1π
−1
2 (W ) = {x1 ∈ X : ∃x2 ∈W (〈x1, x2〉 ∈ Z)} = WZ

Therefore, using Proposition 5.9 we conclude that WZ is a subcoalgebra
of X.

2. Notice that Z∩(W ×W ) = π−1
1 (W )∩π−1

2 (W ), so using again Proposition
5.9 and Theorem 5.11, we conclude that Z ∩ (W ×W ) is a subcoalgebra
of Z. And we get the following commutative diagram for each projection
mapping πj , for j ∈ {1, 2}:

FW FX

W X

F (Z ∩ (W ×W )) FZ

Z ∩ (W ×W ) Z

i

α

Fi

i

γ

F i

πj

Fπj

πj

Fπj

γ∩

αW

Notice that the part of the diagram coloured in blue correspond to the
Definition of Z ∩ (W × W ) being a bisimulation on W . Since Z is an
equivalence relation on X and W ⊆ X it is straightforward to see that
Z ∩ (W ×W ) is also an equivalence relation on W . Finally, Z ∩ (W ×W )
is a bisimulation equivalence on W .

3. Consider the quotient homomorphism, πZ : X → X/Z and let πZ|W :
W → X/Z be its restriction to W . Notice that πZ|W = πZi is a F -
coalgebra homomorphism since it is the composition of two F -coalgebra
homomorphism. Using 1st Isomorphism Theorem 6.1 we get that

W/KerπZ|W ∼= πZ|W (W )

Notice that:
KerπZ|W = {〈x1, x2〉 ∈W ×W : πZ|W (x1) = πZ|W (x2)}

= {〈x1, x2〉 ∈W ×W : [x1]Z = [x2]Z}
= {〈x1, x2〉 ∈W ×W : 〈x1, x2〉 ∈ Z}
= Z ∩ (W ×W )

πZ|W (W ) = {πZ|W (x) : x ∈W}
= {[x]Z : x ∈W}
= πZ(WZ)
= WZ/Z

And finally, we get that:

W/Z ∩ (W ×W ) ∼= WZ/Z
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54 3. 3rd Isomorphism Theorem

�

3. 3rd Isomorphism Theorem

Theorem 6.4. 3rd Isomorphism Theorem
Let F be an endofunctor over Set that preserves weak pullbacks. Let (X,α) be

a F -coalgebra and let Z1 and Z2 be two bisimulation equivalences on X such that
Z2 ⊆ Z1. It holds:

1. There is a unique F -coalgebra homomorphism h : X/Z2 → Z1 such that
hπZ2

= πZ1
. That is to say that the following diagram commutes:

X X/Z2

X/Z1

πZ1

πZ2

h∃!

2. Let Z2/Z1 denote Kerh. It holds that Z2/Z1 is a bisimulation equivalence
on X/Z2 and induces a F -coalgebra isomorphism h′ : (X/Z2)/(Z2/Z1)→
X/Z1 such that h = h′πZ2/Z1

. That is to say that the following diagram
commutes:

X/Z2 (X/Z2)/(Z2/Z1)

X/Z1

h

πZ2/Z1

h′

Proof. We will do a proof for each item:

1. It is a consequence of Theorem 6.2. Take Y = X/Z1, f = πZ1 and Z = Z2.
Notice that KerπZ1 = Z1 and the assumption Z2 ⊆ Z1 holds.

2. First of all, notice that from previous item, we have that Using the 1st
Isomorphism Theorem 6.1, it holds that hπZ2

= πZ1
, since all the projec-

tions are surjective, so is h. Using the 1st Isomorphism Theorem 6.1, it
holds that (X/Z2)/(Z2/Z1) = (X/Z2)/Kerh ∼= h(X/Z2) = X/Z1. Also
from the same Theorem we get that h = h′πZ2/Z1

.

�

Universitat de València Enric Cosme



CHAPTER 7

Simple Coalgebras

1. Simple Coalgebras

Definition 7.1. Simple Coalgebras
Let F be an endofunctor on Set that preserves weak pullbacks. We say that a

F -coalgebra, (X,α), is simple if it has no proper quotients. That is to say, if Z is
a bisimulation equivalence on X, then X/Z ∼= X.

Next theorem give us equivalent characterisations:

Theorem 7.2. Let F be an endofunctor on Set. Let (X,α), (Y, β) be two
F -coalgebras. The following statements are equivalent:

1. (X,α) is a simple F -coalgebra.
2. Every F -coalgebra epimorphism f : X → Y is a F -coalgebra isomorphism.
3. Let Z be a bisimulation on X, then Z ⊆ ∆X . This characterisation is

known as the coinduction proof principle.
4. ∆X is the only bisimulation equivalence on X.
5. Let f : Y → X and g : Y → X be two F -coalgebra homomorphisms, then
f = g.

6. The quotient homomorphism πG : X → X/(X G X) is a F -coalgebra
isomorphism.

7. Any F -coalgebra homomorphism, f : X → Y , is injective.

Proof. We will prove the following equivalences:

1.�2. Let f : X → Y be any F -coalgebra epimorphism. By the 1st Isomorphism
Theorem 6.1 it holds that

X/Kerf ∼= f(X)

As seen on Corollary 3.16, Kerf is a bisimulation equivalence on X.
Since X is simple, it holds that X/Kerf ∼= X.

Since f is surjective, it holds that f(X) = Y . Thus, we get that
X ∼= Y by f , then f is a F -coalgebra isomorphism.

2.�1. Let Z be any bisimulation equivalence on X. By Proposition 3.11, the
quotient mapping πZ : X → X/Z is a F -coalgebra epimorphism. By
assumption, πZ is an F -coalgebra isomorphim, thus we get that X/Z ∼= X,
i.e., (X,α) is simple.

1.�4. Let Z be any bisimulation equivalence on X. By assumption X/Z ∼= X,
then Z = ∆X . Therefore, ∆X is the only bisimulation equivalence on X.

4.�1. Let Z be any bisimulation equivalence on X. By assumption, Z = ∆X ,
thus we get that X/∆X

∼= X, i.e., (X,α) is simple.
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56 1. Simple Coalgebras

3.�4. Let Z be any bisimulation equivalence on X. Since Z is reflexive, it holds
that ∆X ⊆ Z. Moreover, by assumption, we get that Z ⊆ ∆X . Thus,
Z = ∆X , i.e., ∆X is the only bisimulation equivalence on X.

4.�3. Let Z be any bisimulation on X. It holds that Z ⊆ X G X, since X G X is
the greatest bisimulation on X. Moreover, by Corollary 3.14, it holds that
X G X is a bisimulation equivalence on X. By assumption, X G X = ∆X .
Therefore, Z ⊆ ∆X .

3.�5. Let f : Y → X and g : Y → X be two F -coalgebra homomorphisms. By
Theorem 3.8, 〈f, g〉(Y ) = {〈f(y), g(y)〉 : y ∈ Y } is a bisimulation on X.
By assumption, Z ⊆ ∆X , thus f = g.

5.�3. Let Z be a bisimulation onX. By definition of bisimulation, the projection
mappings π1 : Z → X and π2 : Z → X are F -coalgebra homomorphisms.
By assumption, π1 = π2, thus we get that Z ⊆ ∆X .

2.�6. As a particular case.
6.�4. Let Z be a bisimulation equivalence on X. By assumption, πG : X →

X/(X G X) is a F -coalgebra isomorphism. Notice that Z ⊆ X G X
since X G X is the greatest bisimulation on X. Moreover, X G X =
KerπG. Thus, applying Theorem 6.2 there exists a unique F -coalgebra
homomorphism h, h : X/Z → X/(X G X) such that hπZ = πG. Since πG
is an isomorphism, we get that πZ is injective, then Z ⊆ ∆X .

7.�1. Let Z be a bisimulation equivalence on X. By Proposition 3.11, the
quotient mapping πZ : X → X/Z is a F -coalgebra epimorphism. By as-
sumption, πZ is also injective, therefore πZ is a F -coalgebra isomorphism.
That is to say that X ∼= X/Z.

4�7. By Corollary 3.16, Kerf is a bisimulation equivalence on X. By assump-
tion ∆X = Kerf , i.e., f is injective.

�

Every coalgebra can be made simple by taking the quotient with respect to its
greatest bisimulation. This is a consequence of the following Proposition:

Proposition 7.3. Let F be an endofunctor on Set that preserves weak pull-
backs. Let (X,α) be a F -coalgebra and let Z be a bisimulation equivalence on X.
It holds:

X/Z is simple if and only if Z = X G X

Proof. First of all notice that by Proposition 3.11, πZ : X → X/Z is a F -
coalgebra homomorphism. We will prove the two implications:

� Let Z ′ be any bisimulation on X, we will prove that Z ′ ⊆ Z. By definition
of bisimulation, the projection mappings π1 : Z ′ → X and π2 : Z ′ → X are
F -coalgebra homomorphisms. Moreover, the compositions πZπ1 and πZπ2

are F -coalgebras homomorphisms from Z ′ to X/Z. Since X/Z is simple,
by the 5th characterisation of Theorem 7.2, we get that πZπ1 = πZπ2,
i.e., Z ′ ⊆ Z. In particular, it holds that X G X ⊆ Z ⊆ X G X. Thus, we
conclude that Z = X G X.

� Let Z ′ be any bisimulation on X/Z, we will prove that Z ′ ⊆ ∆X/Z . By

Proposition 3.17 it holds that π−1
Z (Z ′) is a bisimulation onX. SinceX G X

is the greatest bisimulation on X, it holds that π−1
Z (Z ′) ⊆ Z. Thus, we

get that Z ′ ⊆ πZ(Z) = ∆X/Z . Finally, by the 3rd characterisation of
Theorem 7.2 it holds that X/Z is simple.

Universitat de València Enric Cosme
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�

2. Subcoalgebras and Simple Coalgebras

Proposition 7.4. Every subcoalgebra of a simple coalgebra is simple. Let F
be an endofunctor on Set that preserves weak pullbacks. Let (X,α) be a simple
F -coalgebra. Let W be a subcoalgebra of X, then W is simple.

Proof. Let Z ∈ B(W ) be any bisimulation on W . By Proposition 5.5 it holds
that Z ∈ B(X). Since X is simple by 3rd charaterization of Theorem 7.2 it holds
that Z ⊆ ∆X . Notice however that Z ⊆W ×W , thus Z ⊆ ∆W and applying again
Theorem 7.2 it holds that W is simple. �

Proposition 7.5. There exists a bijection between the set of bisimulations of
a simple coalgebra and the set of its subcoalgebras. Let F be an endofunctor on Set
that preserves weak pullbacks. Let (X,α) be a simple F -coalgebra, then there exists
a bijection between Sub(X) := {W ⊆ X : W is a subcoalgebra of X} and B(X).

Proof. Define the bijection as:

ϕ : Sub(X) −→ B(X)
W 7−→ ∆W

It is well-defined applying Proposition 5.4. The diagonal of a subcoalgebra is a
bisimulation on the upper set. We must check it is a bijection.

Injec. Let W1 and W2 be two subcoalgebras of X such that ϕ(W1) = ϕ(W2).
Then it holds that ∆W1

= ∆W2
, thus we get that necessarily it holds that

W1 = W2.
Surj. Let Z be any bisimulation on B(X). SinceX is simple it holds by Theorem

7.2 that Z ⊆ ∆X . Then there exists some W ⊆ X for which Z = ∆W .
Notice that W is a subcoalgebra of X since its diagonal is a subcoalgebra
of X (Proposition 5.4).

�

3. More on Semiring Theory

Definition 7.6. Diagonal elements
Let S be an idempotent semiring. We say that s ∈ S is a diagonal element if

it holds that s ≤ 1. We denote by ∆S the set of all diagonal elements.

Proposition 7.7. Let S be an idempotent semiring. Let s, t ∈ ∆S. Then,
s+ t ∈ ∆S and st ∈ ∆S.

Proof. Take any s, t ∈ ∆S . It holds that s, t ≤ 1.
For +, applying Proposition 4.7:

s ≤ 1, t ≤ 1 ⇒ s+ t ≤ 1 + 1 = 1

For ·, applying Proposition 4.7:

s ≤ 1 ⇒ st ≤ 1t = t ≤ 1

�

Corollary 7.8. Let S be an idempotent semiring, then ∆S ≤ S.
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58 3. More on Semiring Theory

Proposition 7.9. Let S be an idempotent semiring.

∇S = {0} ∪ {s ∈ S : s ≥ 1} ≤ S

Definition 7.10. Infinite Element
Let S = (S,+, ·, 0) be an hemiring. We say that s ∈ S is infinite if for each

t ∈ S holds:
t+ s = s

If such element exists, it is unique.

Definition 7.11. Simple
Let S = (S,+, ·, 0, 1) be a semiring. We say that S is simple if 1 is infinite.

Corollary 7.12. Let S = (S,+, ·, 0, 1) be an idempotent semiring. It holds:

S is simple ⇔ S = ∆S

Proposition 7.13. Let S = (S,+, ·, 0, 1) be a semiring. The following state-
ments are equivalent:

1) S is simple.
2) For all s, t ∈ S, s = st+ s
3) For all s, t ∈ S, s = ts+ s
4) For all s, t, u ∈ S, st = st+ s+ u+ t.

Proof. We will only check the equivalency between 1) and 2).

1)� 2) Assuming that S is simple, we get that 1 + t = 1. Therefore:

s = s1 = s(1 + t) = s+ st

2)� 1) Let t ∈ S. By assumption, 1 = 1 + 1t = 1 + t therefore 1 is infinite.

�

Remark 7.14. Identities 2) and 3) of Proposition 7.13 are noncommutative
versions of ”absorption laws” familiar from the axiomatic algebraic definitions of
lattices. Because of them, simple semirings are sometimes refered to as distributive
pseudolattices.

Corollary 7.15. Let S = (S,+, ·, 0, 1) be a semiring. The following state-
ments are equivalent:

1) S is simple and multiplicatively idempotent.
2) For all s, t, u ∈ S, (s+ t)(s+ u) = s+ tu
3) For all s, t ∈ S, s+ t = s ⇔ st = t = ts

Proof. We will only check the equivalency between 1) and 2).

1)� 2) Assume 1). By Proposition 7.13 we get:

(s+ t)(s+ u) = s2 + su+ ts+ tu = (s+ su) + ts+ tu = (s+ ts) + tu = s+ tu

2)� 1) Assume 2). Let s ∈ S. It holds:

s2 = (s+ 0)(s+ 0) = s+ 0 = s

Now let s, t ∈ S. It holds:

s+ st = s2 + st = (s+ 0)(s+ t) = s+ 0t = s

Therefore, applying Proposition 7.13, S is simple.

�
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Corollary 7.16. A commutative semiring is a bounded distributive lattice iff
it is a simple multiplicatively idempotent semiring.

Proposition 7.17. Let S = (S,+, ·, 0, 1) be a simple semiring. Consider an
element s ∈ S and define:

S(s) = {0} ∪ {t ∈ S : t+ s = 1}
For each s, t ∈ S holds:

1) S(s) ≤ S
2) S(s) ∩ S(t) = S(st).

Proof. We will prove the 2 statements.

1) 0 ∈ S(s) and since S is simple, we get that 1 + s = 1, therefore 1 ∈ S(s).
S(s) is additively closed. Let t, u ∈ S(s) (we can assume they are different
from zero) it holds:

(u+ t) + s = u+ (t+ s) = u+ 1 = 1

In order to check that it is multiplicatively closed, we will use Prop. 7.13:

1 = 1 + s
= (t+ s)(u+ s) + s
= tu+ ts+ su+ s2 + s
= tu+ ts+ su+ (s2 + s)
= tu+ ts+ (su+ s)
= tu+ (ts+ s)
= tu+ s

2) We will check the two inclusions:
⊆ Take any u ∈ S(s) ∩ S(t) (assume u 6= 0). As in 1):

1 = 1 + u = (s+ u)(t+ u) + u = st+ u

⊇ Take any u ∈ S(st) (assume u 6= 0). It holds:

1 = 1 + s = u+ st+ s = u+ (st+ s) = u+ s

We have used Prop. 7.13. Analogous for t.

�

Remark 7.18. Notice that S(0) = {0, 1} and S(1) = S.

Once we have presented the previous definitions on semiring theory we apply
those concepts to simple coalgebras:

Proposition 7.19. Let F be an endofunctor on Set. Let (X,α) be an F -
coalgebra. It holds:

(X,α) is simple ⇔ π(X,α) is simple

Proof. We just need to apply Theorem 7.2. (X,α) is simple if and only if for
each Z ∈ B(X) it holds that Z ⊆ ∆X if and only if B(X) = ∆B(X) if and only if
π(X,α) is simple. �

Remark 7.20. Let F be an endofunctor on Set. Let (X,α) be a simple F -
coalgebra, notice that π(X,α) is simple and multiplicatively idempotent, therefore
on π(X,α) we can apply the statements of Corollary 7.15. Moreover, applying
Corollary 7.16 we get that π(X,α) is a complete bounded distributive lattice.
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60 4. Bisimulation Permutability

4. Bisimulation Permutability

We introduce here an important notion that applies also to simple coalgebras:
the permutability of bisimulations. We begin this section by showing the following
property on diagonal bisimulations.

Proposition 7.21. Let F be an endofunctor on Set. Let (X,α) be an F -
coalgebra. For each Z1, Z2 ∈ ∆B(X) it holds that:

Z1 ◦ Z2 = Z1 ∩ Z2

Proof. We must check the two inclusions:

⊆ Let Z1, Z2 ∈ ∆B(X). Take any 〈x1, x3〉 ∈ Z1 ◦ Z2, therefore, there exists
an element x2 ∈ X such that 〈x1, x2〉 ∈ Z1 and 〈x2, x3〉 ∈ Z2. Since
Z1, Z2 ⊆ ∆X , we get that x1 = x2 = x3. Therefore 〈x1, x3〉 ∈ Z1 and
〈x1, x3〉 ∈ Z2 so we can conclude that 〈x1, x3〉 ∈ Z1 ∩ Z2.

⊇ Let 〈x, y〉 ∈ Z1 ∩ Z2. It holds that 〈x, y〉 ∈ Z1 and 〈x, y〉 ∈ Z2. Since
Z1, Z2 ⊆ ∆X , we get that x = y. Therefore, 〈x, y〉 ∈ Z1 ◦ Z2.

�

Corollary 7.22. Let F be an endofunctor on Set that preserves weak pull-
backs. Let (X,α) be a simple F -coalgebra. Then the finite intersection of bisimula-
tions on X is again a bisimulation on X.

Corollary 7.23. Let F be an endofunctor on Set that preserves weak pull-
backs. Let (X,α) be a simple F -coalgebra. Then on π(X,α) we get that ◦ is
commutative.

Corollary 7.24. Let F be an endofunctor on Set that preserves weak pull-
backs. Let (X,α) be a simple F -coalgebra. It holds:

π(X,α) ∼= (B(X),∪,∩, ∅,∆X)

Definition 7.25. Bisimulation Permutability
Let F be an endofunctor on Set that preserves weak pullbacks and let (X,α)

be a F -coalgebra. We say that (X,α) has bisimulation permutability if for each
Z1, Z2 ∈ B(X) it holds:

Z1 ◦ Z2 = Z2 ◦ Z1

Remark 7.26. Each simple F -coalgebra has bisimulation permutability by
Proposition 7.21, but the converse does not hold. Take as counterexample the
following Directed Graph (X,α):

1 2

We depict its associated dioid in the following Hasse Diagram:

(1 2) ∆X

X G X

∅
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7. Simple Coalgebras 61

As always, we present the idempotent bisimulations in yellow and we border in
red the bisimulations of the form G(f) for some endomorphism f : X → X. The
notation (1 2) is standard for presenting permutations. It is straightforward to see
that each pair of bisimulations permute and (X,α) is not simple since 1 is bismilar
to 2.

We introduce here the main results on bisimulation permutability:

Proposition 7.27. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Let f, g :
X → X be F -coalgebra endomorphisms then fg = gf .

Proof. By Theorem 3.5 we get that the graphs of f and g are bisimulations
on X. Applying bisimulation permutability, we get that:

G(fg) = G(g) ◦G(f) = G(f) ◦G(g) = G(gf)

Since the graph of fg equals the graph of gf we obtain the desired result. �

Proposition 7.28. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Then it holds
that each endomorphism on X is an automorphism.

Proof. Let f : X → X be an arbitrary F -coalgebra endomorphism. By
Theorem 3.5 we get that G(f) is a bisimulation on X and by Theorem 3.7 we also
get that G(f)−1 is a bisimulation on X. Applying bisimulation permutability, we
get that:

Kerf = G(f) ◦G(f)−1 = G(f)−1 ◦G(f) = ∆f(X)

Moreover we get that

∆X ⊆ Kerf = ∆f(X) ⊆ ∆X

Therefore:

1. Kerf = ∆X , thus f is injective.
2. ∆f(X) = ∆X , thus f(X) = X and f is surjective.

�

The preceding result can also be derived by the following results:

Proposition 7.29. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisim-
ulation permutability and let f, g : Y → X be two F -coalgebra homomorphisms,
then:

f(Kerg) = g(Kerf)

Proof. The following sets are bisimulations on X:

G(f)−1 ◦G(g) ∈ B(X) −−−− G(g)−1 ◦G(f) ∈ B(X)

Applying bisimulation permutability we get that:

[G(f)−1 ◦G(g)] ◦ [G(g)−1 ◦G(f)] = [G(g)−1 ◦G(f)] ◦ [G(f)−1 ◦G(g)]
G(f)−1 ◦ [G(g) ◦G(g)−1] ◦G(f) = G(g)−1 ◦ [G(f) ◦G(f)−1] ◦G(g)

G(f)−1 ◦ [Kerg] ◦G(f) = G(g)−1 ◦ [Kerf ] ◦G(g)
f(Kerg) = g(Kerf)

�
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Corollary 7.30. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisim-
ulation permutability and let f, g : Y → X be two F -coalgebra homomorphisms,
then:

f is injective ⇔ g is injective

Proof. By previous Proposition, f(Kerg) = g(kerf). Assume that f is injec-
tive let us check that so is g. Let y1, y2 ∈ Y such that g(y1) = g(y2), then 〈y1, y2〉 ∈
Kerg. Therefore, 〈f(y1), f(y2)〉 ∈ f(Kerg) = g(Kerf) = g(∆Y ) = ∆g(Y ). Hence
f(y1) = f(y2) because the pair belong to a diagonal. Since f is injective we get
that y1 = y2. Analogous for the other implication. �

Proposition 7.31. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisim-
ulation permutability and let f, g : X → Y be two F -coalgebra homomorphisms,
then:

f−1(∆g(X)) = g−1(∆f(X))

Remark 7.32. In order to obtain a better understanding on the preceding sets,
let 〈x1, x2〉 ∈ f−1(∆g(X)), then 〈f(x1), f(x2)〉 ∈ ∆g(X). Notice that ∆g(X) ⊆ ∆Y ,
thus f(x1) = f(x2), therefore

f−1(∆g(X)) ⊆ Kerf
In the conditions of the preceding proposition it holds:

f−1(∆g(X)) = g−1(∆f(X)) ⊆ Kerf ∩Kerg

Corollary 7.33. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisim-
ulation permutability and let f, g : X → Y be two F -coalgebra homomorphisms,
then:

f is surjective ⇔ g is surjective

Proof. By previous Proposition, f−1(∆g(X)) = g−1(∆fX). Assume that f is
surjective, then we get that ∆f(X) = ∆Y and thus we obtain:

f−1(∆g(X)) = g−1(∆f(X)) = g−1(∆Y ) = Kerg

Let y ∈ Y be an arbitary element of Y . Since f is surjective, there exists some
x ∈ X such that f(x) = y. Notice that 〈x, x〉 ∈ ∆X ⊆ Kerg. Therefore 〈x, x〉 ∈
f−1(∆g(X)). This means that 〈f(x), f(x)〉 = 〈y, y〉 ∈ ∆g(X). Since y was arbitary,
we get that ∆Y ⊆ ∆g(X) ⊆ ∆Y . Then g(X) = Y , which means that g is surjective.
Analogous for the other implication. �

Proposition 7.34. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Let Z1 and
Z2 be two bisimulation equivalences on X, then Z1 ◦Z2 is also a bisimulation equiv-
alence.

Proof. Since F preserves weak pullbacks, we know by Theorem 3.13 that
Z1 ◦ Z2 is a bisimulation. We need to show that is also an equivalence relation.

• ∆X ⊆ Z1 ◦ Z2

We will use Proposition 4.11. Notice that ∆X ⊆ Z2, then Z1 ◦∆X ⊆
Z1 ◦ Z2. Notice that ∆X ⊆ Z1 = Z1 ◦∆X ⊆ Z1 ◦ Z2.
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• (Z1 ◦ Z2)−1 ⊆ Z1 ◦ Z2

We develop the first term and we apply that Z1 and Z2 are equivalence
relation and also that X has bisimulation permutability:

(Z1 ◦ Z2)−1 = Z−1
2 ◦ Z−1

1 ⊆ Z2 ◦ Z1 = Z1 ◦ Z2

• (Z1 ◦ Z2)2 ⊆ Z1 ◦ Z2

As before:

(Z1 ◦ Z2) ◦ (Z1 ◦ Z2) = (Z1 ◦ Z2) ◦ (Z2 ◦ Z1)
= Z1 ◦ (Z2 ◦ Z2) ◦ Z1

= Z1 ◦ (Z2 ◦ Z1)
= Z1 ◦ (Z1 ◦ Z2)
= (Z1 ◦ Z1) ◦ Z2

= Z1 ◦ Z2

Then Z1 ◦ Z2 is a bisimulation equivalence.
�

Proposition 7.35. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Let x, y ∈ X
be two bisimilar states, then 〈x〉 = 〈y〉.

Proof. Assume that x and y are bisimilar, hence we can find some Z ∈ B(X)
such that 〈x, y〉 ∈ Z. Notice that for each W ≤ X subcoalgebra of X it holds:

∆W ◦ Z = {〈x, y〉 ∈ Z : x ∈W}

Z ◦∆W = {〈x, y〉 ∈ Z : y ∈W}

In particular 〈x〉 and 〈y〉 are subcoalgebras of X and we have that 〈x, y〉 ∈ ∆〈x〉 ◦Z
and 〈x, y〉 ∈ Z ◦∆〈y〉. Applying bisimulation permutability on X we have:

〈x, y〉 ∈ ∆〈x〉 ◦ Z = Z ◦∆〈x〉 ⇒ y ∈ 〈x〉

〈x, y〉 ∈ Z ◦∆〈y〉 = ∆〈y〉 ◦ Z ⇒ x ∈ 〈y〉

Thus, 〈x〉 ⊆ 〈y〉 and 〈y〉 ⊆ 〈x〉. �

Corollary 7.36. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Let x, y ∈ X
be two bisimilar states and W ≤ X be any subcoalgebra of X. It holds:

x ∈W ⇔ y ∈W

Proof. We will just check one implication, the other is analogous.

� Assume x ∈ W , then 〈x〉 ⊆ W . Since x and y are bisimilar and applying
previous Proposition we get y ∈ 〈y〉 = 〈x〉 ⊆W .

�

Theorem 7.37. Let F be an endofunctor on Set that preserves weak pullbacks
and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisimulation
permutability and let f, g : Y → X be two F -coalgebra homomorphisms. Let W ⊆ Y
be any subcoalgebra of Y , then it holds f(W ) = g(W ).
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Proof. Since W is a subcoalgebra of Y , the inclusion i : W → Y is an F -
coalgebra homomorphism. Moreover the compositions fi, gi : W → X are also
F -coalgebra homomorphisms. Applying Theorem 3.8 〈fi, gi〉(W ) is a bisimulation
on X, therefore for any w ∈ W , fi(w) = f(w) is bisimilar to gi(w) = g(w).
Moreover f(W ) and g(W ) are subcoalgebras of X by Proposition 5.9. Then by the
preceding Corollary 7.36 we get that:

f(w) ∈ f(W ) ⇔ g(w) ∈ f(W )

f(w) ∈ g(W ) ⇔ g(w) ∈ g(W )

Therefore, f(W ) = g(W ). �

Corollary 7.38. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisimu-
lation permutability and let f, g : Y → X be two F -coalgebra homomorphisms. It
holds

f(Y ) = g(Y ).

Corollary 7.39. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisimu-
lation permutability and let f, g : Y → X be two F -coalgebra homomorphisms. It
holds

Y/Kerf ∼= Y/Kerg.

Corollary 7.40. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α) be a F -coalgebra with bisimulation permutability. Let Z ∈ B(X)
be any bisimulation on X. It holds

π1(Z) = π2(Z).

Theorem 7.41. Let F be an endofunctor on Set that preserves weak pullbacks
and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisimulation
permutability and (Y, β) is simple. Let f : Y → X be a F -coalgebra homomorphism.
Let y ∈ Y and x ∈ X, it holds:

f(y) is bisimilar to x ⇔ x = f(y)

Proof. We will check the two implications:

� Trivial.
� Since f(y) is bisimilar to x and f(Y ) is a subcoalgebra of X, we get by

Corollary 7.36 that x ∈ f(Y ). Therefore there must exist some y′ ∈ Y
such that f(y′) = x. But then y′ is bisimilar to x and since being bisimilar
is transitive, we get that y′ is bisimilar to y. Since (Y, β) is simple we get
that y′ = y, thus x = f(y).

�

Corollary 7.42. Let F be an endofunctor on Set that preserves weak pull-
backs and let (X,α), (Y, β) be two F -coalgebras. Assume that (X,α) has bisim-
ulation permutability and (Y, β) is simple. Let f, g : Y → X be two F -coalgebra
homomorphisms. Then f = g.

Proof. For each y ∈ Y , it holds that f(y) and g(y) are bisimilar, thus f(y) =
g(y) by the preceding Theorem. �
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CHAPTER 8

Final Coalgebras

1. Final Coalgebras

Definition 8.1. Final Coalgebras
Let F be an endofunctor on Set. We say that a F -coalgebra, (X,α), is final if

for any other F -coalgebra (Y, β) there exists a unique F -coalgebra homomorphism
fY : Y → X.

Theorem 8.2. Let F be an endofunctor on Set. Let (X,α) be a final F -
coalgebra, then α is a F -coalgebra isomorphism.

Proof. This result arises from the fact that (FX,Fα) is also a F -coalgebra
and α : X → FX is a F -coalgebra homomorphism. In fact we have the following
commutative diagram:

X

FX

FX

F (FX)

X

FX

α

α

fFX

FfFX

Fα α

Fα

The right hand side of the diagram comes from the fact that (X,α) is final. By
composition of F -coalgebra homomorphisms, we get that fFXα is a F -coalgebra
homomorphism from X to X. Notice that since (X,α) is final, this composition
must be equal to the identity of X, fFXα = IdX . By Proposition 1.7, if we
reverse the mappings we obtain again F -coalgebra homomorphisms and we get
that αfFX = IdFX . Thus, α is a bijection with inverse fFX �

Last theorem tell us that X is a fixed point for the endofunctor F .

Theorem 8.3. Final coalgebras, if they exist, are uniquely determined up to
isomorphism.

Theorem 8.4. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) be a final F -coalgebra, then (X,α) is simple.

Proof. Let Z be a bisimulation on X. By definition, the projections π1, π2 :
Z → X are F -coalgebra homomorphisms. By finality of X, we get that π1 = π2.
That is to say that Z ⊆ ∆X for an arbitrary bisimulation Z ∈ B(X). By a
characterisation on Theorem 7.2 we get that (X,α) is simple. �

A final coalgebra can be considered as a universal domain of canonical repre-
sentatives for bisimulation equivalence classes in the following way.

65
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Proposition 8.5. Let F be an endofunctor on Set that preserves weak pull-
backs. Assume that F has a final coalgebra (X,α). Let (Y, β) be an arbitrary
F -coalgebra. For each y1, y2 ∈ Y holds:

〈y1, y2〉 ∈ Y G Y ⇔ fY (y1) = fY (y2)

Proof. We must check the two implications:

� By assumption, 〈y1, y2〉 ∈ Y G Y . Notice that for i = 1, 2, the mappings
fY πi : Y G Y → X are F -coalgebra homomorphisms by composition.
Therefore, since X is final, fY π1 = fY π2. In particular, fY (y1) = fY (y2).

� Notice that fY : Y → X is a F -coalgebra homomorphism with fY (y1) =
fY (y2). By Corollary 3.16, KerfY is a bisimulation on Y and 〈y1, y2〉 ∈
KerfY . Since Y G Y is the greatest bisimulation on Y we get that
〈y1, y2〉 ∈ Y G Y .

�

2. Cofree Coalgebras

Definition 8.6. Cofree Coalgebras
Let F be an arbitrary endofunctor over Set. Let Ω be any set. A F -coalgebra

(XΩ, α) with a map εΩ : XΩ → Ω is called cofree over Ω if for any other F -coalgebra
(Y, β) and any map g : Y → Ω there exists exactly one F -coalgebra homomorphism
g : Y → X with εΩ g = g. That is to say that the following diagram commutes:

XΩ

Ω

Y
∃! g

εΩg

The set Ω is often thought of as a set of ”colours” and g as a colouring.

Remark 8.7. For Ω = 1, (X1, α) is the final F -coalgebra.

Lemma 8.8. [GS01b]
Let F be any endofunctor over Set. Let Ω be any set. If (XΩ, α) is a cofree

coalgebra over Ω, then for each Θ ⊆ Ω there exists a cofree coalgebra (WΘ, β) over
Θ. Moreover, WΘ ≤ XΩ.

Corollary 8.9. If there is no final F -coalgebra, then there can be no cofree
coalgebra over Ω, unless Ω = ∅.

Proposition 8.10. Let F be any endofunctor over Set. Let (Θi)i∈I be a family
of sets, let Ω be a set larger than their cartesian product. If (XΩ, α) exists, then:∏

i∈I
WΘi

∼= W∏
i∈I

Θi

3. An Application of Coinduction

The existence of a final coalgebra for an specific endofunctor allow us to define
concepts and mappings in an analogous way of what we do for algebras. In the
following chapter we will see how we can use it for the endofunctor A × − on the
category Set.

Let A be an arbitrary set, we define the endofunctor G = A×− as:
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A×− : Set −→ Set
X 7−→ A×X
f 7−→ idA × f

Let (X,α) be an arbitrary G-coalgebra. Therefore X is an arbitrary set and α
is its structure map:

α : X −→ A×X
x 7−→ α(x)

The structure map can be splitted in two functions X → A and X → X which
we will call value : X → A and next : X → X. With these operations we can do
two things, given an element of x ∈ X:

1) Produce an element in A, namely value(x).
2) Produce a next element in X, namely next(x).

Now we can repeat 1) and 2) and therefore form another element in A, namely
value(next(x)). By preceding in this way we can get for each element x ∈ X an
infinite sequence (a0, a1, a2, · · · ) ∈ AN of elements an = value(next(n)(x)) ∈ A,
where next(0)(x) denotes x. This sequence of elements that x gives rise to is what
we can observe about x.

In order to better understand this coalgebra, let us characterise the G-coalgebra
homomorphisms:

Proposition 8.11. Let (X,α) and (Y, β) be two G-coalgebras. Let f : X → Y
be an arbitrary mapping. It holds that f is a G-coalgebra homomorphism if and
only if for each x ∈ X holds:

value(x) = value(f(x))

f(next(x)) = next(f(x))

It will be important also to characterise the bisimilarity upon states:

Proposition 8.12. Let (X,α) and (Y, β) be two G-coalgebras. Consider some
x ∈ X and y ∈ Y , it holds that x and y are bisimilar if and only if:

value(x) = value(y)

next(x) and next(y) are bisimilar

Furthermore, we get an important proposition concerning bisimilar states:

Proposition 8.13. Let (X,α) and (Y, β) be two G-coalgebras. Let x ∈ X and
y ∈ Y be two bisimilar states. It holds for each n ∈ N:

value(next(n)(x)) = value(next(n)(y))

The most important property of this coalgebra is the existence of a final coal-
gebra. Let us check how it works.

Consider as base the set AN, i.e., the set of infinite sequences upon A. Each
element of AN can be written as (ai)i∈N. We define on this set a coalgebra structure
by taking the structure map:

α : AN −→ A×AN

(ai)i∈N 7−→ 〈a0, (ai+1)i∈N〉
For this specific coalgebra we will write α = 〈head, tail〉, instead of the generic

notation α = 〈value, next〉.

Universitat de València Enric Cosme
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Proposition 8.14. The G-coalgebra (AN, α) is simple.

Proof. Let a = (ai)i∈N, b = (bi)i∈N ∈ AN be two states. Assume they are
bisimilar. Then by Proposition 8.13 it holds that for each n ∈ N:

value(next(n)(a)) = value(next(n)(b))

Notice that head(tail(n)(a)) = an = bn = head(tail(n)(b)). Therefore a = b.
This means that each bisimulation Z on AN is contained in the diagonal ∆AN .

Therefore, applying Theorem 7.2 we get that (AN, α) is a simple F -coalgebra. �

Proposition 8.15. The G-coalgebra (AN, α) is final.

Proof. Take any G-coalgebra, (Y, β). We must check that there exists a
unique G-coalgebra homomorphism from Y to AN. Let us define the followin map-
ping:

fY : Y −→ AN

y 7−→ (value(next(i)(y)))i∈N

Let us check that it is a G-coalgebra homomorphism. Notice that it holds:

head(fY (y)) = value(next(0)(y)) = value(y)

fY (next(y)) = (value(next(i)(next(y))))i∈N =

= (value(next(i+1)(y)))i∈N = tail(fY (y))

Therefore, applying Proposition 8.11 we get that fY is a G-coalgebra homo-
morphism. In order to see that fY is unique. Assume there is another G-coalgebra
homomorphism gY : Y → AN. We have seen on Proposition 8.14 that (AN, α) is
simple, also by Theorem 7.2 we get that fY = gY .

Thus, (AN, α) is final. �

Once we have presented the final coalgebra for the endofunctorG we will present
some cases where this finality is used.

Example 8.16. Definitions on AN via Coinduction
Let us start with a simple example, which involves defining the constant se-

quence const(a) = (a, a, a, · · · ) ∈ AN by coinduction for some a ∈ A. We shall
define this constant as a function const(a) : 1 → AN, where 1 = {?} is a singleton
set. We must produce a coalgebra structure α : 1 → G(1) = A × 1, in such a way
that const(a) arises by repetition. In this case the only thing we want to observe
is the element a ∈ A itself, and so we simply define as coalgebra structure:

α : 1 −→ A× 1
? 7−→ 〈a, ?〉

Indeed, const(a) arises in the following finality diagram:

1

A× 1

AN

A×AN

α

const(a)

idA × const(a)

∼= 〈head, tail〉

It expresses that head(const(a)) = a and tail(const(a)) = const(a).
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Next example will give us a mapping even : AN → AN such that for each
sequence a = (ai)i∈N ∈ AN it returns the even elements. That is to say:

even(a) = (a2i)i∈N

As before, we must define a coalgebra structure on AN in such a way that
even arises by finality. In this case, we must focus our attention only on the even
elements of a given sequence and disard the others. Let us consider the following
coalgebra structure:

β : AN −→ A×AN

a 7−→ 〈head(a), tail(2)(a)〉
As before, even arises in the following diagram:

AN

A×AN

AN

A×AN

β

even

idA × even

∼= 〈head, tail〉

It means that even is the unique mapping for which it holds that:

head(even(a)) = head(a)

tail(even(a)) = even(tail(2)(a))

For the next example, we want to define a similar mapping, odd : AN → AN

such that for each sequence a = (ai)i∈N ∈ AN we get only the odd elements, i.e.:

odd(a) = (a2i+1)i∈N

For this case we can proceed as before by setting a coalgebra structure on AN

and obtain odd by finality. Otherwise one can just define odd as the composition
even · tail.

Next example will show us how to define a more complex operation on infinite
sequences. We will define a function merge : AN ×AN → AN such that for any two
given sequences a = (ai)i∈N and b = (bi)i∈N of AN, it returns a sequence c = (ci)i∈N
such that:

ci = ai/2 if i ∈ 2N and

ci = b(i−1)/2 if i ∈ 2N + 1

It means that merge(a, b) is the sequence that alternates a component of a and a
component of b.

As before, merge will arise by finality of AN. For this case, we must set a
coalgebra structure on AN × AN such that it alternates the observation of each
sequence. We define:

δ : AN ×AN −→ A× (AN ×AN)
〈a, b〉 7−→ 〈head(a), 〈b, tail(a)〉〉

Notice that in the definition of δ we switch the order of the elements of the
tuple. As we said, merge arises in the following diagram:
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AN ×AN

A× (AN ×AN)

AN

A×AN

δ

merge

idA ×merge

∼= 〈head, tail〉

It means that merge is the unique mapping for which it holds that:

head(merge(a, b)) = head(a)

tail(merge(a, b)) = merge(b, tail(a))

Example 8.17. A Proof on AN via Coinduction
Last definition of operations on infinite sequences will allow us to present a

proof that uses coinduction. Using the definitions of merge, even and odd, we will
prove that for any given sequence a = (ai)i∈N ∈ AN it holds that:

merge(even(a), odd(a)) = a

We will do this proof in some steps:

1. Consider AN together with the G-coalgebra structure α = 〈head, tail〉.
2. f = merge · 〈even, odd〉 : AN → AN is a G-coalgebra homomorphism.

Here we must check the statements of Proposition 8.11. Take any a = (ai)i∈N ∈
AN. It holds:

head(f(a)) = head(merge(even(a)), odd(a)))
= head(even(a))
= head(a)

tail(f(a)) = tail(merge(even(a)), odd(a)))
= merge(odd(a), tail(even(a)))
= merge(even(tail(a)), odd(tail(a)))
= f(tail(a))

Therefore, applying Proposition 8.11, f is a G-coalgebra homomorphism.

3. (AN, α) is a final G-coalgebra. Since the identity mapping idAN is also a
G-coalgebra homomorphism from AN to AN we get that f = idAN .

4. Finally, we get the expected result. For each a ∈ AN it holds

merge(even(a), odd(a)) = idAN(a) = a

So far we have considered G-coalgebras parametrised by an arbitrary set A. In
the following examples we will take special choices of the set A.

Example 8.18. Decimal Representation
For this example we wil take A = 10 = {0, 1, · · · , 9} and we will consider as

base the set X = [0, 1]. We define on X a G-coalgebra by taking as structure map:

τ : [0, 1] −→ A× [0, 1]
x 7−→ 〈d, 10x− d〉

Where d ∈ 10 is the unique natural number such that d ≤ 10x < d+ 1. Notice that
τ extracts from each number the next decimal number of its decimal representation.

For this case, the G-coalgebra (10N, 〈head, tail〉) is final. Therefore, there exists
a unique G-coalgebra homomorphism f : [0, 1] → 10N that makes the following
diagram commute:
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[0, 1]

10× [0, 1]

10N

10× 10N

τ

f

id10 × f

∼= 〈head, tail〉

As we expected f returns the decimal representation of all the elements of [0, 1].
One important result that we obtain via coinduction is the proof of the unicity of
the decimal representation. As example of application we get that:

f(1/2) = (5, 0, 0, · · · ) f(1/3) = (3, 3, 3, · · · ) f(1/π) = (3, 1, 8, · · · )
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CHAPTER 9

On Bisimilarity

We return at this point to the notion of bisimilarity. We have seen on Chapter
3 that the bisimilarity turns into an equivalence relation on Coalgebras for an
endofunctor that preserves weak pullbacks. Our intention in this chapter is to give
a further view on this topic.

1. Towards a general Theory

First of all, we introduce a general notion of bisimilarity on coalgebras.

Definition 9.1. Bisimilarity on Coalgebras
Let F be an endofunctor on Set that preserves weak pullbacks. Let (X,α) and

(Y, β) be two F -coalgebras. We say that X is bisimilar to Y if and only if:

1. ∀x ∈ X ∃y ∈ Y such that x and y are bisimilar.
2. ∀y ∈ Y ∃x ∈ X such that x and y are bisimilar.

In that case, we will write X ∼ Y .

Proposition 9.2. Let F be an endofunctor on Set that preserves weak pull-
backs. Then the relation of bisimilarity on Coalgebras is an equivalence relation on
CoAlg(F).

Proof. We must check it is an equivalence relation.

Refl. Let (X,α) be any coalgebra in CoAlg(F). Take any x ∈ X, we know
by Corollary 3.6 that the diagonal of X is a bisimulation on X, thus
〈x, x〉 ∈ ∆X and x is bisimilar to itself.

Simm. Let (X,α) and (Y, β) be two F -coalgebras that are bisimilar. We must
chek that Y ∼ X.

Take any y ∈ Y , since X ∼ Y by definition of bisimilarity on coal-
gebras, there exists some x ∈ X such that x and y are bisimilar. That
means that there exists some bisimulation Z between X and Y such that
〈x, y〉 ∈ Z. Notice that by Theorem 3.7 it holds that Z−1 is a bisimulation
between Y and X, moreover, 〈y, x〉 ∈ Z−1 and we get that y and x are
bisimilar.

For x ∈ X we can get a similar proof.
Trans. Let (X1, α1), (X2, α2) and (X3, α3) be three F -coalgebras. Such that

X1 ∼ X2 and X2 ∼ X3. We must check that X1 ∼ X3.
Take any x1 ∈ X1, since X1 ∼ X2, we know there exists some x2 ∈ X2

such that x1 and x2 are bisimilar. That means there exists some Z1,
bisimulation between X1 and X2, such that 〈x1, x2〉 ∈ Z1. We focus our
attention now on x2 ∈ X2, since since X2 ∼ X3, we know there exists
some x3 ∈ X3 such that x2 and x3 are bisimilar. That means there exists
some Z2, bisimulation between X2 and X3, such that 〈x2, x3〉 ∈ Z2. Since
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74 2. Bisimilarity and Simple Coalgebras

F preserves weak pullbacks, using theorem 3.13, we know that Z1 ◦ Z2 is
a bisimulation between X1 and X3. Notice that it holds that 〈x1, x3〉 ∈
Z1 ◦ Z3, thus x1 and x3 are bisimilar.

For x3 ∈ X3 we can get a similar proof.

�

Theorem 9.3. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras. Let f : X → Y be a surjective F -
coalgebra homomorphism. Then X is bisimilar to Y .

Proof. Notice that f is a F -coalgebra homomorphism between X and Y , thus
using Theorem 3.5 it holds that its graph G(f) is a bisimulation between X and
Y . Let us check that X ∼ Y .

Take any x ∈ X notice that 〈x, f(x)〉 ∈ G(f), thus x and f(x) are bisimilar.
Take any y ∈ Y , since f is surjective, we know there exists some x ∈ X such

that f(x) = y, therefore 〈x, y〉 ∈ G(f), thus x and y are bisimilar.
Finally, X ∼ Y . �

Corollary 9.4. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) be a F -coalgebra. It holds:

X ∼ X/(X G X)

Proof. By Proposition 3.11 we know that there exists a unique map structure
γG that turns (X/X G X, γG) into a F -coalgebra. Moreover it turns the projection
mapping πG : X → X/(X G X) into a F -coalgebra homomorphism. Notice that πG
is surjective. Applying Theorem 9.3 it holds that X ∼ X/(X G X). �

Corollary 9.5. Let F be an endofunctor that preserves weak pullbacks, then
any F -coalgebra is bisimilar to a simple F -coalgebra.

2. Bisimilarity and Simple Coalgebras

Lemma 9.6. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras, assume (X,α) is simple. Let x, x′ ∈ X
and y ∈ Y . It holds:

x and y are bisimilar
x′ and y are bisimilar

⇒ x = x′

Proof. Since x and y are bisimilar there exists some bisimulation Z between
X and Y such that 〈x, y〉 ∈ Z. Since x′ and y are bisimilar, there exists some
bisimulation Z ′ between X and Y such that 〈x′, y〉 ∈ Z ′. Notice that 〈x′, x〉 ∈
Z ′ ◦ Z−1. It holds that Z ′ ◦ Z−1 is a bisimulation on X, since X is simple, by
Theorem 7.2 it holds that 〈x′, x〉 ∈ ∆X , therefore x = x′. �

Theorem 9.7. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras, assume (X,α) is simple and X ∼ Y .
Then there exists an F -coalgebra epimorphism f : Y → X.

Proof. From the fact that X ∼ Y , take any x ∈ X, we know there exists
some yx ∈ Y such that x and yx are bisimilar. Assume the pair 〈x, yx〉 ∈ Zx. On
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the other hand, take any y ∈ Y , we know there exists some xy ∈ X such that xy
and y are bisimilar. Assume the pair 〈xy, y〉 ∈ Zy. Define

Z =
⋃
x∈X

Zx ∪
⋃
y∈Y

Zy

It holds that Z is a bisimulation between X and Y since so is each component,
Theorem 3.9. Thus, each projection π1 and π2 becomes an F -coalgebra homomor-
phism.

Consider π2 : Z → Y , it holds that π2 is an F -coalgebra epimorphism. For
each y ∈ Y we know that 〈xy, y〉 ∈ Zy ⊆ Z and y = π2(〈xy, y〉). Applying the 1st
Isomorphim Theorem 6.1, we get that

Z/Kerπ2
∼= π2(Z) = Y

Assume that ϕ give us that F -coalgebra isomorphism.
Let us focus now on Kerπ2.

Kerπ2 = {〈〈x1, y1〉, 〈x2, y2〉〉 ∈ Z2 : π2(〈x1, y1〉) = π2(〈x2, y2〉)} =

= {〈〈x1, y〉, 〈x2, y〉〉 ∈ Z2 : x1, x2 ∈ X, y ∈ Y }
Notice that each x1 and y of that form are bisimilar since their pair belongs

to Z which is a bisimulation between X and Y . It occurs the same for X2 and
y. Since X is simple, applying Lemma 9.6 we get that x1 = x2. That means that
Kerπ2 ⊆ Kerπ1. Applying Theorem 6.2, it holds that there exists a unique F -
coalgebra homomorphism h such that π1 = hπKerπ2

. That is to say that h makes
the following diagram commute:

Z Z/Kerπ2

X

πKerπ2

π1
h∃!

Notice that π1 is a surjective mapping for the same reasoning used for π2.
Since π1 and πKerπ2

are surjective mappings, so is h. Define f = hϕ−1, it is an
F -coalgebra homomorphism from Y to X. Moreover it is surjetive since so is h. �

Corollary 9.8. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras, assume (X,α) is simple. Then the
following statements are equivalent:

• There exists some F -coalgebra epimorphism, f : Y → X.
• X ∼ Y .

Corollary 9.9. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two simple F -coalgebras with X ∼ Y . Then X ∼= Y .

Proof. Applying the preceding Theorem, there exists some F -coalgebra epi-
morphism f : Y → X. Since Y is simple, one characterisation of Theorem 7.2
states that f is a F -coalgebra isomorphism. �

Corollary 9.10. Let F be an endofunctor on Set that preserves weak pull-
backs. Let (X,α) and (Y, β) be two simple F -coalgebras. It holds:

X ∼ Y ⇔ X ∼= Y
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Theorem 9.11. Let F be an endofunctor on Set that preserves weak pullbacks.
Let (X,α) and (Y, β) be two F -coalgebras. It holds:

X ∼ Y ⇔ X/(X G X) ∼= Y/(Y G Y )

Proof. We must check the two implications:

� Assume X ∼ Y . We know by Corollary 9.4 we get that X ∼ X/(X G X)
and Y ∼ Y/(Y G Y ). Notice that X/(X G X) and Y/(Y G Y ) are
simple coalgebras by Proposition 7.3. By transitivity of ∼, it holds that
X/(X G X) ∼ Y/(Y G Y ). Finally Corollary 9.10 states that X/(X G
X) ∼= Y/(Y G Y ).

� Assume X/(X G X) ∼= Y/(Y G Y ) where X/(X G X) and Y/(Y G Y ) are
simple coalgebras by Proposition 7.3. Applying Corollary 9.10 it holds
that X/(X G X) ∼ Y/(Y G Y ). Finally by Corollary 9.4 and transitivity
of ∼ we get that X ∼ Y .

�
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