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CHAPTER 1

Introduction

1. Algebraic Structures

Definition 1.1. [Group, Monoid, Semigroup] Let G be a set and let · be any
binary operation on G:

· : G×G −→ G
(g1, g2) 7−→ g1 · g2

Instead of writing g1 · g2 we will omit the operation symbol and we will write g1g2.
We will say that (G, ·) is a group if the following properties hold:

1) Associativity of ·. For all g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3).
2) Existence of a neutrum element. There exists some e ∈ G such that for

all g ∈ G it holds: ge = eg = g. If such element exists it must be unique.

Remark 1.2. Assuming the existence of two neutrum elements e and e′

we get: e′ = e′e = e. Therefore, such element is unique. Moreover, we
will use indistinctly the notations 1, e or 1G to denote this element.

3) Existence of an inverse element. For each g ∈ G, there exists an element
g′ ∈ G such that gg′ = g′g = e. If such element exists it must be unique.

Remark 1.3. Assuming the existence of two inverse elements g′ and g′′

for g we get: g′ = g′gg′′ = g′′. Therefore, such element is unique. We will
denote this element by g−1.

Given a group (G, ·), we will say that it is abelian if for each g1, g2 ∈ G it
holds that g1g2 = g2g1.

We say that (G, ·) is a monoid if properties 1) and 2) hold. We say that it is
a semigroup if property 1) hold.

Definition 1.4. [Subgroup] Let (G, ·) be a group and consider H ⊆ G a subset
of G. We say that H is a subgroup of G and we will denote it by H ≤ G if it is
closed under the operation · and closed under taking inverses. That is to say:

• For all h1, h2 ∈ H, h1h2 ∈ H.
• For all h ∈ H, h−1 ∈ H.

Definition 1.5. [Ring] Let R be a set and let + and · be two binary operations
on R:

+ : R×R −→ R
(r1, r2) 7−→ r1 + r2

· : R×R −→ R
(r1, r2) 7−→ r1 · r2

As before, we will use r1r2 instead of r1 · r2.
We will say that (R,+, ·) is a ring if the following properties hold:

1) (R,+) is an abelian group.
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2 1. Algebraic Structures

Remark 1.6. We will use additive notation for (R,+). Therefore, for
each r ∈ R we will denote its inverse by −r and we will use 0 or 0R to
denote the neutrum element.

2) (R, ·) is a semigroup.
3) Ditributivity of · among +. That is, for all r1, r2, r3 ∈ R it holds:

r1(r2 + r3) = r1r2 + r1r3 (r1 + r2)r3 = r1r3 + r2r3

Remark 1.7. Under the last property we can prove that for each r ∈ R,
0r = r0 = 0. Just notice that r0 = r(r − r) = rr − rr = 0.

We will say that the ring (R,+, ·) is a unit ring if (R, ·) is a monoid. We will
denote its neutrum element by 1 or 1R. We will say that it is commutative if for
each r1, r2 ∈ R it holds r1r2 = r2r1.

Let S ⊆ R be any subset of R. We will say that it is a subring of R and we
will denote it by S ≤ R, if (S,+) ≤ (R,+) and it is closed under the operation ·,
i.e., for all s1, s2 ∈ S it holds that s1s2 ∈ S.

Definition 1.8. [Ideal] Let (R,+, ·) be a ring and let I ⊆ R be any subset of R.
We say that it is a right-ideal [left-ideal] of R if the following properties hold:

1) (I,+) ≤ (R,+)
2) For all r ∈ R and for all x ∈ I it holds xr ∈ I [rx ∈ I].

We say that I is a bilateral ideal of R, or just ideal of R, it is both left and
right-ideal.

Proposition 1.9. Let (R,+, ·) be a ring and let X = {x1, · · · , xt} ⊆ R be any
finite subset of R, it holds:

• (X)R = (x1, · · · , xt)R = {
∑t
i=1 xiri : ri ∈ R 1 ≤ i ≤ t} is a right-ideal.

• (X)L = (x1, · · · , xt)L = {
∑t
i=1 rixi : ri ∈ R 1 ≤ i ≤ t} is a left-ideal.

Proof. We will just check the first statement. The second one is quite anal-
ogous. Clearly, ((X)R,+) is a additive subgroup of (R,+). Let now x ∈ (X)R be
an arbitrary element and r ∈ R. By definition of (X)R, there must exist ri ∈ R for

1 ≤ i ≤ t such that x =
∑t
i=1 xiri. Now considering the product xr we get:

xr = (
∑t
i=1 xiri)r

=
∑t
i=1(xiri)r

=
∑t
i=1 xi(rir)

Since rir ∈ R for all 1 ≤ i ≤ t, it holds that xr ∈ (X)R. �

Definition 1.10. [Finitely Generated Ideals] Let (R,+, ·) be a ring. A right-
ideal I of R is said to be finitely generated if there exists a finite subset X ⊆ R
such that I = (X)R. Analogously we obtain the definition for finitely generated
left-ideals. We will say that an ideal I of R is finitely generated if it is so as right
or left-ideal.

Definition 1.11. [ID, PID, Division Ring, Field] A ring (R,+, ·) is called
integral domain, or ID if it holds:

ID) For each r1, r2 ∈ R, if r1r2 = 0 then must hold r1 = 0 or r2 = 0.

We will say that (R,+, ·) is a principal ideal domain, or PID if it holds:
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1. Introduction 3

PID) For each I ideal of R, there exists an element rI ∈ R such that I = (rI)

Let (R,+, ·) be a unit ring, we define the right-units of R, UR(R), and the
left-units of R, UL(R) to be the following sets:

UR(R) = {r ∈ R : ∃s ∈ R (rs = 1)}
UL(R) = {r ∈ R : ∃s ∈ R (sr = 1)}

(R,+, ·) is said to be a ring division if:

RD) UR(R) = UL(R) = R \ {0}

Finally, (R,+, ·) is a field if:

F1) (R,+, ·) is a commutative unit ring.
F2) (R,+, ·) is a division ring.

Remark 1.12. We will refer to fields as (K,+, ·) instead of (R,+, ·). Notice that
in a field it holds U(K) = UR(K) = UL(K) = K \ {0}, where:

U(K) = {r ∈ K : ∃s ∈ K (rs = sr = 1)}

Definition 1.13. [Vector Space over a Field K] Let (K,+, ·) be a field and let
V be a set with a binary operation + and a scalar product:

+ : V × V −→ V
(v1, v2) 7−→ v1 + v2

· : K × V −→ V
(λ, v) 7−→ λv

We will say that V is vector space over the field K, or K-vector space if it
satisfies the following properties:

V1) (R,+) is an abelian group.
V2) For all α, β ∈ K and v ∈ V , α(βv) = (αβ)v.
V3) For all α, β ∈ K and v ∈ V , (α+ β)v = (αv) + (βv).
V3) For all α ∈ K and v, w ∈ V , α(v + w) = (αv) + (αw).

Let W ⊆ V be any subset of V . It is called a vector subspace of V if it is an
additive subgroup of (V,+) and it is closed under scalar product, i.e., for all w ∈W
and λ ∈ K, it holds that λw ∈W .

Definition 1.14. [K-algebra] Let (K,+, ·) be a field and let (A,+, ·) be a ring
with a scalar product:

· : K ×A −→ A
(λ, a) 7−→ λa

We say that A is a K-algebra if the following properties hold:

A1) A is a K-vector space.
A2) For all α ∈ K and a, b ∈ A, α(ab) = (αa)b.

A subset B ⊆ A is called a subalgebra of A if (B,+, ·) is a subring of (A,+, ·)
and B is a vector subspace of A.

A subset I ⊆ A is a [right, left] ideal if I is a [right,left] ideal of (A,+, ·) and
I is a vector subspace of A.

Definition 1.15. [Module over a K-algebra] Let (K,+, ·) be a field, let (A,+, ·)
be a K-algebra and let V be any set together with three operations:
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4 2. Morphisms over Structures

+ : V × V −→ V
(v1, v2) 7−→ v1 + v2

· : K × V −→ V
(λ, v) 7−→ λv

∗ : V ×A −→ V
(v, a) 7−→ v ∗ a

V is said to be an A-module if the following properties hold:

M1) (V,+, ·) is a K-vector space.
M2) For all α ∈ K, a ∈ A and v ∈ V , α(v ∗ a) = (αv) ∗ a = v ∗ (αa).
M3) For all a, b ∈ A and v ∈ V , v ∗ (a+ b) = v ∗ a+ v ∗ b.
M4) For all a ∈ A and v, w ∈ V , (v + w) ∗ a = v ∗ a+ w ∗ a.

If (A,+, ·) is a unit K-algebra we demand also the following property on V :

M5) For all v ∈ V , v ∗ 1 = 1 ∗ v = v.

A subset W ⊆ V is called a submodule of V , written W ≤A V , if (W,+, ·)
is a vector subspace of (V,+, ·) and for each w ∈ W and for each a ∈ A it holds
w ∗ a ∈W .

Definition 1.16. [Regular Module] Let (K,+, ·) be a field and let (A,+, ·) be
a K-algebra. Let us set V = A with the operation ∗ = ·. It is straightforward to
see that A is an A-module. We call that module the regular A-module.

Definition 1.17. [Simple Module] Let (K,+, ·) be a field and let (A,+, ·) be a
K-algebra. An A-module V is called simple if every W ≤A V submodule of V is
either the trivial module {0} or the greatest one, V .

Definition 1.18. [Semisimple Module] Let (K,+, ·) be a field and let (A,+, ·)
be a K-algebra. An A-module V is called semisimple or completely reducible
if there exists a finite family of simple submodules Vi ≤A V such that V =

⊕s
i=1 Vi

as direct sum of vector spaces, i.e.:

• V =
∑s
i=1 Vi

• For each i ∈ {1, · · · , s},

Vi ∩

 s∑
j=1,j 6=i

Vj

 = {0}

2. Morphisms over Structures

Definition 1.19. [Group Homomorphism] Let (G1, ·) and (G2, ·) be two groups.
A mapping f : G1 → G2 is called a group homomorphism if it verifies the fol-
lowing equation for each g, h ∈ G1:

f(gh) = f(g)f(h)

We denote the set of all group homomorphisms betweenG1 andG2 byHom(G1, G2).
We will say that a group homomorphism f is a monomorphism if it is an injective
mapping, f is a epimorphism if it is a surjective and finally, f is a isomorphism
if it is a bijection.

Definition 1.20. [Ring Homomorphism] Let (R1,+, ·) and (R2,+, ·) be two
rings. A mapping f : R1 → R2 is called a ring homomorphism if it verifies:

Universitat de València Representation Theory



1. Introduction 5

• f : (R1,+)→ (R2,+) is a group homomorphism.
• For each r, s ∈ R1 it holds:

f(rs) = f(r)f(s)

Definition 1.21. [Linear Map] Let (K,+, ·) be a field and let V,W be two K-
vector spaces. A mapping f : V → W is said to be linear if for each v1, v2 ∈ V
and α, β ∈ K it satisfies:

f(αv1 + βv2) = αf(v1) + βf(v2)

We denote by Homk(V,W ) = {f : V → W : f is linear} to the set of all linear
mappings. For the case W = V , we will write Endk(V ) instead of HomK(V, V ).
Finally, we define the set of all isomorphisms from V to V as GLK(V ).

Definition 1.22. [Algebra Homomorphism] Let (K,+, ·) be a field and let
A,B be two K-algebras. A mapping f : A → B is said to be an algebra homo-
morphism if it is linear (considering A and B as vector spaces) and moreover, for
each a1, a2 ∈ A it holds that f(ab) = f(a)f(b). Furthermore, if A and B are unit
K-algebras, it must hold that f(1A) = 1B . We also define, in an analogous way ,
the sets HomK(A,B) and EndK(A).

Definition 1.23. [Homomorphism between Modules] Let (K,+, ·) be a field,let
A be a K-algebras and let V,W be two A-modules. A mapping f : V →W is said
to be an homomorphism between A-modules if it is linear (considering V
and W as vector spaces) and moreover, for each a ∈ A and v ∈ V it holds that
f(va) = f(v)a. We also define, in an analogous way , the sets HomA(V,W ) and
EndA(V ).

Example 1.24. Let (K,+, ·) be a field and let V be a K-vector space. Take
A = EndK(V ). It is a K-algebra with the operations:

+ : A×A −→ A
(f, g) 7−→ f + g

where,
f + g : V × V −→ V

(v1, v2) 7−→ vf + vg

· : A×A −→ A
(f, g) 7−→ g ◦ f where,

fg : V × V −→ V
(v1, v2) 7−→ (vf)g

: K ×A −→ A
(λ, f) 7−→ λf

where,
λf : V × V −→ V

(v1, v2) 7−→ λ(vf)

Example 1.25. Let (K,+, ·) be a field and let G be a group. We define KG =
{
∑
g∈G tgg : ∀g ∈ G (tg ∈ K)} to be the set of all linear combinations of elements of

G. Let us consider the following three operations; For a, b ∈ KG with a =
∑
g∈G tgg

and b =
∑
h∈G uhh and λ ∈ K, we define:

a+ b =
∑
g∈G(tg + ug)g ab =

∑
g,h∈G(tg + uh)(gh) λa =

∑
g∈G(λtg)g

With these three operations, KG is a K-algebra.
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CHAPTER 2

Representations

1. Basic Definitions

Definition 2.1. [Representation] Let (G, ·) be a finite group. Let (K,+, ·) be
a field and let V be a K-vector space of finite dimension. Let us consider the
group (GL(V ), ·) of linear bijections from V to V together with the composition of
mappings, i.e., for f, g ∈ GL(V ), fg = g ◦ f . Any group homomorphism from G to
GL(V ) is called a representation of G.

D : G −→ GL(V )
g 7−→ Dg : V −→ V

v 7−→ (v)Dg

We will refer to n = dimK(V ) as the degree of the representation D.

Remark 2.2. Notice that GL(V ) ∼= GL(n,K) (by fixing a basis in V and sending
any linear bijection to the representative matrix in the fixed basis). Therefore, using
the existence of such isomorphism ϕ : GL(V )→ GL(n,K), given any representation
D of G, it can be seen as a group homomorphism D : G→ GL(n,K). In this case
we will say that D is a matrix representation of G over K.

Remark 2.3. Definition 2.1 can be generalised in the following way; Let (S, ·) be a
semigroup. Let (K,+, ·) be any ring and let V be a free K-module. Let us consider
the semigroup (EndK(V ), ·) of endomorphisms on V as K-module. Any semigroup
homomorphism from S to EndK(V ) is called a representation representation of
S. For the case of (M, ·) being a monoid we will demand (K,+, ·) to be a unit ring.
Any monoid homomorphism from M to EndK(V ) is called a representation of
M . Notice that each representation must send 1 to idV . There also exists the
notion of matrix representation. Just notice that EndK(V ) ∼= Matn(K).

Example 2.4. Let us present some examples of representations.

a) Let (G, ·) be any finite group. Let (K,+, ·) be any field and let V be any
K-vector space of finite dimension. The trivial representation, R, is
defined for each g ∈ G as R(g) = idV .

b) Consider the field (R,+, ·) of real numbers and the group G = {1,−1} ⊆
R. Let V be any R-vector space of finite dimension n. We define the
following representation:

D : G −→ GL(V )
1 7−→ D1 : V −→ V

v 7−→ v

−1 7−→ D−1 : V −→ V
v 7−→ −v

7



8 1. Basic Definitions

In matrix form, D1 = In and D−1 = −In.
c) Let G be the finite group with presentation

G = 〈x, y | x2 = y3 = 1, yx = y−1〉

Notice that G = [C3]C2
∼= Σ3. Let (K,+, ·) be a field containing a cubic

root of the unit, i.e., ∃ω ∈ K such that ω3 = 1. We define D as the matrix
representation, D : G→ GL(2,K), given by:

Dx =

[
0 1
1 0

]
Dy =

[
ω 0
0 ω2

]
In order to check that D is a matrix representation, we just need

to check that it is order-preserving and check that the relator conditions
hold.

D2
x =

[
0 1
1 0

]2
=

[
1 0
0 1

]
= I2

D3
y =

[
ω 0
0 ω2

]3
=

[
ω3 0
0 ω6

]
=

[
1 0
0 1

]
= I2

DyDx = DxD
2
y

Thus, D is a group homomorphism and therefore we can conclude that it
is a matrix representation of G with degree 2.

Given any K-vector space with dimK(V ) = 2, let us fix any basis
{v1, v2} of V . According to the matrix representation of D, the represen-
tation associated to this basis is given by:

D : G −→ GL(V )
x 7−→ Dx : V −→ V

vi 7−→ v3−i

y 7−→ Dy : V −→ V
vi 7−→ ωivi

for i ∈ {1, 2}.
d) Let G = Cn = 〈g〉 be the cyclic group or order n. Let (K,+, ·) be a

field containing ξ, an n-th root of the unit. We define R as the matrix
representation given by:

R : G −→ GL(1,K) ∼= K
gs 7−→ Rgs = ξs

R is a matrix representation of G of degree 1.

Definition 2.5. [Linear Representation of K-algebras] Let (K,+, ·) be a field.
Let A be a K-algebra and let V be any K-vector space of finite dimension. Let us
consider (EndK(V ),+, ·) as a K-algebra (taking the product as the composition of
linear mappings). Any K-algebra homomorphism D from A to EndK(V ) is called
a linear representation of the K-algebra A.

D : A −→ EndK(V )
a 7−→ Da : V −→ V

v 7−→ (v)Da

Universitat de València Representation Theory



2. Representations 9

Notice that in the case of unit K-algebras, D(1) = IdV . We will refer to n =
dimK(V ) as the degree of the representation D and to V as the representation
space.

Example 2.6. Let us consider the following examples:

a) Let (K,+, ·) be a field. Let A be a K-algebra and take V = A. The
regular linear representation, R, is defined as:

R : A −→ EndK(A)
a 7−→ Da : A −→ A

b 7−→ (b)Ra = ba

1. Let us check that R is well-defined, i.e., Ra ∈ EndK(A).
Let us consider a ∈ A, b, c ∈ A and α, β ∈ K. It holds:

(αb+ βc)Ra = (αb+ βc)a = (αb)a+ (βc)a =
= α(ba) + β(ca) = α(b)Ra + β(c)Ra

2. Let us now check that R is a K-algebra homomorphism.
2.1 Take a, b ∈ A, c ∈ A and α, β ∈ K. It holds:

(c)Rαa+βb = c(αa+ βb) = c(αa) + c(βb) =
= α(ca) + β(cb) = α(c)Ra + β(c)Rb =
= (c)(αRa + βRb)

2.2 Take a, b ∈ A, c ∈ A. It holds:
(c)Rab = c(ab) = [(c)Ra]b =

= [(c)Ra]Rb = (c)RaRb
(3.) Moreover, for the case of A being a unit K-algebra, it holds:

R : A −→ EndK(A)
1 7−→ D1 : A −→ A

b 7−→ b1
Thus R1 = IdA

Hence, R is a K-algebra homomorphism and we conclude that R is a
linear representation of A.

b) Last example can be generalised as follows; Let (K,+, ·) be a field. Let
A be a K-algebra and consider any A-module M . Consider the following
linear representation θ

θ : A −→ EndK(M)
a 7−→ θa : M −→ M

m 7−→ (m)θa = ma

It is straightforward to see that θa is well-defined for each a ∈ A
and that θ is an homomorphism between K-algebras, thus θ is a linear
representation of A.

2. Basic Properties

Proposition 2.7. Let (G, ·) be any finite group and let (K,+, ·) be a field. Every
representation of G can be extended to a linear representation of the K-algebra KG
(from Example 1.25). Conversely, every linear representation of KG induces a
representation of G.

Proof. Let V be any K-vector space and let R : G → GL(V ) be a represen-
tation of G. Let us define R as follows:

Universitat de València Representation Theory



10 2. Basic Properties

R : KG −→ EndK(V )
a =

∑
g∈G tgg 7−→ Ra : V −→ V

v 7−→ (v)Ra = (v)
∑
g∈G tgRg

For each a ∈ KG, Ra is clearly well-defined. Let us check that it is a homomorphism
between K-algebras:

1. Take a, b ∈ KG and α, β ∈ K. Assume a =
∑
g∈G tgg and b =

∑
g∈G ugg

It holds:
R(αa+ βb) = R(α

∑
g∈G

tgg + β
∑
g∈G

ugg) =

R(
∑
g∈G

(αtg)g +
∑
g∈G

(βug)g) = R(
∑
g∈G

(αtg + βug)g) =

∑
g∈G

(αtg + βug)Rg = α
∑
g∈G

tgRg + β
∑
g∈G

ugRg =

αR(
∑
g∈G

tgg) + βR(
∑
g∈G

ugg) = αR(a) + βR(b).

2. Take a, b ∈ A. It holds:

R(ab) = R((
∑
g∈G

tgg)(
∑
h∈G

uhh))

= R(
∑

g,h∈G
tguhgh)

Fixed any x ∈ G, it holds gh = x⇔ h = g−1x. Therefore:

R(
∑
x∈G

(
∑
g∈G

tgu(g−1x)x)) =
∑
x∈G

(
∑
g∈G

tgu(g−1x)R(x)) =

∑
g,h∈G

tguhR(gh) =
∑

g,h∈G
tguhR(g)R(h) =

(
∑
g∈G

tgR(g))(
∑
h∈G

uhR(h)) = R(
∑
g∈G

tgg)R(
∑
h∈G

uhh) =

= R(a)R(b).

Thus R is a linear representation of KG.

For the converse, let R : KG→ EndK(V ) be any linear representation of KG.
We define R = R|G, R : G→ EndK(V ). Let us check that it is a representation of
G.

1. R is a group homomorphism. Take g, h ∈ G. It holds:

R(gh) = R(gh) = R(g)R(h) = R(g)R(h)

2. Moreover, for each g ∈ G, R(g) is a bijective endomorphism on V . Just
notice that R(g) has as inverse homomorphism R(g−1).

R(g)R(g−1) = R(g−1)R(g) = R(1) = IdV

We conclude that R is a representation of G.
�
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2. Representations 11

Remark 2.8. Last Proposition stablishes the correspondence between the repre-
sentations of G and the linear representations of KG. Nevertheless, it is important
to consider them as independent objects since each representations have quite dif-
ferent invariants. Consider the following examples; Let θ be a linear representation
of KG. We can consider its associated θ from Proposition 2.7. It holds that Kerθ
is an ideal of KG while Kerθ E G. This leads, in the case of the trivial represen-
tation, to the equations Kerθ = KG, but Kerθ = G, which are clearly different
structures. In order to avoid confusions we will write Kerθ(G over V ) instead of
Kerθ.

Proposition 2.9. There exists a duality between linear representations and mod-
ules. This duality is expressed in the following statements:

a) Let (K,+, ·) be a field and let A be any K-algebra. Let R be a linear
representation with representation space V . Then V has structure of A-
module with the internal law:

∗ : V ×A −→ V
(v, a) 7−→ (v)Ra

b) Let (K,+, ·) be a field, let A be a K-algebra and let V be any A-module.
We define R as follows:

R : A −→ EndK(V )
a 7−→ Ra : V −→ V

v 7−→ va

Then R is a linear representation of A.

Proof. Let us check the two statements:

a) Consider V together with the operation ∗. Notice that the operation ∗
is well-defined since Ra ∈ EndK(V ) for each a ∈ A. Therefore we must
check that the conditions of V being an A-module (Definition 1.15) hold:
M1) V was already a K-vector space.
M2) Let α ∈ K, a ∈ A and v ∈ V it holds:

α(v ∗ a) = α((v)Ra) = (αv)Ra = (αv) ∗ a

M3) Let a, b ∈ A and v ∈ V it holds:

v ∗ (a+ b) = (v)Ra+b = (v)(Ra +Rb) = (v)Ra + (v)Rb = v ∗ a+ v ∗ b

M4) Analogous to M3).
In the case of A being a unit K-algebra it holds:
m5) Let v ∈ V , it holds:

v ∗ 1 = (v)R1 = (v)IdV = v

Finally, we can conclude that V has structure of A-module.
b) See Example 2.6.

�

Remark 2.10. Proposition 2.7 states the equivalency between the study of the
representations of a given group G over a field K and the study of linear repre-
sentations of KG. Moreover, last Proposition 2.9 states the duality between linear
representations of KG and KG-modules. In a few words, we will use the following
three equivalent tools:
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12 2. Basic Properties

Representations Linear Representations Modules
D : G→ GL(V ) ⇔ D : KG→ EndK(V ) ⇔ V as KG-module

Example 2.11. We present some instances of Proposition 2.9.

1) Let R be the trivial representation from Example 2.4, then V = K is the
KG-module associated to R with the law:

∗ : K ×KG −→ V
(α, a) 7−→ α

2) Let A be any K-algebra, then the module V = A0 is the regular A-module
with the law v ∗ a = va, associated to regular linear representation of
Example 2.6.

3) The trivial KG-module with the law αg = α, ∀α ∈ K ∀g ∈ G is associated
to the trivial representation of degree 1 over K called 1-representation.

4) Let A be a K-algebra. The regular A-module is associated to the regular
representation. For the case A = KG, the associated regular representa-
tionis called regular representation of G and works this way:

Assuming that G = {1, g2, · · · , gn},
R : G −→ GL(KG) (∼= M(n,K))

g 7−→ Rg

(gi)Rg = gig = gj ∈ G. If we take G as K-basis of KG, in matrix form:

R(g) =

g gj
↓ ↓

1 → 0 · · · 1 · · · 0 · · ·
...

...
...

gi → 0 · · · 0 · · · 1 · · ·
...

...
...

They are, therefore, permutation matrices.

Definition 2.12. [Equivalent Representations] Let Ri : KG → GL(Vi) for
i = 1, 2, be two representations of G over K. Let Vi, i = 1, 2, be the corresponding
representation spaces of G. We will say that R1 and R2 are equivalent if there
exists a bijective P ∈ HomK(V1, V2) such that for each g ∈ G, (R1g)P = P (R2g)
hold. That is to say that the following diagram commutes:

V1 V2

V1 V2
P

P

R1g R2g

Last property can be expressed in terms of matrices. Assume n = dimK(Vi), for
i = 1, 2. We must fix a basis of V1 and V2 and consider the corresponding matrix
representations R̃i : KG → Mat(n,K), for i = 1, 2. We say that the matrix
representations are equivalent if there exists some P ∈ GL(n,K) such that for each

g ∈ G, (R̃1g)P = P (R̃2g) hold.

Proposition 2.13. Let Ri, for i = 1, 2, be two representations of G over K. Let
us consider Vi, for i = 1, 2, as the corresponding KG-modules. Then R1 and R2

are equivalent if and only if V 1 and V 2 are isomorphic KG-modules.
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2. Representations 13

Proof. Let us check the two implications:

� Assume thatR1 andR2 are equivalent, thus we can find some bijective P ∈
Homk(V1, V2) with (R1g)P = P (R2g) for all g ∈ G. Let us consider the
associated linear representations Ri : KG → EndK(Vi), for i = 1, 2. We
will check that there exists some P : V1 → V2 which is a KG-isomorphism.
Notice that Vi was defined as Vi with the law v ∗ z = (v)(Riz) for v ∈ Vi
and z ∈ KG.

As a candidate for P , we consider P itself. Let us check that P can act,
in fact, as a KG-homomorphism. Consider v ∈ V1 and

∑
g∈G agg ∈ KG,

it holds: [
v ∗

∑
g∈G

agg

]
P =

[
(v)

(
R1(

∑
g∈G

agg)

)]
P =

=

[ ∑
g∈G

ag(v)(R1g)

]
P =

∑
g∈G

ag [(v)R1g]P =

=
∑
g∈G

ag(v) [R1gP ] =
∑
g∈G

ag(v) [PR2g] =

=
∑
g∈G

ag [(v)P ]R2g = [(v)P ]

(∑
g∈G

agR2g

)
=

= [(v)P ]R2

(∑
g∈G

agg

)
= [(v)P ] ∗

(∑
g∈G

agg

)

That means that P is KG-linear. Moreover it is a KG-isomorphism
since P was bijective.

� Conversely, suppose that V1 ∼=K V2, i.e., there exists someKG-isomorphism
P : V1 → V2. Notice that, as sets, Vi = Vi for i = 1, 2, therefore for v ∈ V1
it holds:

(v)[R1(g)P ] = (v ∗ g)P = (vP ) ∗ g =
= (vP )R2(g) = (v)[PR2(g)]

Hence, for all v ∈ V1 and for all g ∈ G, it holds R1(g)P = PR2(g).

�

Corollary 2.14. If M ∼=KG N then Ker(G over M) = Ker(G over N).

Proof. In fact, if R1 : G→ GL(M) and R2 : G→ GL(N) are representations
of G with M ∼=KG N , using previous Proposition, there exists some bijective P ∈
Hom(M,N) with the property R1(g)P = PR2(g) for each g ∈ G. Therefore it
holds:

g ∈ Ker(G over M) ⇔ R1(g) = 0M ⇔ (v)R1(g) = 0 ⇔
⇔ [(v)R1(g)]P = 0 ⇔ (v)[R1(g)P ] = 0 ⇔
⇔ (v)[PR2(g)] = 0 ⇔ [(v)P ]R2(g) = 0 ⇔?

⇔? (w)R2(g) = 0 ⇔ R2(g) = 0N ⇔
⇔ g ∈ Ker(G over N)
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14 2. Basic Properties

In the proof we have considered that v ∈M , w ∈ N are arbitrary elements. Notice
that in ? we have used that P is a bijection. �

Definition 2.15. [Faithful Representation] Let R be a representation of G over
K. We will say that R is a faithful if KerR = 1.

Remark 2.16. Let R be a representation of G over K with degree n and represen-
tation space V , then KerR EG and using the 1st Isomorphism Theorem, it holds
that:

G/KerR ≤̃ GL(V ) ∼= GL(n,K)

Example 2.17. The regular representation of G is a faithful representation.

R : G −→ GL(KG)
g 7−→ Rg : KG −→ KG∑

x∈G axx 7−→
∑
x∈G ax(xg)

Definition 2.18. [Irreducible, Semisimple] Let R be a representation of G over
K with associated module V . Then:

a) We will say that R is irreducible if V is an irreducible KG-module.
Otherwise, we will say that R is reducible.

b) R is said to be completely reducible or semisimple if so is V as KG-
module.

There exist, up to equivalency, a finite number of irreducible representations.
This fact motivates the study of Characters.

Example 2.19. Let us consider the following examples:

a) If G 6= 1 then the regular representation of G is not irreducible, since the
associated module (the regular KG-module) has always a KG-submodule
of dimension 1: the one generated by

∑
g∈G g. Since |G| > 1, we get:

0 6= 〈
∑
g∈G

g〉K � KG

This submodule is isomorphic to the trivial module K.
b) Consider the group G ∼= Σ3 and the representation defined in Example

2.4 c). For the case K = C the representation is irreducible. Let us prove
this statement:

Proof. Let V be the KG-module of dimension 2 associated to the
representation D. It will be enough to check that V is irreducible, which
is equivalent to check that V has no submodule of dimension 1. Notice
that each submodule will also be a vector subspace, and any 1-dimensional
submodule of V will have the form Cv for some v ∈ V . First, notice that
Cv1 and Cv2 are not submodules since they are not fixed by x. Now,
assume that C(v1 + λv2) is a submodule of V with λ ∈ C. Then applying
x and y respectively we obtain:
• (v1 + λv2)x = v1x+ λv2x = v2 + λv1 ∈ C(v1 + λv2)

We can deduce that there exists some α ∈ C such that

v2 + λv1 = α(v1 + λv2)

Frome this equation we deduce that λ = ±1. But in both cases the
submodule is not closed under the action of y:
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2. Representations 15

+1) (v1 + v2)y = v1y + v2y = ωv1 + ω2v2
Which necessarily does not belong to C(v1 + v2) since ω 6= ω2.
−1) Analogous.

Thus, C(v1 + λv2) is not a submodule of V . We have already checked all
possibilities since {v1, v2} forms a basis of V . Then V has no submodule
of dimension 1 and V is irreducible. �

Theorem 2.20. Let K be a field having characteristic p > 0 and let M be an
irreducible KG-module. It holds:

a) If G is a p-group, then M = KG is the trivial module.
b) More generally, it holds Op(G) ≤ Ker(G over M).

Proof. FALTA! �
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CHAPTER 3

Jacobson’s Radical

Definition 3.1. [Jacobson’s Radical, Annihilator] Let K be a field and let A
be a K-algebra. We define the Jacobson’s radical as the set:

J(A) = {a ∈ A : V a = {0} for each irreducible A-module V }

Let V be an A-module, we define its annihilator in A as the set:

annA(V ) = {a ∈ A : V a = {0}}

It follows from the definitions that:

J(A) =
⋂

V irreducible
A-module

annA(V )

Thus, by the considerations of the previous chapter (the correspondance be-
tween A-modules and the representations of A), it follows that J(A) is the inter-
section of all the kernels of the irreducible representations of A.

Remark 3.2. J(A) is an ideal of A.

Proof. It holds that (J(A),+) ≤ (A,+). Given x, y ∈ J(A) and any irre-
ducible A-module V , we get that V (x − y) = V x − V y = {0}. Now let x ∈ J(A),
a ∈ A and let V be an irreducible A-module, it holds:

V (xa) = {v(xa) : v ∈ V } = {0V a : v ∈ V } = {0}

V (ax) = {v(ax) : v ∈ V } = {wx : w ∈ V a} = (V a)x = {0}
In the last equation we have used that V a ⊆ V . Therefore we can conclude that
xa, ax ∈ J(A), thus J(A) is an ideal. �

Theorem 3.3. Let A be a K-algebra and let x ∈ A. The following statements are
equivalent:

a) The element x belongs to every maximal right-ideal of A
b) For each a ∈ A, the element 1− xa is invertible.
c) x ∈ J(A).

Proof. We will check all the implications:

a)� b) Let a be an arbitrary element of A. It is straightforward to see that
(1 − xa)A is a right-ideal of A. If (1 − xa)A = A, since 1 ∈ A we can
easily conclude that there exists an element b ∈ A such that (1−xa)b = 1,
i.e., (1 − xa) is invertible. Assume now that (1 − xa)A  A, then there
exists a maximal right-ideal U of A containing (1 − xa)A. In particular,
(1 − xa) ∈ U . By assumption x ∈ U and thus xa also belongs to U ,

17
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therefore (1 − xa) + xa = 1 ∈ U which contradicts the fact that U is a
maximal ideal.

b)� c) For each a ∈ A, the element (1 − xa) is invertible, let us see that this
implies x ∈ J(A). Let V be an irreducible A-module and assume that
V x 6= 0, therefore there exists some v ∈ V for which vx 6= 0 hold. Hence
(vx)A 6= 0. It also holds that 0 6= (vx)A ≤A V , since V is irreducible we
can say that V = (vx)A. Since v ∈ V , there exists some a ∈ A such that
vxa = v, i.e., v(1 − xa) = 0, since (1 − xa) is invertible, it follows that
v = 0 and we arrive to a contradiction.

c)� a) Let x ∈ J(A) and consider any maximal right-ideal W of A. Notice that
A|W is an irreducible A-module (Given a+W ∈ A|W and b ∈ A, we define
the law (a + W ) ∗ b = (a + b) + W ). Hence, (A|W )x = 0, which means
that for each a ∈ A

(a+W )x = ax+W = 0 +W

Thus, ax ∈ W for each a ∈ A, in particular for a = 1 we conclude that
x ∈W .

�

Corollary 3.4. J(A) is the intersection of all the maximal right-ideals of A.

Remark 3.5. It can be analogously proved that J(A) is the intersection of all the
maximal left-ideals of A. Latest Theorem is also valid by changing right by left and
1− xa by 1− ax.

Corollary 3.6. It holds:

J (A/J(A)) = 0

Proof. Just notice that:

J (A/J(A)) =
⋂

W , maximal
right-ideal
of A/J(A)

W =
⋂

M , maximal
right-ideal

of A,
J(A) ⊆M

M/J(A) = J(A)/J(A) = {0J(A)}

�

Definition 3.7. [Nilideal, Nilpotent] Let N be an ideal of A. It is said to be
nilideal if for each x ∈ N , there exists nx ∈ N such that xnx = 0. We will say that
N is nilpotent if there exists some n ∈ N with Nn = 0, which is equivalent to say
that for all x1, · · ·xn ∈ N , it holds:

x1 · · ·xn = 0

Corollary 3.8. Every nilpotent ideal is nilideal.

Remark 3.9. We introduce here some notation. Let N be a subset of a given A-
module M and let B ⊆ A. NB will denote the additive subgroup of M generated
by {nb : n ∈ N, b ∈ B}.

Proposition 3.10. Let N be a right-nilideal [left] of A, then N ⊆ J(A).
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3. Jacobson’s Radical 19

Proof. Let x ∈ N and let a ∈ A, it suffices to prove that 1− xa is invertible.
Since N is right-ideal, we get that xa ∈ N , since it is nilideal, we can find some
k ∈ N such that (xa)k = 0. It follows that 1− (xa)k = 1, i.e.,

(1− xa)(1 + xa+ · · ·+ (xa)k−1) = 1

Which means 1− xa is invertible. �

Remark 3.11. The Jacobson’s radical can be defined for arbitrary rings. Moreover,
the preceding results can be applied to unit rings. Nevertheless, the following result
is only valid for those rings in which the minimum condition for right-ideal [left]
holds (here we are going to use the fact that A has finite dimension).

Theorem 3.12. Let A be a K-algebra, then J(A) is nilpotent, thus every nilideal
of A is nilpotent, moreover J(A) is the unique maximal nilpotent ideal of A.

Proof. Let us consider a decomposition serie of A as A-module:

A = A0 ≥ A1 ≥ · · ·Ar = 0

that is, with the property Ai/Ai+1 is an irreducible A-module for 0 ≤ i ≤ r − 1.
Therefore for each x ∈ J(A) we get (Ai/Ai+1)x = 0 which is equivalent to say that
∀x ∈ J(A), Aix ∈ Ai+1, therefore AiJ(A) ≤ Ai+1. In particular:

AJ(A)r = A0J(A)r ≤ A1J(A)r−1 ≤ · · · ≤ Ar−1J(A) ≤ Ar = 0

Notice that AJ(A)r = J(A)r = 0, hence J(A) is nilpotent. Notice that if
N is a nilpotent ideal, then N is nilideal and hence, by the previous Proposition,
N ⊆ J(A). �

Given an A-module V we are going to determine two associated irreducible
A-modules; an A-submodule and a quotient one. This very useful construction is
closely related to the Jacobson’s ideal and it will be used in many future results.

Lemma 3.13. Let V be an A-module with submodules W1, · · ·Wt with the property
that for each i = 1, · · · t, V/Wi is semisimple. Then V/∩Wi is semisimple as well.

Proof. First of all, let us remember some useful properties on semisimple
modules:

U is semisimple ⇔ U =
⊕k

i=1Wi , for Wi simple, i = 1, · · · t
⇔ U =

∑
i∈IWi , for Wi simple, i ∈ I

⇔ ∀W ≤A U , ∃Z ≤A U with U = W ⊕ Z.

It also holds that if U is semisimple and W ≤A U , then U/W is also semisimple.
We will prove it by induction on t. The statement is trivial for t = 1. Assume

it holds for a number of of submodules strictly less than t. Let us check it holds for
exactly t submodules. Let {W1, · · ·Wt} be a family of t submodules of V with the

property that for each i = 1, · · · t, V/Wi is semisimple. Let us consider W̃1 = W1

and W̃2 = ∩ti=2Wi. By induction, V/W̃j is semisimple for j = 1, 2.

Let us define now W0 = W̃1 ∩ W̃2 and let Uj = W̃j/W0 for j = 1, 2. We want
to prove that V/W0 = V/∩ti=1Wi is semisimple. We define U = U1⊕U2 (it is well
defined because U1 ∩ U2 = 0). It holds:

U1
∼= U/U2 U2

∼= U/U1 ?
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Notice that for j = 1, 2, we get:

U/Uj = (U1 ⊕ U2)/Uj ∼=
(W̃1 + W̃2)/W0

W̃j/W0

≤ V/W̃j

Since V/Wj is semisimple, we conclude that U/UJ is also semisimple, for j = 1, 2.
It follows (?) that Uj for j = 1, 2 and finally we conclude that U = U1 ⊕ U2 is
semisimple.

We will end the proof by checking that U = V/W0. Notice that:

V/W0

U2
=

V/W0

W̃2/W0

∼= V/W̃2

which is semisimple. Hence, there exists some Z/U2 ≤A V/W0

U2
such that:

V/W0

U2
=

U

U2
⊕ Z

U2

This implies that U + Z = V/W0 and (U/U2) ∩ (Z/U2) = U2/U2 = 0 which means
that U ∩ Z = U2. Let us check that V/W0 = U1 + Z. In fact, we have:

U = U1 ⊕ U2

V/W0 = U + Z
U ∩ Z = U2

=

U = U1 + U2

U1 ∩ U2 = 0
V/W0 = U + Z
U ∩ Z = U2

Therefore, U1 ∩ Z = (U1 ∩ U) ∩ Z = U1 ∩ (U ∩ Z) = U1 ∩ U2 = 0.
Now, let vinV/W0 = U +Z, there exists some u ∈ U and z ∈ Z with v = u+z.

Since U = U1⊕U2 we can find some elements uj ∈ Uj for j = 1, 2 with u = u1 +u2.
Hence, v = (u1 + u2) + z = u1 + (u2 + z) with u1 ∈ U1 and u2 + z ∈ Z, this means
that V/W0 = U1 ⊕ Z. Notice that:

Z ∼=
V/W0

U1
=

V/W0

W̃1/W0

∼= V/W̃1

This leads to Z being semisimple and finally V/W0 is also semisimple. �

Definition 3.14. [Socle, Radical, Head] Let V be an A-module. We define the
Socle of V , denoted by Soc(V ), to the sum of every irreducible submodule of V .
The Radical of V , denoted by Rad(V ), is defined to be the intersection of every
maximal submodule of V . And finally the Head of V , denoted by H(V ) is the
quotient V/Rad(V ).

Remark 3.15. The dimension of V is finite, therefore Rad(V ) is the intersection
of a finite family of maximal submodules of V . In fact, consider the family of all
the finite intersections of maximal submodules of V :

F = {
t⋂
i=1

Mi : Mi is a maximal submodule of V, i = 1, · · · t}

Since dimK(V ) ≤ ∞ it holds that F has some minimal element U =
⋂t
i=1Mi.

Which means that U is included in every finite intersection of maximal ideals. Let
us see that U = Rad(V ). It is straightforward to see that Rad(V ) ⊆ U . Assume
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that Rad(V ) 6= U . Assume also that for each maximal submodule M ≤A V the
condition U ∩M = U , then U ⊆M , i.e.,

U ⊆
⋂

M ≤A V,
maximal

M = Rad(V )

which contradicts the assumption Rad(V ) 6= U , therefore we can find some maximal
submodule M ≤A V with U∩M < U . It means that U∩M is minimal, contradicing
the election of U , and we get a contradiction. Finally, U = Rad(V ).

Remark 3.16. For the case V = A, we get J(A) = Rad(A), because the maximal
submodules of the regular A-module are precisely the maximal right-ideals of the
correspondent algebra.

Lemma 3.17. If V is a completely reducible A-module then Rad(V ) = 0.

Proof. Since V is completely reducible, we can write it as V =
⊕k

i=1Wi.
Notice that each maximal submodule must have the form W i for i = 1, · · · k, where:

W i = W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wn

Therefore Rad(V ) ⊆
⋂t
i=1W

i = 0. �

Proposition 3.18. Let V be an A-module. It holds:

i) Soc(V ) is the greatest semisimple submodule of V .
ii) H(V ) is the greates semisimple quotient of V , i.e., Rad(V ) is the small-

est A-submodule of V that produces a semisimple module by taking its
quotient.

Proof. We will check the two statements:

i) By definition, Soc(V ) is the sum of every irreducible submodule of V .
In particular, it is semisimple and also contains all the others semisimple
modules.

ii) By the previous Remark, Rad(V ) is the intersection of a finite family
{M1, · · ·Mt} of maximal right-ideals of V .Notice that for each i = 1, · · · t,
V/Mi is a irreducible A-module, in particular these quotients are com-
pletely reducible, then using Lemma 3.13, V/Rad(V ) is semisimple. Let
us finally check that H(V ) is the greatest semisimple quotient of V . Let
U ≤A V be such that V/U is semisimple, therefore we can write it as:

V/U =

n⊕
i=1

Vi/U

with Vi/U irreducible for i = 1, · · · , n. Let us define for each i =
1, · · · t the module V i as:

V i = V1 + · · ·+ Vi−1 + Vi+1 + · · ·+ Vn

It is straightforward to see that V i is a maximal submodule of V because
V/V i ∼= Vi. Moreover, it holds:

U ⊆
n⋂
i=1

V i ⊆ V 1 ∩

(
n⊕
i=2

V i

)
= U
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Therefore,
⋂n
i=1 V

i = U . Since each V i was maximal for i = 1, · · · , n, we
conclude that Rad(V ) ⊆ U .

Remark 3.19. Last statement is equivalent to check that Rad(V ) is the
smallest A-submodule of V that produces a semisimple module by taking
its quotient. Let N be a module of V with the property that V/N is
completely reducible, then by Lemma 3.17, Rad(V/N) = 0, hence:

Rad(V ) =
⋂

M ≤A V,
maximal

M ⊆
⋂

M ≤A V,
maximal
N ⊆M

M) = N

Therefore, Rad(V ) ⊆ N .

�

Corollary 3.20. A/J(A) is the greatest completely reducible quotient of A. That
is, J(A) is the smallest ideal of A that produces a completely reducible module by
taking its quotient.

Corollary 3.21. V is a completely reducible A-module if and only if Rad(V ) = 0.

Definition 3.22. [Semisimple Algebras] Let K be a field and let A be a K-
algebra. A is said to be semisimple if J(A) = 0.

The main interest in studying the Jacobson’s Radical for our purposes clearly
appear in the following result:

Corollary 3.23. Let A be a K-algebra. The following statements are equivalent:

1) A is semisimple.
2) The regular A-module is completely reducible.
3) Every A-module is completely reducible.

Proof. We will check the following implications:

1)� 2) Assume that A is semisimple, then J(A) = 0. Let us consider the regular
A-module V = A0, then Rad(V ) = J(A) = 0. Hence V is completely
reducible.

2)� 3) Let V be an A-module with basis {v1, · · · , vn}. Let v ∈ V be an arbi-
trary but fixed element of V and let us define the following A-module
homomorphism:

ϕv : A −→ V
a 7−→ va

Notice that 〈v〉 ≤ Imϕv ≤ V . In particular, taking as v = vi for
i = 1, · · ·n, we obtain that V =

∑n
i=1 Imϕvi = V . Notice that for

each i = 1, · · · , n, Imϕvi
∼= A/Kerϕvi which is completely reducible by

assumption, and hence so is V .
3)� 1) As a particular case, if we consider the regular A-module V = A0, we

obtain that 0 = Rad(V ) = J(A).

�

Proposition 3.24. It holds:

i) V is an irreducible A module ⇔ V is an irreducible A/J(A)-module.
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ii) V is a semisimple A module ⇔ V is a semisimple A/J(A)-module.

Proof. We firstly prove the statement i):

� Assume that V is an irreducible A-module, then it can be seen as a
A/J(A)-module with the law (a + J(A))v = va for each a ∈ A. It is
well defined because V J(A) = 0. Moreover, the A/J(A)-submodules of V
are also A-submodules of V . Thus, V is an irreducible A/J(A)-module.

� Conversely, if V is an A/J(A)-module, it can be seen as an A-module
with the law va = v(a+ J(A)) for each a ∈ A and v ∈ V . Notice that the
submodules coincide. Hence if V is irreducible as A/J(A)-module it is so
as A-module.

For the second statement, if we suppose that V is a semisimple A-module, then we
can write it as V =

⊕n
i=1 Vi with Vi ≤A V irreducible submodules for i = 1, · · · , n.

Notice that V is also an A/J(A)-module because ViJ(A) = 0 for each i = 1, · · · , n
and therefore V J(A) = 0. We reason the rest of the proof analogously. �

Proposition 3.25. Let V be an A-module, then:

i) V J(A) = Rad(V ).
ii) Soc(V ) = annV (J(A)) = {v ∈ V : vJ(A) = 0}

Proof. We will check the two statements:

i) We denote by A0 = A/J(A) and V0 = V/V J(A). THence, the law (v +
V J(A))(a + J(A)) = va + V J(A) is well defined and therefore V0 can
be seen as an A0-module in such a way that the A0-submodules and the
A-submodules of V coincide. Since A0 is semisimple, we get that V0 is
completely reducible as A0-module and hence as A-module. Therefore,
Rad(V ) ⊆ V J(A). Moreover, since H(V ) = V/Rad(V ) is completely
reducible, we obtain:

(V/Rad(V ))J(A) = 0 ⇒ V J(A)/Rad(V ) = 0 ⇒ V J(A) = Rad(V )

ii) It is straightforawrd to see the inclusion Soc(V ) ⊆ annV (J(A)). On the
other hand, the set {v ∈ V : vJ(A) = 0} is an A0-submodule of V .
Since A0 is semisimple, then V is completely reducible as A0-submodule
and also as A-module, this leads to V ⊆ Soc(V ) and finally, Soc(V ) =
annV (J(A)).

�

Theorem 3.26. A/J(A) is the greatest completely reducible quotient A-module of
A. In particular every irreducible A-module is isomorphic to a composition factor
of A/J(A).

Proof. Consider the regular A-module V = A0, we have that V/Rad(V ) is
the greatest completely reducible A-module of V . Notice that Rad(V ) = Rad(A) =
J(A), which concludes the first part of the proof.

Assume now that V is an irreducible A-module. Let v ∈ V arbitrary but fixed
nonzero element of V and consider the following A-module homomorphism:

ϕv : A −→ V
a 7−→ va
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It holds that ϕV (1) = v 6= 0, thus 0 < Imϕv ≤ V . Since V is irreducible, we
get that ImϕV = V . Using 1st Isomorphism Theorem, we get that A/Kerϕv ∼=
Imϕv = V . Since KerϕV is a maximal right-ideal of A, we get that J(A) ⊆ KerϕV .
This means that V is isomorphic to a composition factor of A/J(A). �

Corollary 3.27. Proposition 3.24 appears as a direct corollary of the last Theorem.

The following Lemma provides a sufficient condition on semisimplicity and it
will be used in the proof of Maschke’s Theorem.

Lemma 3.28. Let A be a K-algebra and let {a1, · · · , an} be a K-basis of A and
let R be a representation of A with representation space V . Let us denote by bij =
trR(aiaj) the trace of R(aiaj). If for each 1 ≤ i, j ≤ n, det(bij) 6= 0, then A is
semisimple.

Theorem 3.29. [Maschke] Let G be a group and let K be a field, it holds:

KG is semisimple ⇔ carK = 0 or
carK = p with p - |G|.

Proof. We will check the two implications:

� Let R be the regular representation of KG and let n = |KG|. Take as basis
the elements of G, {g1, · · · , gn}. If g 6= 1, then it holds that trR(g) = 0,
because R(g) is a nontrivial permutation matrix. For the unit case, we
get that trR(1) = n. It means that for each pair 1 ≤ i, j ≤ n:

trR(gigj) =

{
0 if gigj 6= 1
n if gigj = 1

}
⇒ det(trR(gigj)) = det(bij) = ±nn

Since carK = 0 or carK - n = |G| and G is notempty, then ±nn 6= 0.
Applying last Lemma, we conclude that KG is semisimple.

� Assum now that carK = p||G| and consider the nonzero element i =∑
g∈G g. Let h ∈ G, since G is a basis of KG, then ih = i = hi. Thus,

for each α ∈ KG we get that iα = αi, which implies that i ∈ Z(KG).
Moreover:

i2 =

∑
g∈G

g

2

=

∑
g∈G

g

(∑
h∈G

h

)
=

∑
g∈G
|G|g

 = |G|
∑
g∈G

g = 0

Therefore i2 = 0 and 0 6= i ∈ J(KG) which implies that KG is not
semisimple.

�
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CHAPTER 4

Completely Reducible Modules and Semisimple
Algebras

1. Decompositions

As we have already seen in the preceding Chapter, an algebra is semisimple
iff the associated regular A-module is completely reducible, which is equivalent to
affirm that every A-module is completely reducible. Our aim in this chapter is to
study in depth the properties of these structures.

Definition 4.1. [Homogeneous component, W -homogeneuos] Let A be a
K-algebra, let V be an A-module and let W be an irreducible A-module we define:

HW (V ) =
0 if there is no U ≤A V with U ∼= W∑

U∈U
U where U = {U : U ≤A V, U ∼= W}.

We will call this submodule the homogeneous component of V associated to
W . By definition, HW (V ) is completely reducible. If V = HW (V ) then we will say
that V is W -homogeneous.

Remark 4.2. Let V =
⊕n

i=1 Vi be a completely reducible A-module where Vi is an
irreducible component of V for i = 1, · · · , n. Notice that the irreducible components
are, at first sight, not uniquely determined by V , that is there exists the possibility
of finding some alternative decomposition into irreducible factors. Nevertheless, it
holds that the sum of all the Vi isomorphic to some given irreducible A-module
W need to be independent of the considered decomposition and hence it will be
uniquely determined by V , as it shows the following result:

Theorem 4.3. Let V =
⊕n

i=1 Vi be a completely reducible A-module where Vi
is an irreducible component of V for i = 1, · · · , n. Let W be an irreducible A-
module. Then HW (V ) =

⊕
Vi
∼=W Vi and thus, V =

⊕
W HW (V ) where W belongs

to a family of representatives of the classes of isomorphy of irreducible A-modules
(specifically, irreducible submodules of V ).

Proof. Let W be an irreducible A-module, we define T =
⊕

Vi
∼=W Vi. It is

straightforward to see that T ≤ HW (V ). For the other inclusion let U ≤A V with
U ∼= W and assume towards a contradiction that U � T . Hence, 0 ≤A U ∩T �A U
and using that U is irreducible we get that U ∩ T = 0. Thus:

(U + T )/T = (U ⊕ T )/T ∼=A U ∼=A W

It also holds that:

V/T =

n⊕
i=1

Vi⊕
Vi
∼=W

Vi
∼=
⊕
Vj 6∼=W

Vj
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Since (U+T )/T ≤A V/T and (U+T )/T ∼= W it happens thatW ≤̃
⊕

Vj 6∼=W Vj which

contradicts the Jordan-Hölder Theorem. Hence U ≤ T and finally, U = T . �

Proposition 4.4. Let M be an A-module and let M = M1⊕ · · · ⊕Mt be a decom-
position of M in its homogeneous components Mi for 1 ≤ i ≤ t. Let U ≤A M be
any submodule of M , then:

U = (U ∩M1)⊕ · · · ⊕ (U ∩Mt)

Moreover, the homogeneous components of U are precisely {U ∩Mi : 1 ≤ i ≤ t}.

Proof. Assume that for each i = 1, · · · , t, Mi is Ni-homogeneous, that is:

Mi =
∑

X ≤A Mi

X ∼= Ni

X

We define for each i = 1, · · · , t, Ui to be the Ni-homogeneous component of U ,
Ui = HNi

(U). Since U ≤A V it follows that Ui ⊆ Mi and trivially Ui ⊆ (U ∩Mi).
Moreover, U ∩Mi ⊆Mi, thus U ∩Mi is also a sum of irreducible A-submodules of
U isomorphic to Ni, therefore U ∩Mi ⊆ Ui. �

The following results show that every direct decomposition of a given K-algebra
A is determined by a decomposition of the unit element of A in a sum of ortogonal
idempotent elements in such a way that, associated to each primitive idempotent
element we find an indecomposable ideal. Moreover those ideals will coincide with
the irreducible ones when the algebra is semisimple. Therefore, these results are
very useful for the study of unit algebras.

Definition 4.5. [Idempotent, ortogonal, primitive, decomposable] Let A be
a K-algebra. An element 0 6= e ∈ A is idempotent if e2 = e holds. Two idempo-
tent elements e1, e2 ∈ A are ortogonal if e1e2 = e2e1 = 0. An element is said to be
primitive if it can not be written as the sum of two ortogonal idempotent elements.
An A-module M is decomposable if there exists two non-trivial submodules M1

and M2 with M = M1 ⊕M2, otherwise we will say that M indecomposable.

Lemma 4.6. Let e ∈ A be an idempotent element, the following statements are
equivalent:

i) eA is indecomposable.
ii) e is a primitive element.

Proof. Let us check the two implications.

� Assume that eA = A1 ⊕ A2 with Ai 6= 0 for i = 1, 2. Since e = e1 ∈ eA,
there exists some ei ∈ Ai for i = 1, 2 such that e = e1 + e2. From the fact
that ei ∈ Ai ⊆ eA, there exists also ai ∈ A such that ei = eai for i = 1, 2.
Therefore:

e1 = ea1 = (e1 + e2)a1 = e1a1 + e2a1

with e1a1 ∈ A1 and e2a1 ∈ A2. It follows that e1 − e1a1 = e2a1 ∈
A1 ∩A2 = 0 because the sum is direct, therefore 0 = e2a1 and e1 = e1a1.
Notice that:

e1 = ea1 = e2a1 = (e1 + e2)2a1 = (e21 + e1e2 + e2e1 + e22)a1 =

= e21a1 + e2(e1a1) + e1(e2a1) = e22 + a1 = e21a1 + e2e1
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4. Completely Reducible Modules and Semisimple Algebras 27

with e21a1 ∈ A1 and e2a1 ∈ A2. As before, it follows that e21a1 = e1 and
e2e1 = 0. We can reproduce the preceding argument to justify that also
e1e2 = 0. Moreover, since e was idempotent it implies also the idempo-
tency of e1 and e2 (because they are otogonal). Finally, we have written
e as the sum of two ortogonal idempotent elements which contradicts e
being primitive.

� Conversely, assume that e is not primitive, then we can express e as e =
e1 + e2 with e21 = e1, e22 = e2 and e1e2 = e2e1 = 0. Then it is straightfor-
ward to see that eA = e1A+e2A. Let z ∈ e1A1∩e2A, then z = e1a1 = e2a2
for some ai ∈ A, i = 1, 2. Notice that e1z = e21a1 = e1a1 = z. Then,
e1z = e1(e2a2) = (e1e2)a2 = 0 and we conclude that z = 0. Therefore
eA = e1A⊕ e2A, since ei 6= 0 we can conclude that eA is decomposable.

�

Theorem 4.7. Let A be a K-algebra. It holds:

a) Assume that A =
⊕n

i=1Ai with Ai a right-ideal of A for i = 1, · · · , n.
Let the unit of A be decomposed as 1 =

∑n
i=1 ei with ei ∈ Ai. Then, the

elements ei for i = 1, · · · , n are idempotent and ortogonal to each other
moreover Ai = eiA.

b) Conversely, if we can decompose the unit element 1 =
∑n
i=1 ei with ei

idempotent and ortogonal to each other, i = 1, · · · , n, then:

A =

n⊕
i=1

eiA =

n⊕
i=1

Aei

c) On the two previous items, the decomposition on ideals is associated with
the decomposition of the unit element in central idempotent ortogonal to
each other elements.

d) If e 6= 1 is an idempotent element of A, then {e, 1 − e} is a pair of
idempotent ortogonal elements for which A = Ae⊕A(1− e) holds.

Proof. Let us prove each statement:

a) Consider the decomposition 1 =
∑n
i=1 ei with ei ∈ Ai for i = 1, · · · , n.

Then,for j = 1, · · · , n, ej = ej1A = ej(
∑n
i=1 ei) =

∑n
i=1 ejei. Notice that

for all i = 1, · · · , n, ejei ∈ Ai. Since the sum is a direct one, we can
conclude that eiej = 0 for i 6= j and also that e2j = ej . Then, the elements
ei for i = 1, · · · , n are idempotent and ortogonal to each other. For the
second part of the statement, notice that for all i = 1, · · · , n, ei ∈ Ai and
Ai is a right-ideal of A, thus eiA ⊆ Ai. For the other inclusion, notice
that any x ∈ Ai can be decomposed as before:

x = 1Ax = (

n∑
j=1

ej)x =

n∑
j=1

ejx = eix

This ends the proof since eix = x ∈ eiA.
b) Assum now that we can decompose the unit element 1 =

∑n
i=1 ei with ei

idempotent and ortogonal to each other, i = 1, · · · , n, then let us check
that A =

⊕n
i=1Aei. Let x ∈ A, as before,x = 1Ax = (

∑n
i=1 ei)x =∑n

i=1 eix with eix ∈ eiA for each i = 1, · · · , n. Thus, A =
∑n
i=1Aei. Let
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us check that this in fact a direct sum. Assume that
∑n
i=1 eiai = 0 and

fix some i0 ∈ {1, · · ·n}, then:

0 = ei00 = ei0(

n∑
i=1

eiai) =

n∑
i=1

(ei0ei)ai = e2i0ai0 = ei0ai

Thus ai = 0 for each i = 1, · · · , n. Therefore A =
⊕n

i=1Aei. There is an
analogous proof to check that A =

⊕n
i=1 eiA.

c) Assume that A =
⊕n

i=1Ai with Ai ideal of A for i = 1, · · · , n. We have
already seen in the item a) that we can find {e1, · · · , en}, a decomposition
of 1A, in idempotent and ortogonal elements, moreover Ai = eiA. We
must see that also each ei for i = 1, · · · , n is central. Let x ∈ A, it holds:

x = 1Ax = (

n∑
j=1

ej)x =

n∑
j=1

ejx

x = x1A = x(

n∑
j=1

ej) =

n∑
j=1

xej

Therefore, since the sum is direct, xei = eix for each i = 1, · · · , n, which
means that ei is central.

d) Let e ∈ A be an idempotent element with e 6= 1A. Let us check that
(1− e) is idempotent:

(1− e)(1− e) = 1− e− e+ e2 = 1− e− e+ e = 1− e

Moreover, it also holds that e(1−e) = e−e2 = e−e = 0 and 1 = e+(1−e).
Therefore, since we have a decomposition of 1 in idempotent and ortogonal
elements, applying b) we get that A = Ae⊕A(1− e).

�

Proposition 4.8. Let A be a K-algebra. Then:

a) An element idempotent of A is primitive if and only if eA is an idecom-
posable A-module.

b) A is semisimple if and only if there exists a decomposition of 1A in idem-
potent primitive ortogonal elements {e1, · · · , en} with A =

⊕n
i=1 eiA and

eiA an irreducible A-module.

Proof. Notice that item a) has been proved in Lemma 4.6. For b):

� Let 1A be decomposed as 1A = e1 · · · en where ei, i = 1, · · · , n is a prim-
itive ortogonal element. Then applying last Theorem, A =

⊕n
i=1 eiA

and using Lemma 4.6, all the eiA are idecomposable since ei is primitive.
Since they are also completely reducible, we get that they are irreducible.
Therefore A is semisimple.

� Conversely, assuming that A is semisimple, we get that A =
⊕n

i=1Ai
with Ai an irreducible A-module. Applying last Theorem item a), there
must exist a family of idempotent ortogonal elements {e1, · · · , en} with
Ai = eiA. Notice that, since eiA is irreducible and hence idecomposable,
must hold by Lemma 4.6 that each ei for i = 1, · · · , n must be a primitive
element.

�
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4. Completely Reducible Modules and Semisimple Algebras 29

Theorem 4.9. [Pierce’s Decomposition] Let A be a semisimple K-algebra and
let R be a right-ideal of A. Then there exists an idempotent element e ∈ A such
that R = eA and A admits the direct decomposition A = eA⊕ (1− e)A.

Proof. Since A is semisimple, the regular A-module is completely reducible
and using a previous characterisation, we know that R has a complement, i.e. there
exists some right-ideal S of A, such that A = R ⊕ S. Notice that in this context,
1A = e + e′ with e ∈ R and e′ ∈ S. By construction e′ = 1 − e, and {e, 1 − e}
is a decomposition of 1A in ortogonal idempotent elements. Therefore, applying
Theorem 4.7 item b), we get that A = eA ⊕ (1 − e)A. Notice that since R is a
right-ideal, eA = R. �

Definition 4.10. [Simple] A K-algebra A is called simple if there are no more
ideals on A than 0 and A. Is straightforward to see that each simple algebra is also
a semisimple algebra; since 1A 6∈ J(A) and J(A) is an ideal of A, must hold that
J(A) = 0.

Theorem 4.11. Let A be a semisimple K-algebra and let A1, · · · , An the homoge-
neous components different from zero of the regular A-module, then:

a) A =
⊕n

i=1Ai with Ai an ideal of A, i = 1, · · · , n, with the property that
for each j = 1, · · · , n, AiAj = 0 for i 6= j.

b) Every ideal of A is the sum of some Ai’s. In particular, the Ai are the
minimal ideals of A, for i = 1, · · · , n.

c) If we can decompose the unit 1A = ei + · · · + en with ei ∈ Ai, then all
the ei’s for i = 1, · · · , n are central idempotent ortogonal elements and
moreover, ei acts as a unit in Ai for all i = 1, · · · , n. It also holds that
Ai = eiA = Aei.

d) Every Ai for i = 1, · · · , n is a simple K-algebra.

Proof. Let us check all the statements:

a) Let us consider Ai = HWi
(A), where Wi is an irreducible A-module.

Since A is semisimple and for i = 1, · · · , n, Ai 6= 0, there exists a simple
Wi ≤A Ai (minimal right-ideal of A) with Wi

∼= Wi. Therefore we can
work with Wi as a minimal right-ideal of A. Let us consider now an
arbitrary element a ∈ A and let us consider the A-homomorphism:

ϕa : Wi −→ aWi

r 7−→ ar

It is straightforward to see that ϕ is an epimorphism. Since Kerϕa is an
ideal of Wi and Wi is minimal, it follows that Kerϕa = 0 or Kerϕa = Wi.
In both cases, we can conclude that aWi ⊆ Ai. Therefore AWi ≤ Ai. Let
W be a minimal right-ideal of A with W ∼= Wi with isomorphism α. By
a previous Theorem, there exists some idempotent element ei ∈ A such
that Wi = eiA and thus, eiWi = ei(eiA) = e2iA = eiA = Wi, and hence,
W = (Wi)α = (eiWi)α = (eiα)Wi. It follows that Ai ≤ AWi since they
are the homogeneous components of A (isomorphic to a sum of Wi’s).
Therefore we get the other inclusion: Ai = AWi for i = 1, · · · , n. Now,
since A =

⊕n
i=1Ai is a direct sum of ideals, AiAj ⊆ Ai ∩Aj = 0 if i 6= j.

b) Let B be an ideal of A. Since A is semisimple, we get that B is completely
reducible as A-module, therefore we can write it as B = B1 ⊕ · · · ⊕ Bn
where Bi is a minimal right-ideal of A, i = 1, · · · , n. Assume now that
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Bi ∼= Wi for all i = 1, · · · , n, then applying last item we get that Aj =
ABi ⊆ AB ⊆ B. Thus, B can be written as the sum of some Ai’s.

c) It follows from Theorem 4.7. Moreover, for each i = 1, · · · , n, let ai ∈ Ai.
It holds that ai = ai1 = ai(e1 + · · ·+ en) = aiei. Applying the unit in the
left side, we also get that ai = eiai, and thus ei acts as a unit for all the
elements of Ai.

d) Assume that B is an ideal of Ai and let j 6= i, then BAj = 0, because
BAj ⊆ AiAj = 0. It follows that BA = B(

∑n
j=1Aj) = BAi = B.

Applying A in the other side, we also conclude that AB ⊆ B. Thus B
is an ideal of A, but notice that, by b), the Ai’s are the unique minimal
ideals of A. Therefore B = 0 or B = Ai. Hence Ai is a simple K-algebra.

�

Definition 4.12. [Faithful] Let A be a K-algebra and let V be an A-module. We
say that V is faithful if for each a ∈ A, the condition V a = 0 implies a = 0.

Remark 4.13. Let R be a faithful representation of a given group G with repre-
sentation space V . Then V is not necessarily a faithful KG-module.

Theorem 4.14. Let A be a semisimple K-algebra. As we have already seen, we
can write A =

⊕n
i=1Ai with Ai = HWi

(Ai), where Wi is a minimal right-ideal of
A, Wi ≤ Ai and Wi 6∼= Wj if j 6= i, for each i = 1, · · · , n. Then:

a) There exists exactly n irreducible A-modules up to isomorphy.
b) If V is an irreducible A-module, then there exists some i ∈ {1, · · · , n} such

that V ∼= Wi such that Ai = HV (A). Moreover, V is a faithful Ai-module
and V Aj = 0 if j 6= i.

c) If V 6= 0 is an A-module, then V = V A1 ⊕ · · · ⊕ V An = V e1 ⊕ · · · ⊕ V en
and V Ai = HWi

(V ).

Proof. We will prove all the items together. Let V be an irreducible A-
module, then, as we already know, V is isomorphic to a composition factor of
A, which are, up to isomorphy, {W1, · · · ,Wn}. Notice that we have used that A
is semisimple. Suppose now that V ∼= Wi, therefore, Ai = HWi(A) = HV (A).
Moreover, if j 6= i, V Aj ∼= WiAj = 0. Let us see that V is faithful; Let us consider
J = {a ∈ Ai : Wia = 0}. It is straightforward to see that J is an ideal of Ai
and Ai is simple (last Theorem) therefore, J = Ai or J = 0. Notice that J 6= Ai
because ei 6∈ J , thus J = 0 and we can conclude that Wi is a faithful Ai-module.
This proves a) and b).

Let V be an arbitrary A-module. It follows from A being semisimple that
V is completely reducible. Notice that all the irreducible A-submodules of V are
isomorphic to some Wi, therefore we can write V as V =

⊕n
i=1HWi

(V ). Moreover:

V Ai =

n⊕
j=1

HWi
(V )Ai = HWi

(V )Ai = HWi
(V ) = HWi

(V )ei = V ei

This means that we can write V as V = V A1 ⊕ · · · ⊕ V An = V e1 ⊕ · · · ⊕ V en. �

Corollary 4.15. Let A be a K-algebra. The following statements are equivalent:

1) A is simple.
2) The regular A-module is homogeneous.
3) A has a faithful irreducible A-module.
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Proof. Let us check all the statements:

1)�2) If A is simple, then A = HW (A) for some irreducible A-module, W .
2)�3) Apply the last Theorem for the case n = 1.
3)�1) Let V be a faithful irreducible A-submodule. Since it is irreducible, then

V J(A) = 0 and since it is faithful, J(A) = 0, therefore A is semisimple
and we can write it as A = A1 ⊕ · · · ⊕ An. Notice that there must exist
some i = 1, · · · , n such that V = Ai, therefore by ortogonality, V Aj = 0
for all j 6= i, since V was faithful, Aj = 0 for all j 6= i and we can conclude
that A = Ai, i.e., A is simple.

�

2. Wedderburn’s Theorem

In order to prove Wedderburn’s Theorem we firstly need to present the Jacob-
son’s density Lemma:

Lemma 4.16. [Jacobson] Let A be a K-algebra and let V be an irreducible A-
module. Consider L = EndA(V ). Notice that L can be seen as a division algebra for
the composition of functions and moreover, V can be seen as an L-module with the
law v ∗ f = (v)f .1. Let {v1, · · · , vn} be a family of linearly L-independent elements
of V and let {w1, · · · , wn} be an arbitrary family of elements of V . Then there exist
some a ∈ A such that via = wi for each i = 1, · · · , n.

Proof. It suffices to show that we can find elements ai ∈ A for i = 1, · · · , n
such that vjai = wj if j = i and vjai = 0 if i 6= j. In this situation the desired
element a, will be precisely a =

∑n
i=1 ai. Let us proceed by induction on n.

For the case n = 1, we got that v1 6= 0 because it is linearly L-independent.
Hence, 0 6= v1A ≤A V , and V is irreducible, thus v1A = V and given any w1 ∈ V
we can find some a ∈ A with w1 = v1a.

Assume the statement hold for any family of m ≤ n linearly L-independent
elements. Hence, applying I.H. for each i ∈ {1, · · · , n} there exists some a ∈ A such
that:

〈(v1a, · · · , v̂ia, · · · , vna)〉 =

n−1︷ ︸︸ ︷
V ⊕ · · · ⊕ V

Now, let us check that the following statement is false:

∀a ∈ A (v1a = · · · = vi−1a = vi+1a = · · · = vna = 0 ⇒ via = 0) ?

If we assume towards a contradiction that this is true, we can then define the
following function:

τ :

n−1︷ ︸︸ ︷
V ⊕ · · · ⊕ V −→ V

(v1a, · · · , v̂ia, · · · , vna) 7−→ via

Since we have assumed that the statement ? holds τ is well defined, in fact if

(u1a, · · · , ûia, · · · , una) = (v1a, · · · , v̂ia, · · · , vna)

then (uj − vj)a = 0 for all j 6= i and therefore (ui − vi)a = 0, i.e., uia = via.
Moreover, τ is an A-homomorphism.

1Left to the reader
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Fix now any 1 ≤ k ≤ n−1 and let εk the natural injection of V into

n−1︷ ︸︸ ︷
V ⊕ · · · ⊕ V

given by:

εk : V −→
n−1︷ ︸︸ ︷

V ⊕ · · · ⊕ V
m 7−→ (0, · · · ,m, · · · , 0)

where m is in the k-th position. It holds that εk is an A-homomorphism for each
1 ≤ k ≤ n − 1. Therefore, for each 1 ≤ k ≤ n − 1 let us define τk = εkτ ,
τk ∈ Hom(V, V ) and for each i = 1, · · · , n it holds:

vi = (v1, · · · , v̂i, · · · , vn)τ =

n∑
k=1, k 6=i

(0, · · · , v̂i, · · · , vk, · · · , 0)τ =

n∑
k=1, k 6=i

vk(εkτ)

Which is a contradiction because {v1, · · · , vn} was a family of linearly L-independent
elements. Therefore the statement ? is false and for each i = 1, · · · , n we can find
some bi ∈ A such that vjbi = 0 if j 6= i and vibi 6= 0.

Applying the case of n = 1 for the specific element vibi 6= 0 there exists some
b′i ∈ A such that vibib

′
i = wi. Now, let us define ai = bib

′
i. It holds that viai = wi

and vjai = vj(bib
′
i) = (vjbi)b

′
i = 0 if j 6= i. This concludes the proof. �

Remark 4.17. As a special case, notice that this result is a generalization of a
Theorem coming from Linear Algebra about the existence of linear functions that
transforms a given linear system of n-vectors into another set of n-vectors.

In fact, let us consider V , a K-vector space and let {v1, · · · , vn} be a family
of n K-linear independent vectors and let {w1, · · · , wn} be an arbitrary family of
vectors. Then there exists a ∈ EndK(V ) such that via = wi for each i = 1, · · · , n.
It follows from the previous Lemma by taking A = HomK(V, V ), hence V is an
irreducible A-module and L = HomA(V, V ).

Notice also that Jacobson’s Lemma is also valid for any ring A.

Lemma 4.18. Let A be any ring and let V =
⊕n

i=1 Vi and W =
⊕m

j=1Wj be
two A-modules. For i = 1, · · · , n, let εi be the natural injection on Vi and for
j = 1, · · · ,m, let πj be the natural projection on Wj, that is:

εi : Vi −→ V
v 7−→ v

πj : W −→ Wj∑m
k=1 vk 7−→ vj

It holds:

1) Assume that for each pair (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n, ϕij ∈
HomA(Vj ,Wi), then we can define ϕ ∈ HomA(V,W ) given by:

ϕ(v1 + · · ·+ vn) =

 ϕ11 · · · ϕin
...

...
ϕm1 · · · ϕmn


 v1

...
vn


2) Conversely, if ϕ ∈ HomA(V, V ) we define for each pair (i, j) with 1 ≤ i ≤

m and 1 ≤ j ≤ n. We define ϕij = πiϕεj ∈ HomA(Wj , Vi). It also holds:

ϕ(v1 + · · ·+ vn) =

 ϕ11 · · · ϕin
...

...
ϕm1 · · · ϕmn


 v1

...
vn


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3) Therefore as additive groups, we have the following isomorphism:

HomA(V,W ) ∼=

 HomA(V1,W1) · · · HomA(Vn,W1)
...

...
HomA(V1,Wm) · · · HomA(Vn,Wm)


4) In particular, if V (n) =

n)︷ ︸︸ ︷
V ⊕ · · · ⊕ V , then we have the following ring

isomorphism:

EndA(V (n)) ∼= Matn(EndA(V ))

Proof. The proof is left to the reader. We give a hint for item b). Notice
that:

(ϕij)ij]

 v1
...
vn

 =
∑
i,j

ϕij(vj) =
∑
i,j

πiϕεj(vj) = ϕ(v1 + · · ·+ vn)

This happens because
∑
i πi = idW . �

Remark 4.19. Let D be a division ring, then Dop denotes the opposite division
ring of D, that is Dop has the same underlying set and also the same addition,
but we change the product that is defined as x · y := yx. In this case, if V is a
n-dimensional D-vector spacem then:

EndD(V ) ∼= Matn(Dop)

Proof. From V being a D-vector space, we get that V ∼=

n)︷ ︸︸ ︷
D ⊕ · · · ⊕D as D-

module. Using the previous Lemma, EndD(V ) ∼= Matn(EndD(D)). Therefore it
is enough to show that EndD(D) ∼= Dop. Let ϕ ∈ EndD(D) and let x ∈ D it holds
ϕ(x) = xϕ(1). Therefore we define:

Φ : EndD(D) −→ Dop

ϕ 7−→ ϕ(1)

It is a well-defined, injective and surjective function. We need to see that it is also
an homomorphism. Let
varphi, ψ ∈ EndD(D) and let x ∈ D, it holds:

(ϕψ)(x) = ϕ(ψ(X)) = ϕ(xψ(1)) = [xψ(1)]ϕ(1) = (x)(ϕ(1)ψ(1)) = (x)[Φ(ϕ)Φ(ψ)]

Finally we get that Φ(ϕψ) = Φ(ϕ)Φ(ψ) and we can conclude that EndD(V ) ∼=
Matn(Dop). �

Theorem 4.20. [Wedderburn] The following statements hold:

a) Let A be a simple K-algebra and let V be an irreducible A-module. Con-
sider D = EndA(V ) (which is a division algebra). Then A ∼= EndD(V ) ∼=
Matn(Dop) where n = dimD(V ). Moreover, if K is algebraically closed
(or more general, if EndA(V ) ∼= K) then A is isomorphic to a ring of
matrices over K.

b) Let D be a division K-algebra and let V be a D-module such that dimD(V ) =
n, then A := EndD(V ) ∼= Matn(Dop) is a simple algebra that has V as
irreducible and faithful module. Moreover D = EndA(V ).
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c) If D and E are two division algebras with Matn(D) ∼= Matn(E) then
m = n and D ∼= E.

Proof. We will prove each statement:

a) Using some previous results, it is straightforward to see that V is, up
to isomorphy, the unique irreducible A-module and notice that it is also
faithful. Let us define the following function:

α : A −→ EndD(V )
a 7−→ α(a) : V −→ V

v 7−→ va

α is well-defined. In fact, let a ∈ A, v ∈ V and k ∈ K, it holds:

α(a)[kv] = (kv)a = k(va) = kα(a)(v) ⇒ α(a) ∈ EndK(V )

moreover, for each d ∈ EndA(V ), it also holds:

(vd)α(a) = (vd)a = (va)d = (vα(a))d ⇒ α(a) ∈ EndD(V )

It is left to the reader to check the fact of being α a K-algebra homo-
morphism as well. Now let a ∈ A. Notice the following implications: if
α(a) = 0 then for each v ∈ V , va = 0, therefore V a = 0 and using that V
is faithful we conclude that a = 0, this means that α is a monomorphism.

Let {v1, · · · , vn} be a D-basis of V and let f ∈ EndD(V ). By Ja-
cobson’s Lemma, there exists some a ∈ A such that f(vi) = via for
i = 1, · · · , n, therefore f = α(a) and hence, α is an epimorphism. Finally,
we get:

A ∼= EndD(V ) ∼= Matn(Dop)

The rest of the item follows from Schur’s Lemma.
b) By construction, V is a D-module and hence it is also a faithful irreducible

A-module. Let d ∈ D, v ∈ V and a ∈ A, notice that (va)d = (vd)a.
Therefore, D can be embed in EndA(V ). By a previous Corollary, it
follows that A is a simple algebra. Now, let f ∈ EndA(V ) and consider
any 0 6= v ∈ V (V is a completely reducible D-module), we can write
V = vD⊕W for someD-moduleW . Let us consider the natural projection
π : V → vD, we get that π ∈ A, therefore: (v)f = (vπ)f = (vf)π ∈ V π =
V D, therefore there exsits some d ∈ D with vf = vd. Thus, if w ∈ V
there exists some a ∈ A such that w = va and therefore we get:

(w)f = (va)f = (v)fa = (vd)a = (va)d = wd

Last statement is valid for each w ∈ V , therefore f = d. As a consequence,
we conclude that EndA(V ) = D.

c) Let A be a K-algebra such that A ∼= Matn(D) ∼= Matn(E). Applying
item b), it holds that A is a simple algebra. Therefore, if V is the unique
isomorphy type of the irreducible and faithful A-module then EndA(V ) ∼=
Dop ∼= Eop and hence, D ∼= E. In particular we get that m = dimD(V ) =
dimE(V ) = n.

�

We can summarize the preceding Theorem for the case of semisimpleK-algebras:

Theorem 4.21. Let A be a semisimple K-algebra. It holds:
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a) A =
⊕k

i=1Ai where Ai ∼= Matni(D
op
i ) are rings of matrices over a divi-

sion algebra Di for i = 1, · · · , k. Moreover if i 6= j, then AiAj = 0.
b) A has, up to isomorphy, k irreducible A-modules that are not isomorphic

to each other, Vi for i = 1, · · · , k (i.e., k irreducible representations up
to equivalence). It also happens for i = 1, · · · , k that Vi is an irreducible
Ai-module,

⊕
j 6=iAi annihilates Vi and, moreover, ViAi = Vi. It also

occurs that EndAi
(Vi) = Di, therefore, if we denote ni = dimDi

(Vi), then
dimK(Vi) = nidimK(Di) and therefore:

dimK(A) =

k∑
i=1

n2i dimK(Di)

c) In particular, if K is algebraically closed it holds that Di
∼= K for i =

1, · · · , k and hence, dimK(Vi) = ni and finally, dimK(A) =
∑k
i=1 n

2
i .
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CHAPTER 5

Indecomposable Modules

Definition 5.1. [Indecomposable] A non-trivial A-module M is indecompos-
able if the condition M = M1 ⊕M2 implies that M1 = 0 or M2 = 0.

Definition 5.2. [Local] An algebra A is called local if the set of unit elements
I := {a ∈ A : a has no inverse} is an ideal of A. Notice that in this case, I is the
unique maximal right[left]-ideal of A.

Theorem 5.3. Let A be an algebra:

a) If A is local, then I = J(A). In particular, if a ∈ A, then it is a unit or
a nilpotent element.

b) A is a local algebra if and only if A/J(A) is a division algebra.

Proof. For the first statement we will use the remark made on Definition 5.2;
it follows that J(A) = I. Let a ∈ A be a non-unit element then a ∈ I = J(A).
Let us remember that J(A) is the greatest nilpotent ideal of A and therefore, a is
nilpotent. For the second statement, let us check the two implications:

� Assume that J(A) = I and let a+J(A) ∈ A/J(A) be a non-zero element of
the quotient, then a 6∈ J(A) therefore it must be a unit element, therefore
there exists some b ∈ A such that ab = ba = 1. Notice that b+ J(A) 6= 0
and it is the inverse of a+ J(A).

� Assume that A/J(A) is a division algebra. Let us see that I = {a ∈
A : a has no inverse} = J(A). Consider any a ∈ A without right-inverse
therefore aA ( A (because 1 ∈ A). There exists some maximal right-
ideal A0 of A with aA ⊆ A0 ( A. By construction of J(A), we get that
J(A) ⊆ A0. Notice also that:

(aA+ J(A))/J(A) ⊆ A0/J(A) ( A/J(A)

but A/J(A) is a division algebra that has no proper ideals, therefore
A0/J(A) = 0 and thus, A0 = J(A). It leads to (aA + J(A))/J(A) = 0
and hence, a ∈ J(A). It means, that every element of A that has no
right-inverse belongs to J(A).

Assume that b has a right-inverse, i.e., there exists some c ∈ A such
that bc = 1. If c has no right-inverse then c ∈ J(A), and using that J(A)
is an ideal of A we have that 1 = bc ∈ J(A) which is a contradiction.
Therefore c has right-inverse, i.e., there exists some d ∈ A with cd = 1.
Therefore b = b(cd) = (bc)d = d. Thus, c is an inverse of b and b is a unit
element. We conclude that every non-unit element belongs to J(A), i.e.,
I ⊆ J(A). But it is straightforward to see that J(A) ⊆ I because every
ideal of A must not contain any unit element. Thus, A is local.

�
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Lemma 5.4. [Fitting Lemma] Let M be an A-module and let α ∈ EndA(M) be
an A-endomorphism. It holds:

a) ∃n0 ∈ N such that M = Kerαn0 ⊕ Imαn0 .
b) α is injective if and only if α is surjective.

Proof. We will only prove the first statement. Consider the family Imαi =
{Mαi : i ∈ N} (α0 = Id). M has finite dimension, therefore we can consider a
minimal element Mαn1 , for some n1 ∈ N. It follows that for every k ≥ 0, Mαn1+k =
(Mαk)αn1 ⊆Mαn1 . Since Mαn1 was chosen to be minimal, we get that Mαn1+k =
Mαn1 for each k ≥ 0.

Now consider the family {Kerαi : i ∈ N} and take Kerαn2 to be its maximal
element. It holds that for each k ≥ 0, Kerαn2 ⊆ Kerαn2 + k. Since Kerαn2 was
chosen to be maximal, we get that Kerαn2 = Kerαn2+k for each k ≥ 0.

We set n0 = max(n1, n2). Let k ≥ n0, and m ∈ Kerαk ∩ Imαk be an arbitrary
element. On one side, we can write m as m1α for some m1 ∈ M , therefore,
mαk = (m1α

k)αk = m1α
2k. On the other side, since m ∈ Kerαk then mαk = 0.

Thus, m1α
2k = 0. Therefore m1 ∈ Kerα2k = Kerαk. It means that m = 0 and we

conclude that Kerαk ∩ Imαk = 0.
Now let m ∈M , it holds that mαk ∈Mαk = Mα2k. Therefore ∃m1 ∈M such

that mαk = m1α
2k and we can write m as m = (m−m1α

k) +m1α
k. Notice that

(m−m1α
k)αk = mαk−m1α

2k = mαk−mαk = 0, thus m−m1α
k ∈ Kerαk and it

also holds that m1α
k ∈Mαk = Imαk. Therefore M = Kerαk + Imαk and finally,

M = Kerαk ⊕ Imαk. �

Theorem 5.5. Let M be an A-module and let us set E = EndA(M). It holds:

a) M is an idecomposable A-module if and only if 0 and 1 are the only idem-
potent elements of E.

b) M is an idecomposable A-module if and only if E is a local algebra.

Remark 5.6. We only need the condition dimK(A) ≤ ∞ for the left implication
(�) on item b) . The other statements hold for arbitrary dimension.

Proof. Let us firstly check the two implications of item a):

� Assume that M is indecomposable and let f ∈ E be an idempotent
element of E. As we already know (previous Chapter), we can write
M = Mf ⊕M(1− f). Notice that Mf and M(1− f) are A-submodules
of M , therefore Mf = 0 which leads to f = 0 or M(1 − f) = 0 which
implies that f = 1.

� Assume that there are no more idempotent elements on E than 0 and
1. Let us prove that M is an idecomposable A-module. Assume that
M = M1 ⊕M2 with Mi ≤A M , i = 1, 2. Consider the natural projection
π1 : M → M on the first component. It holds that Kerπ1 = M2 and
Imπ1 = M1. Notice that π2

1 = π1 is an idempotent element of E, therefore
π1 = 0 or π1 = 1. For the first case, M = Ker0 = Kerπ1 = M2, for the
second one M = ImId = Imπ1 = M1.

Let us prove the second statement:

� Assume that E is a local algebra. Let us prove some more general result.
Let T be a local K-algebra and let us see that there are no more idem-
potent elements on T than 0 and 1 (it will lead to the indecomposability
of M by item a)). Let e ∈ T be an idempotent element of T . It holds
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that e is a unit or a nilpotent element. For e being a unit element we get
that ∃f ∈ T with ef = 1 therefore, 1 = ef = e2f = e(ef) = e. For the
nilpotent case, we can find some k ∈ N with ek = 0, but notice that e is
idempotent, therefore, 0 = ek = e.

� Assume thatM is an indecomposableA-module. Using the Fitting Lemma,
we can write M = Kerfk ⊕ Imfk. Therefore Kerfk = 0 or Imfk = 0.
If Kerfk = 0, then fk is a monomorphism and we conclude that fk is an
automorphism, i.e., we can find some g ∈ E with fkg = gfk = 1. But
notice that (gfk−1)f = f(gfk−1) = 1, therefore f is a unit element. For
the case Imfk = 0, we get that fk = 0 and thus, f is nilpotent. Finally,
every element of E is either unit or nilpotent.

We will prove that the set of non-unit elements of E is an ideal;
Let α ∈ E be a non-unit element of E and let β ∈ E. Notice that
α is not a monomorphism because it is not a unit, therefore, aplying
Fitting’s Lemma, we get that 0 6= Kerα ⊆ Ker(αβ), therefore αβ is not
a monomorphism, then it is not a unit element.

Now let α1, α2 ∈ E be two non-unit elements and let us check that also
(α1+α2) is not a unit. Assume towards a contradiction, that (α1+α2) is a
unit element, then there exists some γ ∈ E with (α1+α2)γ = α1γ+α2γ =
1. Let us set βi = αiγ for i = 1, 2. Notice that β1 + β2 = 1, thus
β1 = 1− β2, therefore:

β1β2 = (1− β2)β2 = β2 − β2
2

β2β1 = β2(1− β2) = β2 − β2
2
⇒ β1β2 = β2β1 ?

Using the previous result, βi = αiγ is not a unit element for i = 1, 2,
therefore βi is a nilpotent element for i = 1, 2. There exists some n ∈ N
such that βn1 = βn2 = 0. Hence:

(β1 + β2)n =?
2n∑
i=0

(
2n

i

)
βi1β

2n
2 = 0

It contradices the equation β1 + β2 = 1. Therefore, α1 + α2 is not a unit
element.

If α ∈ E is not a unit element, it is straightforward to see that −α is
also a non-unit element. Moreover, let α, β ∈ E with α being non-unit,
then βα is not a unit because Im(βα) ⊆ Imα ( M , therefore βα is not
a unit. It follows that the set {α ∈ E : α is not a unit} is an ideal of E,
and we finally get that E is a local algebra.

�

Theorem 5.7. [Krull-Schmidt] Let M be an A-module, then:

a) M = M1 ⊕ · · · ⊕ Mn where Mi is an idecomposable A-module for i =
1, · · · , n.

b) Last decomposition is unique up to index ordenation; If M = N1⊕· · ·⊕Nk
where Nj is an idecomposable A-module for j = 1, · · · , k, then n = k and
Mi
∼= Ni up to reordenation.

Proof. Let us prove each statement:

a) We will use induction on dimK(M). Assume that the statement is true for
A-modules with dimension lower than dimK(M). If M is indecomposable
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we are done, take n = 1 and Mi = M . Therefore we can assume that M is
not indecomposable, i.e., there are 0 6= M1,M2 ≤A M with M = M1⊕M2.
Notice that dimk(Mi) ≤ dimK(M) for i = 1, 2 therefore, applying the
inductive hypothesis, we have that Mi =

⊕ni

j=1Mij, for i = 1, 2 with Mij

indecomposable for j = 1, · · ·ni. and we get the desired result:

M = M1 ⊕M2 =

2⊕
i=1

ni⊕
j=1

Mij

b) Assume that M = M1 ⊕ · · · ⊕Mn = N1 ⊕ · · · ⊕Nk. We will prove that,
for an specific reordenation of the indices, it holds that M1

∼= N1 and it
also holds that M ∼= N1 ⊕M2 ⊕ · · · ⊕Mn

∼= N1 ⊕ · · · ⊕Nk. At this point,
it is enough to apply an inductive step to conclude that n = k and also
that Mi

∼= Ni for i = 1, · · · , n up to reordenation.

Let us check the above affirmations; Let us set N =
⊕k

j=1Nj . Notice
that M ∼= N , assume that they are isomorphic via ϕ. Let πi be the
projection of N on each Mi for i = 1, · · · , n and let ρj be the projection

of M on each Nj for j = 1, · · · , k. It holds that 1 =
∑k
j=1 ρj =

∑n
i=1 πi.

Therefore, π1 = 1π1 = (
∑k
j=1 ρj)π1

∑k
j=1 ρjπ1. Let us denote ρ̃jπ1 :=

(ρjπ1)|M ∈ EndA(M1). Notice that EndA(M1) is a local algebra because
M1 is indecomposable, therefore for each j ∈ {1, · · · , k}, ρ̃jπ1 is either
a unit or a nilpotent element. Assume, towards a contradicition that for

each j ∈ {1, · · · , k}, ρ̃jπ1 is a nilpotent element, thus 1 =
∑k
j=1 ρ̃jπ1

would be nilpotent, which is a contradiction. Hence, there exists some
j ∈ {1, · · · , k} that we can assume, without loss of gnerality, j = 1, for
which ρ̃1π1 is a unit.

Let us denote X := M1ρ1 and Y = N1 ∩Kerπ1 and let us check that
N1 = X⊕Y . First notice that N1 = X+Y ; let v ∈ N1, notice that vπ1 ∈
M1, therefore one can find some u ∈ M1 with vπ1 = (uρ1)π1, therefore
(uρ1 − v)π1 = 0 which leads to affirm that uρ1 − v ∈ Kerπ1 ∩ N1 = Y .
Thus, v = uρ1 + (v − uρ1). Secondly let us check that X ∩ Y = 0; let
v ∈ X ∩ Y then v = uρ1 for some u ∈ M1 and v ∈ Kerπ1 ∩ N1, i.e.,
vπ1 = uρ1π1 = 0. This means that u ∈ Kerρ̃1π1 = 0. It follows that
u = 0 and hence, v = 0. Finally N1 = X ⊕ Y .

Since N1 is indecomposable, then X = 0 or Y = 0. For X = 0 we get a
contradiction because M1ρ1π1 = M1 = 0, therefore Kerπ1 ∩N1 = Y = 0.
It follows that M1ρ1 = X = N1. Moreover, (ρ1)|M1

is surjective and
(π1)|N1

is injective. From ρ̃1π1 being an isomorphism, there exists some
g ∈ EndA(M1) such that ρ̃1π1g = 1M = (ρ1π1)|Mg = 1M1 , and finally we
get that (ρ1)|M1

is injective and we conclude that ρ1 is an isomorphism.
It leads to M1

∼= N1.
It follows from N1 ∩ (M2 ⊕ · · · ⊕Mn) = N1 ∩ Kerπ1 = Y = 0 that

dimN1 = dimM1. And we obtain our desired result:

M ∼= N1 ⊕M2 ⊕ · · · ⊕Mn

�
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CHAPTER 6

Group Algebras

In this chapter, we develop the most important example of a group algebra over
a field. We will get into detail about the previous results on the group algebra KG.
The fundamental result on this chapter, and one of the most important results on
the whole theory is that of Maschke, already proved in Chapter 3. In this chapter,
G will denote a group and K will be a field.

Theorem 6.1. [Maschke] The group algebra is semisimple if and only if

carK - |G|

We can use the equivalence: semisimple algebra ⇔ every module over the
algebra is completely reducible to state last Theorem with this equivalent form

Theorem 6.2. [Maschke] Every KG-module is completely reducible if and only
if carK - |G|.

Theorem 6.3. Let K be a field and let G be a finite group. Let us consider the
center of KG, Z(KG) = {x ∈ KG : ∀y ∈ KG (xy = yx)}. Z(KG) is a K-algebra
which is a subalgebra of KG. Let {Ci : i = 1, · · · , n} be the set of conjugacy classes
of G and let us denote Ci =

∑
x∈Ci x for i = 1, · · · , n. Then {C1, · · · , Cn} is a

K-basis of Z(KG). In particular, dim(Z(KG)) is equal to the number of conjugacy
classes of G.

Proof. For each i = 1, · · · , n and g ∈ G it holds:

g−1Cig = g−1

(∑
x∈Ci

x

)
g =

∑
x∈Ci

g−1xg =
∑
x∈Ci

x = Ci

It means that Ci ∈ Z(KG) for each i = 1, · · · , n. Moreover, the set {C1, · · · , Cn}
is a K-linearlly independent because Ci ∩ Cj = ∅ if i 6= j. Let

∑
g∈G agg be an

arbitrary element of Z(KG), then for each h ∈ G:

∑
g∈G

agg = h−1

∑
g∈G

agg

h =
∑
g∈G

agh
−1gh

this means that ag = ahgh−1 for each h ∈ G. Then:

∑
g∈G

agg =

n∑
i=1

ai

∑
g∈Ci

g


it follows that {C1, · · · , Cn} is a set of generators of Z(KG). �
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Theorem 6.4. Let G be a finite group and let K be a field with EndKG(V ) ∼= K
for each irreducible KG-module V (in particular, when K is algebaically closed)
and assume that carK - |G|, then:

KG ∼= Matn1
(K)⊕ · · · ⊕Matnh

(K)

where h is the number of conjugacy classes of G. Moreover, KG has, up to isomor-
phy, h irreducible representations V1, · · · , Vh. It also happens that, up to indeces

reordenation, dimK(Vi) = ni and n1 = 1. Thus, |G| =
∑h
i=1 n

2
i and G has, up to

isomorphy, h irreducible representations.

Proof. It is almost everything proved. By Maschke’s TheoremKG is semisim-
ple and using Wedderburn’s Theorem we get that KG ∼=

⊕s
i=1Matni(K) where s is

the number of irreducible KG-modules and the ni’s are the respective dimensions.
Moreover Z(KG) ∼=

∑s
i=1 Z(Matni

(K)). The dimension of each Z(Matni
(K)) is

1, therefore s = dimK(ZG) = h. Taking dimensions we get that

dimK(KG) = |G| =
h∑
i=1

n2i

with n1 = 1 (it corresponds to the trivial module and becomes associated to the
conjugacy class of 1). �

Remark 6.5. Let carK = p for some arbitrary prime number p, then the number
of isomorphic types of irreducible KG-modules is equal to the number of conjugacy
classes of p′-element of G. If we avoid the hypothesis EndKG(V ) ∼= K for each
irreducible KG-module V , there it also exists a related result that gives the number
of isomorphic types of irreducible KG-modules.

Example 6.6. Let G ∼= Σ3 be the non-abelian group of order 6. G has 3 conjugacy
classes, therefore G has 3 isomorphy types of irreducible CG-modules. In Chapter
2 we have already built the irreducible CG-module of dimension 2. Notice that
n1 = 1 and n2 = 2 therefore n3 = 1 in order to get 6 = 1 + 22 + n23. Then there
exists a representation R : G → C \ {0}. Notice that KerR 6= G and it also holds
that KerR 6= {1} (otherwise, G ∼= G/{1} ∼= G/KerR ∼= C \ {0}, but C \ {0} is
abelian). Therefore it must necessarily hold that |KerR| = 3 and R(x) = −1 and
R(y) = 1.

Theorem 6.7. Let G be a group and let K be a field with carK - |G| such that
EndKG(V ) ∼= K for each irreducible KG-module. With the previous notation, Vi
has multiplicity ni on the regular KG-module.

Proof. It holds that KG ∼=
⊕n

i=1 ai, where Ai = Matni(K). It follows
from Chapter 4 that the simple algebra Ai has exactly on irreducible and faithful
module Vi with dimension ni (up to isomorphy) for i = 1, · · · , n. It also hlds that
dimK(Ai) = n2i , i.e.,

Ai ∼=

ni)︷ ︸︸ ︷
Vi ⊕ · · · ⊕ Vi

which proves the theorem. �
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