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CHAPTER 1

Introduction

1. Algebraic Structures

Definition 1.1. [Group, Monoid, Semigroup] Let G be a set and let - be any
binary operation on G:
GxG — G
(91,92) = g1-92
Instead of writing g; - g2 we will omit the operation symbol and we will write g1 gs.
We will say that (G, ) is a group if the following properties hold:
1) Associativity of -. For all g1, 92,93 € G, (9192)93 = 91(9293)-
2) Existence of a neutrum element. There exists some e € G such that for
all g € G it holds: ge = eg = g. If such element exists it must be unique.

Remark 1.2. Assuming the existence of two neutrum elements e and e’
we get: ¢/ = ¢’e = e. Therefore, such element is unique. Moreover, we
will use indistinctly the notations 1, e or 1¢ to denote this element.

3) Existence of an inverse element. For each g € G, there exists an element
g’ € G such that g¢’ = ¢'g = e. If such element exists it must be unique.

Remark 1.3. Assuming the existence of two inverse elements ¢’ and g”
for g we get: ¢’ = g'gg” = g”. Therefore, such element is unique. We will

denote this element by g—!.

Given a group (G, ), we will say that it is abelian if for each g1,g2 € G it
holds that g1g2 = g29g1-

We say that (G,-) is a monoid if properties 1) and 2) hold. We say that it is
a semigroup if property 1) hold.

Definition 1.4. [Subgroup] Let (G, ) be a group and consider H C G a subset
of G. We say that H is a subgroup of G and we will denote it by H < G if it is
closed under the operation - and closed under taking inverses. That is to say:

e For all hi,ho € H, h1hy € H.

e Forallhe H,h™' € H.

Definition 1.5. [Ring] Let R be a set and let + and - be two binary operations
on R:
+: RXxR — R -t RxR — R
(7"1,7’2) — 1+ T (7‘1,?"2) — T1°79
As before, we will use r1ry instead of r1 - ro.
We will say that (R, +,-) is a ring if the following properties hold:

1) (R,+) is an abelian group.
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Remark 1.6. We will use additive notation for (R,+). Therefore, for
each r € R we will denote its inverse by —r and we will use 0 or O to
denote the neutrum element.

2) (R,-) is a semigroup.
3) Ditributivity of - among +. That is, for all r1,75,r3 € R it holds:
r1(re +73) =112 + 1173 (r1+72)r3 =113 + o773

Remark 1.7. Under the last property we can prove that for each r € R,
Or =70 = 0. Just notice that 70 =r(r —r) = rr —rr = 0.

We will say that the ring (R, +, ) is a unit ring if (R,-) is a monoid. We will
denote its neutrum element by 1 or 1z. We will say that it is commutative if for
each r1,7o € R it holds riry = rory.

Let S C R be any subset of R. We will say that it is a subring of R and we
will denote it by S < R, if (S,4) < (R, +) and it is closed under the operation -,
i.e., for all s1,s5 € S it holds that s;s5 € S.

Definition 1.8. [Ideal] Let (R, +,-) be a ring and let I C R be any subset of R.
We say that it is a right-ideal [left-ideal] of R if the following properties hold:
1) (I,+) < (R, +)
2) For all r € R and for all x € I it holds xr € I [ra € I].
We say that I is a bilateral ideal of R, or just ideal of R, it is both left and
right-ideal.

Proposition 1.9. Let (R,+,) be a ring and let X = {x1, - ,2¢} C R be any
finite subset of R, it holds:
e (X)r=(x1, " ,x¢)r = {Zle xiry s € R 1 <4 <t} is a right-ideal.
o (X)p=(x1,,2)r={_ riwi: € R 1<i<t}isaleft-ideal.
PrOOF. We will just check the first statement. The second one is quite anal-
ogous. Clearly, ((X)gr,+) is a additive subgroup of (R,+). Let now = € (X)gr be
an arbitrary element and r € R. By definition of (X)g, there must exist r; € R for
1 <17 <t such that x = Z§=1 x;7;. Now considering the product zr we get:

7 (Zf.:l i)
= Z%:l(miri)r
= i @i(rir)

Since ;7 € R for all 1 <4 < ¢, it holds that zr € (X)g. O

Definition 1.10. [Finitely Generated Ideals] Let (R, +,-) be a ring. A right-
ideal I of R is said to be finitely generated if there exists a finite subset X C R
such that I = (X)gr. Analogously we obtain the definition for finitely generated
left-ideals. We will say that an ideal I of R is finitely generated if it is so as right
or left-ideal.

Definition 1.11. [ID, PID, Division Ring, Field] A ring (R,+,) is called
integral domain, or ID if it holds:

ID) For each r1,ry € R, if r1r9 = 0 then must hold 1 =0 or ro = 0.

We will say that (R,+,-) is a principal ideal domain, or PID if it holds:
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1. Introduction 3

PID) For each I ideal of R, there exists an element r; € R such that I = (rg)

Let (R,+,-) be a unit ring, we define the right-units of R, Ur(R), and the
left-units of R, UL(R) to be the following sets:
Ur(R)y={reR: 3sc R (rs=1)}
U,(R)={reR: 3s€ R (sr=1)}

(R,+,-) is said to be a ring division if:
RD) Ugr(R) =UL(R) = R\ {0}

Finally, (R, +,-) is a field if:
F1) (R,+,") is a commutative unit ring.
F2) (R,+,") is a division ring.

Remark 1.12. We will refer to fields as (K, +, -) instead of (R, +,-). Notice that
in a field it holds U(K) = Ur(K) = UL(K) = K \ {0}, where:

UK)={reK: 3se K (rs=sr=1)}

Definition 1.13. [Vector Space over a Field K| Let (K, +,) be a field and let
V be a set with a binary operation + and a scalar product:
+: VxV — 1% -0 KxV — V
(v1,v2) —> V1 + Vg \v)  —
We will say that V is vector space over the field K, or K-vector space if it
satisfies the following properties:
V1) (R,+) is an abelian group.
V2) Forall 0,8 € K and v € V, aBv) = (af)v.
V3) Forall o, € K andv eV, (a+ B)v = (awv) + (Bv).
V3) For all & € K and v,w € V, a(v + w) = (aw) + (aw).
Let W C V be any subset of V. It is called a vector subspace of V if it is an

additive subgroup of (V,+) and it is closed under scalar product, i.e., for all w € W
and A € K, it holds that Aw € W.

Definition 1.14. [K-algebra] Let (K,+,-) be a field and let (A, +,-) be a ring
with a scalar product:

KxA — A
(Ma) — Aa
We say that A is a K-algebra if the following properties hold:
Al) Ais a K-vector space.
A2) For all @ € K and a,b € A, a(ab) = (aa)bd.

A subset B C A is called a subalgebra of A if (B, +,-) is a subring of (A, +, )
and B is a vector subspace of A.

A subset I C A is a [right, left] ideal if I is a [right,left] ideal of (A, +, ) and
I is a vector subspace of A.

Definition 1.15. [Module over a K-algebra] Let (K, +, ) be a field, let (A, +, )
be a K-algebra and let V' be any set together with three operations:

Universitat de Valencia Representation Theory



4 2. Morphisms over Structures

+: VxV — \% i KxV — V
(v1,v2) —> w1+ vy (\,v) — v

x: VxA — V
(v,a) +—— wvxa

V' is said to be an A-module if the following properties hold:
M1) (V,+,) is a K-vector space.
M2) Foralla € K,a€ Aand v €V, a(v*a) = (av) xa = v * (aa).
M3) For all a,b € Aandv e V,vx(a+b)=v*xa+vxb.
M4) Forallac Aandv,w eV, (v+w)*a=v*a+w*a.
If (A,+,) is a unit K-algebra we demand also the following property on V:
M5) Forallve V,vxl=1%v=.

A subset W C V is called a submodule of V| written W <, V' if (W, +,)
is a vector subspace of (V,+,-) and for each w € W and for each a € A it holds
wxa€W.

Definition 1.16. [Regular Module] Let (K, +,-) be a field and let (A4, +,-) be
a K-algebra. Let us set V = A with the operation x = -. It is straightforward to
see that A is an A-module. We call that module the regular A-module.

Definition 1.17. [Simple Module] Let (K, +, ) be a field and let (4, +,-) be a
K-algebra. An A-module V is called simple if every W <4 V submodule of V is
either the trivial module {0} or the greatest one, V.

Definition 1.18. [Semisimple Module] Let (K, +,-) be a field and let (A4, +,-)
be a K-algebra. An A-module V is called semisimple or completely reducible
if there exists a finite family of simple submodules V; <4 V such that V = @;1 Vi
as direct sum of vector spaces, i.e.:

o V=311V

e For each i € {1, - ,s},

vl ¥ v)-o

j=1,j#i

2. Morphisms over Structures

Definition 1.19. [Group Homomorphism] Let (G, -) and (Gs, -) be two groups.
A mapping f : G; — G4 is called a group homomorphism if it verifies the fol-
lowing equation for each g, h € Gy:

f(gh) = f(g)f(h)

We denote the set of all group homomorphisms between Gy and G2 by Hom/(G1, G2).
We will say that a group homomorphism f is a monomorphism if it is an injective
mapping, f is a epimorphism if it is a surjective and finally, f is a isomorphism
if it is a bijection.
Definition 1.20. [Ring Homomorphism] Let (Rj,+,-) and (Ra2,+,") be two
rings. A mapping f : Ry — Ry is called a ring homomorphism if it verifies:
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e f:(R1,+) = (Re,+) is a group homomorphism.
e For each r,s € Ry it holds:

frs) = f(r)f(s)

Definition 1.21. [Linear Map]| Let (K, +,-) be a field and let V, W be two K-
vector spaces. A mapping f : V — W is said to be linear if for each vi,v0 € V
and «a, f € K it satisfies:

flowy + Bz) = af(v1) + Bf(v2)
We denote by Homp(V,W) = {f : V — W : fislinear} to the set of all linear
mappings. For the case W = V| we will write Endy (V) instead of Homg (V,V).
Finally, we define the set of all isomorphisms from V to V as GLg (V).

Definition 1.22. [Algebra Homomorphism] Let (K,+,-) be a field and let
A, B be two K-algebras. A mapping f : A — B is said to be an algebra homo-
morphism if it is linear (considering A and B as vector spaces) and moreover, for
each aj,ay € A it holds that f(ab) = f(a)f(b). Furthermore, if A and B are unit
K-algebras, it must hold that f(14) = 15. We also define, in an analogous way ,
the sets Homg (A, B) and Endg (A).

Definition 1.23. [Homomorphism between Modules] Let (K, +, -) be a field,let
A be a K-algebras and let V, W be two A-modules. A mapping f: V — W is said
to be an homomorphism between A-modules if it is linear (considering V/
and W as vector spaces) and moreover, for each a € A and v € V it holds that
f(va) = f(v)a. We also define, in an analogous way , the sets Hom4(V, W) and
Enda(V).

Example 1.24. Let (K,+,-) be a field and let V be a K-vector space. Take
A= Endg (V). It is a K-algebra with the operations:

+: AxA — A where f+g: VxV — %
(f,9) — [f+yg ’ (vi,v2) — vf +vg

AxA — A where fg: VxV — V
(f,g) +— gof ’ (v1,v2) = (vf)g
KxA — A h Af: VxV — \%
(A f) > Af where (v1,v2) — A@f)

Example 1.25. Let (K,+,-) be a field and let G be a group. We define KG =
{2 seatsg: Vg € G (ty € K)} to be the set of all linear combinations of elements of
G. Let us consider the following three operations; For a,b € KG with a = deG tgg
and b=}, s uph and \ € K, we define:

a+b= EgEG(tg + ug)g ab = Zg,hec(tg + un)(gh) Aa = dec(/\tg)g

With these three operations, KG is a K-algebra.
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CHAPTER 2

Representations

1. Basic Definitions

Definition 2.1. [Representation]| Let (G, -) be a finite group. Let (K, +,-) be
a field and let V be a K-vector space of finite dimension. Let us consider the
group (GL(V),-) of linear bijections from V to V together with the composition of
mappings, i.e., for f,g € GL(V), fg = go f. Any group homomorphism from G to
GL(V) is called a representation of G.
D: G — GL(V)
g — Dg: V — V
v — (v)Dy

We will refer to n = dimg (V) as the degree of the representation D.

Remark 2.2. Notice that GL(V) 2 GL(n, K) (by fixing a basis in V' and sending
any linear bijection to the representative matrix in the fixed basis). Therefore, using
the existence of such isomorphism ¢ : GL(V) — GL(n, K), given any representation
D of G, it can be seen as a group homomorphism D : G — GL(n, K). In this case
we will say that D is a matrix representation of G over K.

Remark 2.3. Definition 2.1 can be generalised in the following way; Let (S, ) be a
semigroup. Let (K, +,-) be any ring and let V be a free K-module. Let us consider
the semigroup (Endg (V),-) of endomorphisms on V' as K-module. Any semigroup
homomorphism from S to Endg (V) is called a representation representation of
S. For the case of (M, -) being a monoid we will demand (K, +, -) to be a unit ring.
Any monoid homomorphism from M to Endg (V) is called a representation of
M. Notice that each representation must send 1 to idy. There also exists the
notion of matrix representation. Just notice that Endg (V') = Mat, (K).

Example 2.4. Let us present some examples of representations.

a) Let (G, ) be any finite group. Let (K, +,-) be any field and let V be any
K-vector space of finite dimension. The trivial representation, R, is
defined for each g € G as R(g) = idy .

b) Consider the field (R, +, ) of real numbers and the group G = {1,—1} C
R. Let V be any R-vector space of finite dimension n. We define the
following representation:

D: G — GLV)

1 — Dy : vV — \%4
v o v

-1 +— D_q: Vv — Vv

v > -0

7



8 1. Basic Definitions

In matrix form, D1 = I, and D_1 = —1I,.
¢) Let G be the finite group with presentation

G=(z,y|z®=y’=1 ¢y "=y

Notice that G = [C3]Cy = 3. Let (K, +,-) be a field containing a cubic
root of the unit, i.e., 3w € K such that w? = 1. We define D as the matrix
representation, D : G — GL(2, K), given by:

0 1 w 0
In order to check that D is a matrix representation, we just need
to check that it is order-preserving and check that the relator conditions

hold.
R T )
Dsz[wor’:[aﬁo}:ro]zl
Y 0 w? 0 wt 0 1 2
D,D, =  D,D?

Thus, D is a group homomorphism and therefore we can conclude that it
is a matrix representation of G with degree 2.

Given any K-vector space with dimg (V) = 2, let us fix any basis
{v1,v2} of V. According to the matrix representation of D, the represen-
tation associated to this basis is given by:

D: G — GL(V)

x — D,: V — V
Vi > U3_;
y +— Dy: V — V
vy wivi

for i € {1,2}.

d) Let G = C,, = {(g) be the cyclic group or order n. Let (K,+,-) be a
field containing &, an n-th root of the unit. We define R as the matrix
representation given by:

R: ¢ — GLQ,K)2K
g° — Ry =g

R is a matrix representation of G of degree 1.

Definition 2.5. [Linear Representation of K-algebras| Let (K, +,-) be a field.
Let A be a K-algebra and let V' be any K-vector space of finite dimension. Let us
consider (Endg (V),+,-) as a K-algebra (taking the product as the composition of
linear mappings). Any K-algebra homomorphism D from A to Endg (V) is called
a linear representation of the K-algebra A.

D: A — Endg(V)
a +— D, : Vv — 14
v +— (v)D,

Universitat de Valencia Representation Theory




2. Representations 9

Notice that in the case of unit K-algebras, D(1) = Idy. We will refer to n =
dimp (V) as the degree of the representation D and to V as the representation
space.

Example 2.6. Let us consider the following examples:

a) Let (K,+,) be a field. Let A be a K-algebra and take V' = A. The
regular linear representation, R, is defined as:
R: A — EndK (A)
a +— D, : A — A
b — (b)R,=ba
1. Let us check that R is well-defined, i.e., R, € Endg(A).
Let us consider a € A, b,c € A and «, 8 € K. It holds:
(ab+ Bc)R, = (ab+pfc)a = (ab)a+ (Be)a =
= a(ba)+ B(ca) = «a(b)Rs+ B(c)R,
2. Let us now check that R is a K-algebra homomorphism.
2.1 Take a,b€ A, c€ A and «,f € K. It holds:

(¢)Raatpy = c(aa + Bb) = c(aa)+c(Bd) =
= ofca) +B(cd) = alc)Ra+B(c)Ry =
= (¢)(aR,+ BRy)

2.2 Take a,b € A, ¢c € A. It holds:
(c)Rap = c(ab) = [(e)Rub =
= [(ORa]Ry = (c)RaRy

(3.) Moreover, for the case of A being a unit K-algebra, it holds:
R: A — EndK (A)
1 +— D; : A — A
b — b1
Thus R1 = Idy
Hence, R is a K-algebra homomorphism and we conclude that R is a
linear representation of A.

b) Last example can be generalised as follows; Let (K, +,-) be a field. Let
A be a K-algebra and consider any A-module M. Consider the following
linear representation 6

0: A — FEndg(M)
a +— a, : M — M
m — (m)f, =ma
It is straightforward to see that 6, is well-defined for each a € A
and that 6 is an homomorphism between K-algebras, thus 6 is a linear
representation of A.

2. Basic Properties

Proposition 2.7. Let (G,-) be any finite group and let (K,+,-) be a field. Every
representation of G can be extended to a linear representation of the K-algebra KG
(from Example 1.25). Conversely, every linear representation of KG induces a
representation of G.

PROOF. Let V be any K-vector space and let R : G — GL(V) be a represen-
tation of G. Let us define R as follows:

Universitat de Valencia Representation Theory



10 2. Basic Properties

R KG s Endg(V)
a=3,ccted — R, : 14 Vv
v

ﬁ
— (v)Ra = (v) dec tyRy

For each a € KG, R, is clearly well-defined. Let us check that it is a homomorphism
between K-algebras:

1. Take a,b € KG and o, € K. Assume a = dectgg and b = decugg

It holds: B B
R(O‘aJrﬁb) = R(O‘ Z tgg+ﬂ Z ugg) =
geG geG
R( > (atg)g + > (ﬁug)g) = R( > (atg + ﬁug)g) =
geG geG geG
Yo (atg+Pug)Ry = ad tRy+ 8 ) ugRy =
geG geG geG
aﬁ( > teg) + 5E( D ugg) = aﬁ(a) + ﬁﬁ(b)~
geG geG

2. Take a,b € A. It holds:

R(ab) = R((X te9)( 3 unh))

geG heG
= E( > tqungh)
g,heG

Fixed any = € G, it holds gh = x < h = g~ 'z. Therefore:

E( Z ( Z tgu(g‘lx)x)) = Z ( Z tgu(g—lz)R(‘T)) =

zeG geG zeG geG
> teunR(gh) = > tqupR(g)R(h) =
g9,heCG g,heG
(X tgR(9)(X unR(h)) = R(YX tyg)R(Y uph) =
geG hedG geG heG
— R()R®).

Thus R is a linear representation of KG.

For the converse, let R : KG — End (V) be any linear representation of KG.
We define R = §|G, R:G — Endg (V). Let us check that it is a representation of
G.

1. R is a group homomorphism. Take g, h € G. It holds:

R(gh) = R(gh) = R(g)R(h) = R(g)R(h)
2. Moreover, for each g € G, R(g) is a bijective endomorphism on V. Just
notice that R(g) has as inverse homomorphism R(g~1).
R(g)R(9™") = R(g~")R(g9) = R(1) = Idy
We conclude that R is a representation of G.
|
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Remark 2.8. Last Proposition stablishes the correspondence between the repre-
sentations of G and the linear representations of K'G. Nevertheless, it is important
to consider them as independent objects since each representations have quite dif-
ferent invariants. Consider the following examples; Let 8 be a linear representation
of KG. We can consider its associated @ from Proposition 2.7. It holds that Kerf
is an ideal of KG while Kerf < G. This leads, in the case of the trivial represen-
tation, to the equations Kerf = KG, but Kerf = G, which are clearly different
structures. In order to avoid confusions we will write Keryg(G over V) instead of
Kerf.

Proposition 2.9. There exists a duality between linear representations and mod-
ules. This duality is expressed in the following statements:

a) Let (K,+,-) be a field and let A be any K-algebra. Let R be a linear
representation with representation space V. Then V has structure of A-
module with the internal law:

x: VXA — v
(v,a) +— (vV)R,
b) Let (K,+,-) be a field, let A be a K-algebra and let V' be any A-module.
We define R as follows:
R: A — Endg(V)
a +— R, : Vv — VvV
v o va

Then R is a linear representation of A.

PROOF. Let us check the two statements:

a) Consider V together with the operation x. Notice that the operation x*
is well-defined since R, € Endg (V) for each a € A. Therefore we must
check that the conditions of V' being an A-module (Definition 1.15) hold:
M1) V was already a K-vector space.

M2) Let a € K, a € A and v € V it holds:

o(v % 0) = a(()Ra) = () Ry = (av) *a
M3) Let a,b € A and v € V it holds:
vk (a+b) = (vV)Ratp = (V)(Ra + Rp) = (V)Ry + (V)Rpy =v*ka+vx*b

M4) Analogous to M3).
In the case of A being a unit K-algebra it holds:
mb) Let v € V, it holds:

vxl=(v)Ry = (v)Idy =v
Finally, we can conclude that V has structure of A-module.

b) See Example 2.6.
O

Remark 2.10. Proposition 2.7 states the equivalency between the study of the
representations of a given group G over a field K and the study of linear repre-
sentations of KG. Moreover, last Proposition 2.9 states the duality between linear
representations of KG and KG-modules. In a few words, we will use the following
three equivalent tools:
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12 2. Basic Properties

Representations Linear Representations Modules
D:G—-GL(V) & D:KG— Endg(V) < V as KG-module

Example 2.11. We present some instances of Proposition 2.9.

1) Let R be the trivial representation from Example 2.4, then V = K is the
K G-module associated to R with the law:

x: KxKG — V
(o, a) — o«

2) Let A be any K-algebra, then the module V = A is the regular A-module
with the law v x @ = wva, associated to regular linear representation of
Example 2.6.

3) The trivial K G-module with the law ag = o, Va € K Vg € G is associated
to the trivial representation of degree 1 over K called 1-representation.

4) Let A be a K-algebra. The regular A-module is associated to the regular
representation. For the case A = KG, the associated regular representa-
tionis called regular representation of GG and works this way:

Assuming that G = {1,92, "+ ,gn},
R: G — GLIKG) (2M(n,K))
g = Iy
(9:)Rg = gig = g; € G. If we take G as K-basis of KG, in matrix form:

g 9j

[

1[0 -~ 1 --- 0

Rlg) = . . z
g = 0 - 0 1

They are, therefore, permutation matrices.

Definition 2.12. [Equivalent Representations] Let R; : KG — GL(V;) for
1= 1,2, be two representations of G over K. Let V;, ¢ = 1,2, be the corresponding
representation spaces of G. We will say that Ry and Ry are equivalent if there
exists a bijective P € Homy (V1, V) such that for each g € G, (R19)P = P(Rag)
hold. That is to say that the following diagram commutes:

v Ly,

ngJ JR29

V; \%
1T>2

Last property can be expressed in terms of matrices. Assume n = dimg(V;), for
1 =1,2. We must fix a basis of V] and V5 and consider the corresponding matrix
representations R; : KG — Mat(n,K), for i = 1,2. We say that the matrix
representations are equivalent if there exists some P € GL(n, K) such that for each
g € G, (R1g)P = P(Rag) hold.

Proposition 2.13. Let R;, fori = 1,2, be two representations of G over K. Let
us consider V;, for i = 1,2, as the corresponding KG-modules. Then Ry and R
are equivalent if and only if V1 and Vo are isomorphic KG-modules.

Universitat de Valencia Representation Theory



2. Representations 13

PROOF. Let us check the two implications:

> Assume that Ry and Ry are equivalent, thus we can find some bijective P €
Homy,(V1, Vo) with (R19)P = P(Rzg) for all g € G. Let us consider the
associated linear representations R; : KG — Endg (V;), for i = 1,2. We
will check that there exists some P : V; — V5 whichis a K G-lsomorphlsm.
Notice that V; was defined as V; with the law v * z = (v)(R;z) for v € V;
and z € KG.
As a candidate for P, we consider P itself. Let us check that P can act,
in fact, as a K G-homomorphism. Consider v € V; and dec aqg € KG,

it holds:
lv * > agg| P = |(v) (Rl( > agQ)) P =
geG geG
= [Z ag(v)(Rag)| P = 3 ag[(v)Rig] P =
geG geG
= > ag(v) [RigP)] = > ag(v)[PRay] =
geG geG
= > ag[(v)P]Rayg = [(v)P] (Z angg> =
geG geG

= [(v)P|R: ( 2 agg> = [(v)P]* (Z agg>

geG geG

That means that P is K G-linear. Moreover it is a K G-isomorphism
since P was bijective.
< Conversely, suppose that V| g VQ, i.e., there exists some K G-isomorphism

P : Vi — Vs. Notice that, as sets, V for i = 1, 2, therefore for v € V
it holds:
()[Ri(g)P] = (vxgP = (vP)xg =
= (WP)Ra(g9) = (v)[PRz2(9)]
Hence, for all v € V; and for all g € G, it holds R1(g)P = PRa(g).
U

Corollary 2.14. If M Zg¢ N then Ker(G over M) = Ker(G over N).

PrOOF. In fact, if Ry : G — GL(M) and Ry : G — GL(N) are representations
of G with M 2k N, using previous Proposition, there exists some bijective P €
Hom(M, N) with the property Ri(g)P = PRz(g) for each g € G. Therefore it
holds:

g€ Ker(Gover M) < Ri(g) =0 < (v)R1(g)=0 &
& [(Ri(9IP=0 & (v)[Ri(g) }—0 &
< (0)[PR2(9)] =0 < [(v)P]R2(g) =0 o
o* (w)Rg(g) =0 = Rg( ) =0pn =
< g€ Ker(G over N)
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14 2. Basic Properties

In the proof we have considered that v € M, w € N are arbitrary elements. Notice
that in x we have used that P is a bijection. [

Definition 2.15. [Faithful Representation] Let R be a representation of G over
K. We will say that R is a faithful if KerR = 1.

Remark 2.16. Let R be a representation of G over K with degree n and represen-
tation space V, then KerR < G and using the 1st Isomorphism Theorem, it holds
that:

G/KerR < GL(V) = GL(n, K)

Example 2.17. The regular representation of G is a faithful representation.
R: G — GL(KG)
g — Ry: KG — KG
Dweg Gat Y ieq dz(29)

Definition 2.18. [Irreducible, Semisimple] Let R be a representation of G over
K with associated module V. Then:

a) We will say that R is irreducible if V is an irreducible K G-module.
Otherwise, we will say that R is reducible.

b) R is said to be completely reducible or semisimple if so is V as KG-
module.

There exist, up to equivalency, a finite number of irreducible representations.
This fact motivates the study of Characters.

Example 2.19. Let us consider the following examples:

a) If G # 1 then the regular representation of G is not irreducible, since the
associated module (the regular KG-module) has always a K G-submodule
of dimension 1: the one generated by > . g. Since |G| > 1, we get:

04 () 9k < KG

geG

This submodule is isomorphic to the trivial module K.

b) Consider the group G = 33 and the representation defined in Example
2.4 ¢). For the case K = C the representation is irreducible. Let us prove
this statement:

PrOOF. Let V be the KG-module of dimension 2 associated to the
representation D. It will be enough to check that V is irreducible, which
is equivalent to check that V' has no submodule of dimension 1. Notice
that each submodule will also be a vector subspace, and any 1-dimensional
submodule of V' will have the form Cuv for some v € V. First, notice that
Cv; and Cwvy are not submodules since they are not fixed by x. Now,
assume that C(v1 + Avg) is a submodule of V' with A € C. Then applying
x and y respectively we obtain:

o (v1 4+ Av2)x = v1T + Avex = vy + Avg € Cug + Avg)

We can deduce that there exists some o € C such that

v + Avy = avy + Avg)

Frome this equation we deduce that A = +1. But in both cases the
submodule is not closed under the action of y:
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2. Representations 15

+1) (v1 + v2)y = V1Y + v2y = Wy + Wy
Which necessarily does not belong to C(v; + v9) since w # w?.
—1) Analogous.
Thus, C(v; + Avs) is not a submodule of V. We have already checked all
possibilities since {vy,v2} forms a basis of V. Then V has no submodule
of dimension 1 and V is irreducible. ]

Theorem 2.20. Let K be a field having characteristic p > 0 and let M be an
irreducible KG-module. It holds:

a) If G is a p-group, then M = KG is the trivial module.

b) More generally, it holds O,(G) < Ker(G over M).

Proor. FALTA! O
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CHAPTER 3

Jacobson’s Radical

Definition 3.1. [Jacobson’s Radical, Annihilator| Let K be a field and let A
be a K-algebra. We define the Jacobson’s radical as the set:

J(A)={a € A: Va= {0} for each irreducible A-module V'}
Let V be an A-module, we define its annihilator in A as the set:
annag(V)={a€ A: Va={0}}
It follows from the definitions that:
J(A) = N ann (V)
V irreducible
A-module

Thus, by the considerations of the previous chapter (the correspondance be-
tween A-modules and the representations of A), it follows that J(A) is the inter-
section of all the kernels of the irreducible representations of A.

Remark 3.2. J(A) is an ideal of A.

PRrROOF. It holds that (J(A4),+) < (A,4). Given z,y € J(A) and any irre-
ducible A-module V', we get that V(z —y) = Va — Vy = {0}. Now let z € J(A),
a € A and let V' be an irreducible A-module, it holds:

V(za) ={v(za): veV}={0va: veV}={0}
V(az) = {v(az): veV}={wz: we Va}=Va)x ={0}

In the last equation we have used that Va C V. Therefore we can conclude that
za,ax € J(A), thus J(A) is an ideal. O

Theorem 3.3. Let A be a K-algebra and let x € A. The following statements are
equivalent:

a) The element x belongs to every mazimal right-ideal of A

b) For each a € A, the element 1 — xa is invertible.
c) ze J(A).
ProoOF. We will check all the implications:

a) > b) Let a be an arbitrary element of A. It is straightforward to see that
(1 — za)A is a right-ideal of A. If (1 — za)A = A, since 1 € A we can
easily conclude that there exists an element b € A such that (1—za)b =1,
i.e., (1 — za) is invertible. Assume now that (1 — za)A & A, then there

exists a maximal right-ideal U of A containing (1 — za)A. In particular,
(1 —za) € U. By assumption € U and thus za also belongs to U,

17
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therefore (1 — xa) +xa = 1 € U which contradicts the fact that U is a
maximal ideal.

b) > ¢) For each a € A, the element (1 — xa) is invertible, let us see that this
implies € J(A). Let V be an irreducible A-module and assume that
Va # 0, therefore there exists some v € V for which vx # 0 hold. Hence
(vz)A # 0. It also holds that 0 # (vz)A <4 V, since V is irreducible we
can say that V' = (vx)A. Since v € V, there exists some a € A such that
vra = v, i.e., v(l —za) = 0, since (1 — za) is invertible, it follows that
v = 0 and we arrive to a contradiction.

¢) > a) Let z € J(A) and consider any maximal right-ideal W of A. Notice that
Ajw is an irreducible A-module (Given a+W € Ay and b € A, we define
the law (a + W) b = (a +b) + W). Hence, (4w )z = 0, which means
that for each a € A

(a+W)x=ax+W=0+W

Thus, ax € W for each a € A, in particular for a = 1 we conclude that
zeW.

O
Corollary 3.4. J(A) is the intersection of all the maximal right-ideals of A.

Remark 3.5. It can be analogously proved that J(A) is the intersection of all the
maximal left-ideals of A. Latest Theorem is also valid by changing right by left and
1—zabyl—az.

Corollary 3.6. It holds:
J(A/J(A) =0

PROOF. Just notice that:

J(A)J(A) = N W = N M/J(A) = J(A)/J(A) = {050}

W, maximal M, maximal
right-ideal right-ideal
of A/J(A) of A,

J(A)C M

O

Definition 3.7. [Nilideal, Nilpotent] Let N be an ideal of A. Tt is said to be
nilideal if for each = € N, there exists n, € N such that 2™» = 0. We will say that
N is nilpotent if there exists some n € N with N™ = 0, which is equivalent to say
that for all zq,---x, € N, it holds:

X1+ Ty = O
Corollary 3.8. FEwvery nilpotent ideal is nilideal.
Remark 3.9. We introduce here some notation. Let N be a subset of a given A-

module M and let B C A. NB will denote the additive subgroup of M generated
by {nb: n € N,be B}.

Proposition 3.10. Let N be a right-nilideal [left] of A, then N C J(A).
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3. Jacobson’s Radical 19

PrOOF. Let z € N and let a € A, it suffices to prove that 1 — za is invertible.
Since N is right-ideal, we get that xa € N, since it is nilideal, we can find some
k € N such that (za)* = 0. It follows that 1 — (za)* =1, i.e.,

(1—za)1+za+ -+ (za)* 1) =1
‘Which means 1 — za is invertible. O

Remark 3.11. The Jacobson’s radical can be defined for arbitrary rings. Moreover,
the preceding results can be applied to unit rings. Nevertheless, the following result
is only valid for those rings in which the minimum condition for right-ideal [left]
holds (here we are going to use the fact that A has finite dimension).

Theorem 3.12. Let A be a K-algebra, then J(A) is nilpotent, thus every nilideal
of A is nilpotent, moreover J(A) is the unique mazimal nilpotent ideal of A.

PROOF. Let us consider a decomposition serie of A as A-module:
A=A42>2A>---A,=0

that is, with the property A;/A;;1 is an irreducible A-module for 0 < i < r — 1.
Therefore for each = € J(A) we get (4;/A;+1) 2 = 0 which is equivalent to say that
Vo € J(A), Ajx € A;y1, therefore A;J(A) < A;41. In particular:

AJ(A)" = AgJ(A)" < AL (A <o < A, J(A) < A, =0

Notice that AJ(A)" = J(A)" = 0, hence J(A) is nilpotent. Notice that if
N is a nilpotent ideal, then N is nilideal and hence, by the previous Proposition,
N C J(A). O

Given an A-module V we are going to determine two associated irreducible
A-modules; an A-submodule and a quotient one. This very useful construction is
closely related to the Jacobson’s ideal and it will be used in many future results.

Lemma 3.13. Let V be an A-module with submodules W7, - - - Wy with the property
that for each i =1,---t, V/W; is semisimple. Then V/ N W; is semisimple as well.

PROOF. First of all, let us remember some useful properties on semisimple
modules:

U is semisimple < U = @le W; , for W; simple, i =1,---¢
& U=, W, for W simple, i € I
& VW<, U,3Z <, UwithU=W®a& Z.

It also holds that if U is semisimple and W <4 U, then U/W is also semisimple.

We will prove it by induction on ¢. The statement is trivial for ¢ = 1. Assume
it holds for a number of of submodules strictly less than ¢. Let us check it holds for
exactly ¢ submodules. Let {W7,---W;} be a family of ¢ submodules of V' with the
property that for each ¢ = 1,---¢, V/W; is semisimple. Let us consider Wy =Wy
and Wy = N¢_,W;. By induction, V/ Wj is semisimple for j = 1, 2.

Let us define now Wy = Wy N Ws and let U; = Wj/Wo for j = 1,2. We want
to prove that V/Wy = V/Nt_; W; is semisimple. We define U = U; & Us (it is well
defined because U; N Us = 0). It holds:

UlgU/UQ UggU/Ul *
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Notice that for j = 1,2, we get:
U/U; = (U1 & U2)/U; = (

Since V/Wj is semisimple, we conclude that U/U; is also semisimple, for j = 1,2.
It follows (%) that U; for j = 1,2 and finally we conclude that U = U; @ Uy is
semisimple.

We will end the proof by checking that U = V/W,. Notice that:

V/W, V/W, ~
Mo _ VIWo_ oy,
U2 WQ/WO
which is semisimple. Hence, there exists some Z/Us <4 %‘;VO such that:

VIiWy g i
Uy Uy U
This implies that U + Z = V/Wy and (U/Us) N (Z/Us) = Uz /Us = 0 which means
that U N Z = Us,. Let us check that V/Wy = Uy + Z. In fact, we have:

U = U,aUs UmUZ _ (()]1+U2
VIWo = U+Z =] "y, = U4z
Unz = U, Uny ~ o

Therefore, Uy N Z = (U, NU)NZ=U,N{UNZ)=U,NU; =0.

Now, let vinV/Wy = U + Z, there exists some u € U and z € Z with v = u+ 2.
Since U = U; @ U we can find some elements u; € U; for j = 1,2 with u = uy +us.
Hence, v = (u1 + u2) + z = ug + (ug + 2) with uy € Uy and us + z € Z, this means
that V/Wy = U; @ Z. Notice that:

V/W, V/W, -
72 VIWo _ V] 0~y
Ul Wl/WO
This leads to Z being semisimple and finally V/Wj is also semisimple. (]

Definition 3.14. [Socle, Radical, Head] Let V be an A-module. We define the
Socle of V', denoted by Soc(V), to the sum of every irreducible submodule of V.
The Radical of V, denoted by Rad(V'), is defined to be the intersection of every
maximal submodule of V. And finally the Head of V, denoted by H(V) is the
quotient V/Rad(V).

Remark 3.15. The dimension of V is finite, therefore Rad(V') is the intersection
of a finite family of maximal submodules of V. In fact, consider the family of all
the finite intersections of maximal submodules of V:
t
F = {ﬂ M; : M; is a maximal submodule of V, ¢ =1,---t}

i=1

Since dimg (V) < oo it holds that F has some minimal element U = n§=1 M;.
Which means that U is included in every finite intersection of maximal ideals. Let
us see that U = Rad(V). It is straightforward to see that Rad(V) C U. Assume
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3. Jacobson’s Radical 21

that Rad(V) # U. Assume also that for each maximal submodule M <4 V the
condition UNM = U, then U C M, i.e.,

vc () M=Rad(V)
MSAva

maximal

which contradicts the assumption Rad(V') # U, therefore we can find some maximal
submodule M <4 V with UNM < U. It means that UNM is minimal, contradicing
the election of U, and we get a contradiction. Finally, U = Rad(V).

Remark 3.16. For the case V = A, we get J(A) = Rad(A), because the maximal
submodules of the regular A-module are precisely the maximal right-ideals of the
correspondent algebra.

Lemma 3.17. If V is a completely reducible A-module then Rad(V') = 0.

PROOF. Since V is completely reducible, we can write it as V = EB?ZI W;.
Notice that each maximal submodule must have the form W for i = 1, - - - k, where:

Wi:WlJr"'JrWi_lJrWi_t,_lJr"'JrWn
Therefore Rad(V) C (i_, W* = 0. O

Proposition 3.18. Let V be an A-module. It holds:

i) Soc(V) is the greatest semisimple submodule of V.

i1) H(V) is the greates semisimple quotient of V, i.e., Rad(V') is the small-
est A-submodule of V' that produces a semisimple module by taking its
quotient.

ProOOF. We will check the two statements:

i) By definition, Soc(V) is the sum of every irreducible submodule of V.
In particular, it is semisimple and also contains all the others semisimple
modules.

1) By the previous Remark, Rad(V') is the intersection of a finite family
{My,--- M} of maximal right-ideals of V.Notice that for each i = 1,---t,
V/M; is a irreducible A-module, in particular these quotients are com-
pletely reducible, then using Lemma 3.13, V/Rad(V) is semisimple. Let
us finally check that H(V) is the greatest semisimple quotient of V. Let
U <4 V be such that V/U is semisimple, therefore we can write it as:

V/U:év;/U

with V;/U irreducible for ¢ = 1,--- ,n. Let us define for each i =
1,---t the module V* as:
Vi:I/'1_|_...+VZ.71_~_Vi+1+..._~_Vn

It is straightforward to see that V* is a maximal submodule of V because
V/V® 2 V;. Moreover, it holds:

UC ﬁvigvlm <évf> =U
=1 1=2
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Therefore, (), V? =U. Since each V* was maximal for i = 1,--- ,n, we
conclude that Rad(V) C U.

Remark 3.19. Last statement is equivalent to check that Rad(V) is the
smallest A-submodule of V' that produces a semisimple module by taking
its quotient. Let N be a module of V' with the property that V/N is
completely reducible, then by Lemma 3.17, Rad(V/N) = 0, hence:

Rad(V)= () Mc () M)=N
M <AV, M<aV,
maximal maximal
NCM

Therefore, Rad(V) C N.
O

Corollary 3.20. A/J(A) is the greatest completely reducible quotient of A. That

is, J(A)

18 the smallest ideal of A that produces a completely reducible module by

taking its quotient.
Corollary 3.21. V is a completely reducible A-module if and only if Rad(V') = 0.

Definition 3.22. [Semisimple Algebras] Let K be a field and let A be a K-
algebra. A is said to be semisimple if J(A) = 0.

The main interest in studying the Jacobson’s Radical for our purposes clearly
appear in the following result:

Corollary 3.23. Let A be a K-algebra. The following statements are equivalent:

)
2)
3)

A is semisimple.
The regular A-module is completely reducible.
Every A-module is completely reducible.

ProOOF. We will check the following implications:

1) > 2)

2) > 3)

3)>1)

Assume that A is semisimple, then J(A) = 0. Let us consider the regular
A-module V = A° then Rad(V) = J(A) = 0. Hence V is completely
reducible.
Let V be an A-module with basis {vy,---,v,}. Let v € V be an arbi-
trary but fixed element of V' and let us define the following A-module
homomorphism:
oy A — V
a — wva
Notice that (v) < Imgp, < V. In particular, taking as v = v; for
i = 1,---n, we obtain that V. = """, Im¢p,, = V. Notice that for
each i = 1,--- ,n, Imy,, = A/Kery,, which is completely reducible by
assumption, and hence so is V.
As a particular case, if we consider the regular A-module V = A°, we
obtain that 0 = Rad(V) = J(A).
O

Proposition 3.24. [t holds:

i)

V is an irreducible A module < V is an irreducible A/J(A)-module.
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1) V is a semisimple A module < V is a semisimple A/J(A)-module.

ProOF. We firstly prove the statement 7):

> Assume that V is an irreducible A-module, then it can be seen as a
A/J(A)-module with the law (a + J(A))v = va for each a € A. It is
well defined because V.J(A) = 0. Moreover, the A/J(A)-submodules of V'
are also A-submodules of V. Thus, V is an irreducible A/J(A)-module.

< Conversely, if V is an A/J(A)-module, it can be seen as an A-module
with the law va = v(a + J(A)) for each a € A and v € V. Notice that the
submodules coincide. Hence if V' is irreducible as A/J(A)-module it is so
as A-module.

For the second statement, if we suppose that V' is a semisimple A-module, then we

can write it as V = @?:1 V; with V; <4 V irreducible submodules for i = 1,--- ,n.
Notice that V is also an A/J(A)-module because V;J(A) =0 foreach i =1,---,n
and therefore VJ(A) = 0. We reason the rest of the proof analogously. O

Proposition 3.25. Let V' be an A-module, then:

i) VJ(A) = Rad(V).
i1) Soc(V) =anny(J(A)) ={veV: vJ(A) =0}

ProOOF. We will check the two statements:

i) We denote by Ag = A/J(A) and Vy = V/V J(A). THence, the law (v +
VJ(A))(a+ J(A)) = va+ VJ(A) is well defined and therefore Vy can
be seen as an Ag-module in such a way that the Ag-submodules and the
A-submodules of V' coincide. Since Ay is semisimple, we get that Vj is
completely reducible as Ag-module and hence as A-module. Therefore,
Rad(V) C VJ(A). Moreover, since H(V) = V/Rad(V) is completely
reducible, we obtain:

(V/Rad(V))J(A) =0 = VJ(A)/Rad(V) =0 = VJ(A) = Rad(V)

i1) It is straightforawrd to see the inclusion Soc(V) C anny (J(A)). On the
other hand, the set {v € V : wvJ(A) = 0} is an Ap-submodule of V.
Since Ag is semisimple, then V' is completely reducible as Ap-submodule
and also as A-module, this leads to V' C Soc(V) and finally, Soc(V) =
anny (J(A)).

O

Theorem 3.26. A/J(A) is the greatest completely reducible quotient A-module of
A. In particular every irreducible A-module is isomorphic to a composition factor

of AJJ(A).

ProoF. Consider the regular A-module V = A° we have that V/Rad(V) is
the greatest completely reducible A-module of V. Notice that Rad(V) = Rad(A) =
J(A), which concludes the first part of the proof.

Assume now that V is an irreducible A-module. Let v € V' arbitrary but fixed
nonzero element of V' and consider the following A-module homomorphism:

Wp: A — V
a — wva
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It holds that ¢y (1) = v # 0, thus 0 < I'mg, < V. Since V is irreducible, we
get that Imey = V. Using 1st Isomorphism Theorem, we get that A/Kery, =
Imyp, = V. Since Kerpy is a maximal right-ideal of A, we get that J(A4) C Keryy.
This means that V is isomorphic to a composition factor of A/J(A). d

Corollary 3.27. Proposition 3.24 appears as a direct corollary of the last Theorem.

The following Lemma provides a sufficient condition on semisimplicity and it
will be used in the proof of Maschke’s Theorem.

Lemma 3.28. Let A be a K-algebra and let {ay,--- ,a,} be a K-basis of A and
let R be a representation of A with representation space V. Let us denote by b;; =
trR(a;a;) the trace of R(a;a;). If for each 1 < 4,j < n, det(b;;) # 0, then A is
semistmple.

Theorem 3.29. [Maschke] Let G be a group and let K be a field, it holds:

carK =0 or

KG is semisimple < carK = p with p1|G.

PrOOF. We will check the two implications:

< Let R be the regular representation of K G and let n = |[KG|. Take as basis
the elements of G, {g1, - ,gn}. If g # 1, then it holds that trR(g) = 0,
because R(g) is a nontrivial permutation matrix. For the unit case, we
get that trR(1) = n. It means that for each pair 1 <i,j < n:

wlag) ={ 0 ¢ 9971 L detterR(a) = dertyy) =

Since carK = 0 or carK tn = |G| and G is notempty, then £n™ # 0.

Applying last Lemma, we conclude that K'G is semisimple.

> Assum now that carK = p||G| and consider the nonzero element i =
deG g. Let h € G, since G is a basis of KG, then ih = ¢ = hi. Thus,
for each o € KG we get that i = ai, which implies that i € Z(KG).

Moreover:
2
(o) (2] () - (Ssets) 10200
geG geG heG geG geG

Therefore i> = 0 and 0 # i € J(KG) which implies that KG is not
semisimple.
t
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CHAPTER 4

Completely Reducible Modules and Semisimple
Algebras

1. Decompositions

As we have already seen in the preceding Chapter, an algebra is semisimple
iff the associated regular A-module is completely reducible, which is equivalent to
affirm that every A-module is completely reducible. Our aim in this chapter is to
study in depth the properties of these structures.

Definition 4.1. [Homogeneous component, W-homogeneuos]| Let A be a
K-algebra, let V' be an A-module and let W be an irreducible A-module we define:

0 if thereisno U <, V with U =W
Hy(V) =| SSU  whereU={U: U<V, UZW}.
Ueu

We will call this submodule the homogeneous component of V' associated to
W. By definition, Hy (V) is completely reducible. If V= Hy (V') then we will say
that V is W-homogeneous.

Remark 4.2. Let V = @?:1 Vi be a completely reducible A-module where V; is an
irreducible component of V for i = 1, - - - ,n. Notice that the irreducible components
are, at first sight, not uniquely determined by V, that is there exists the possibility
of finding some alternative decomposition into irreducible factors. Nevertheless, it
holds that the sum of all the V; isomorphic to some given irreducible A-module
W need to be independent of the considered decomposition and hence it will be
uniquely determined by V', as it shows the following result:

Theorem 4.3. Let V. = @, V; be a completely reducible A-module where V;
is an irreducible component of V for i = 1,--- ,n. Let W be an irreducible A-
module. Then Hyw (V) = @y, oy Vi and thus, V = Dy, Hw (V) where W belongs
to a family of representatives of the classes of isomorphy of irreducible A-modules
(specifically, irreducible submodules of V).

PROOF. Let W be an irreducible A-module, we define 7' = @y, oy Vie 1t is
straightforward to see that T' < Hy (V). For the other inclusion let U <4 V with
U = W and assume towards a contradiction that U < T. Hence, 0 <, UNT <4 U
and using that U is irreducible we get that U NT = 0. Thus:

U+T))T=UaT))T=ZaU=s W
It also holds that:

n

D Vi

=1 ~
Ve W VigW
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Since (U+T)/T <4 V/T and (U+T)/T = W it happens that W< GBV#W V; which
contradicts the Jordan-Holder Theorem. Hence U < T and finally, U = T. (]
Proposition 4.4. Let M be an A-module and let M = M, & --- & M; be a decom-

position of M in its homogeneous components M; for 1 < i <t. Let U <o M be
any submodule of M, then:

U=UnNM)®---aUnM)
Moreover, the homogeneous components of U are precisely {UNM; : 1 <i <t}.

PROOF. Assume that for each i =1,--- ¢, M; is N;-homogeneous, that is:
M= > X
X <aM;
XN

We define for each ¢ = 1,---,¢, U; to be the N;-homogeneous component of U,
U; = Hy,(U). Since U <4 V it follows that U; C M; and trivially U; C (U N M;).
Moreover, U N M; C M;, thus U N M; is also a sum of irreducible A-submodules of
U isomorphic to N;, therefore U N M; C U;. ([

The following results show that every direct decomposition of a given K-algebra
A is determined by a decomposition of the unit element of A in a sum of ortogonal
idempotent elements in such a way that, associated to each primitive idempotent
element we find an indecomposable ideal. Moreover those ideals will coincide with
the irreducible ones when the algebra is semisimple. Therefore, these results are
very useful for the study of unit algebras.

Definition 4.5. [Idempotent, ortogonal, primitive, decomposable] Let A be
a K-algebra. An element 0 # ¢ € A is idempotent if e? = e holds. Two idempo-
tent elements ey, es € A are ortogonal if ejes = ese; = 0. An element is said to be
primitive if it can not be written as the sum of two ortogonal idempotent elements.
An A-module M is decomposable if there exists two non-trivial submodules M;
and My with M = M; & M, otherwise we will say that M indecomposable.

Lemma 4.6. Let e € A be an idempotent element, the following statements are
equivalent:

1) eA is indecomposable.
i1) e is a primitive element.
PROOF. Let us check the two implications.

< Assume that eA = A; § Ay with A; #£ 0 for i = 1,2. Since e = el € €A,
there exists some e; € A; for i = 1,2 such that e = e; + e5. From the fact
that e; € A; C eA, there exists also a; € A such that e; = ea; for i =1, 2.
Therefore:

e1 = ea; = (e1 + eg)ay = erag + e2a1

with eja; € A; and esa; € Ay, It follows that e; — eja; = esaq €
A1 N Ay = 0 because the sum is direct, therefore 0 = esa; and e; = eqas.
Notice that:

2 2 2 2
e1 =ea; =e“a; = (e1 +ez)“a; = (e] + e1e2 + eze1 + €3)a; =

= e%al + ea(erar) + er(eqar) = e% +a; = e%al + eseq
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>

with e?a; € A; and ega; € Ay, As before, it follows that e?a; = e; and
ese; = 0. We can reproduce the preceding argument to justify that also
eres = 0. Moreover, since e was idempotent it implies also the idempo-
tency of e; and ey (because they are otogonal). Finally, we have written
e as the sum of two ortogonal idempotent elements which contradicts e
being primitive.

Conversely, assume that e is not primitive, then we can express e as e =
e1 + ex with e% =eq, e% = e; and ejey = ege; = 0. Then it is straightfor-
ward to see that eA = e; A+esA. Let 2z € e A1Nes A, then z = e1aq = esas
for some a; € A, i = 1,2. Notice that e;z = e2a; = eja; = z. Then,
e1z = ey(eqas) = (eres)az = 0 and we conclude that z = 0. Therefore
eA =e1A®esA, since e; # 0 we can conclude that eA is decomposable.

O

Theorem 4.7. Let A be a K-algebra. It holds:

a)

c)

d)

Assume that A = @, A; with A; a right-ideal of A for i =1,--- ,n.
Let the unit of A be decomposed as 1 =", e; with e; € A;. Then, the
elements e; for i = 1,--- ,n are idempotent and ortogonal to each other
moreover A; = e; A.

Conversely, if we can decompose the unit element 1 = Y . e; with e;
tdempotent and ortogonal to each other, i =1,--- ,n, then:

A= éezA = éAei
i=1 i=1

On the two previous items, the decomposition on ideals is associated with
the decomposition of the unit element in central idempotent ortogonal to
each other elements.

If e # 1 is an idempotent element of A, then {e,1 — e} is a pair of
idempotent ortogonal elements for which A = Ae ® A(1 — e) holds.

PROOF. Let us prove each statement:

2)

Consider the decomposition 1 = Zle e; with e; € A; for i =1,---  n.
Thenfor j =1,--- ,n,e; =ejla =¢;(> 1, €) = >, eje;. Notice that
for all i = 1,--- ,n, eje; € A;. Since the sum is a direct one, we can
conclude that e;e; = 0 for 7 # j and also that e? = e;. Then, the elements
e; for t = 1,--- ,n are idempotent and ortogonal to each other. For the
second part of the statement, notice that for alli =1,--- ,n, e; € A; and
A; is a right-ideal of A, thus e;A C A;. For the other inclusion, notice

that any x € A; can be decomposed as before:

n

This ends the proof since e;z = = € e; A.

Assum now that we can decompose the unit element 1 = Z?zl e; with e;
idempotent and ortogonal to each other, i = 1,--- ,n, then let us check
that A = @, Ae;. Let x € A, as beforex = 1az = (31—, e)z =
o, ex with e;z € ;A for each i =1, ,n. Thus, A=>"" | Ae,. Let
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us check that this in fact a direct sum. Assume that Zle eia; = 0 and
fix some iy € {1,---n}, then:
n n
0 =e,0 = e (Z eia;) = Z(eioei)ai = €} iy = €yl
i=1 i=1
Thus a; = 0 for each ¢ = 1,--- ,n. Therefore A = @;_, Ae;. There is an
analogous proof to check that A = @, e;A.
Assume that A = @) A; with A; ideal of A for i = 1,---,n. We have

already seen in the item a) that we can find {e;,--- ,e,}, a decomposition
of 14, in idempotent and ortogonal elements, moreover A; = e¢;A. We
must see that also each e; for i = 1,--- ,n is central. Let x € A, it holds:
n n
r=1laz = (Zej)xz Zeja:
Jj=1 Jj=1
n n
x=xly = x(Zej) = erj
j=1 j=1
Therefore, since the sum is direct, ze; = e;x for each i = 1,--- ,n, which

means that e; is central.
Let e € A be an idempotent element with e # 14. Let us check that
(1 — e) is idempotent:
(l-e)(l—e)=1l—-c—e+e’=1-e—e+e=1—c¢

Moreover, it also holds that e(1—¢) = e—e? = e—e =0and 1 = e+(1—e).
Therefore, since we have a decomposition of 1 in idempotent and ortogonal
elements, applying b) we get that A = Ae ® A(1 — e).

O

Proposition 4.8. Let A be a K-algebra. Then:

a)

b)

An element idempotent of A is primitive if and only if eA is an idecom-
posable A-module.

A is semisimple if and only if there exists a decomposition of 14 in idem-
potent primitive ortogonal elements {ey,--- ,e,} with A = @]_, e;A and
e; A an irreducible A-module.

PRrROOF. Notice that item a) has been proved in Lemma 4.6. For b):

<

>

Let 14 be decomposed as 14 = ey ---e, wheree;, i =1,---,n is a prim-
itive ortogonal element. Then applying last Theorem, A = @, ¢;A
and using Lemma 4.6, all the e; A are idecomposable since e; is primitive.
Since they are also completely reducible, we get that they are irreducible.
Therefore A is semisimple.

Conversely, assuming that A is semisimple, we get that A = @, A4;
with A; an irreducible A-module. Applying last Theorem item a), there
must exist a family of idempotent ortogonal elements {ej,--- ,e,} with
A; = e;A. Notice that, since e; A is irreducible and hence idecomposable,
must hold by Lemma 4.6 that each e; for ¢ = 1,--- ,n must be a primitive
element.

O
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Theorem 4.9. [Pierce’s Decomposition| Let A be a semisimple K -algebra and
let R be a right-ideal of A. Then there exists an idempotent element e € A such
that R = eA and A admits the direct decomposition A = eA® (1 — e)A.

PROOF. Since A is semisimple, the regular A-module is completely reducible
and using a previous characterisation, we know that R has a complement, i.e. there
exists some right-ideal S of A, such that A = R@® S. Notice that in this context,
1y = e+ ¢ withe € R and ¢ € S. By construction ¢/ = 1 — e, and {e,1 — e}
is a decomposition of 14 in ortogonal idempotent elements. Therefore, applying
Theorem 4.7 item b), we get that A = eA @ (1 — e)A. Notice that since R is a
right-ideal, eA = R. ]

Definition 4.10. [Simple] A K-algebra A is called simple if there are no more
ideals on A than 0 and A. Is straightforward to see that each simple algebra is also
a semisimple algebra; since 14 ¢ J(A) and J(A) is an ideal of A, must hold that
J(A)=0.

Theorem 4.11. Let A be a semisimple K -algebra and let Ay, --- , A, the homoge-
neous components different from zero of the regular A-module, then:
a) A =@, | A; with A; an ideal of A, i =1,--- ,n, with the property that
foreach j=1,--- ,n, A;A; =0 fori#j.
b) Ewvery ideal of A is the sum of some A;’s. In particular, the A; are the

minimal ideals of A, fori=1,--- n.

¢) If we can decompose the unit 14 = e; + -+ + e, with e; € A;, then all
the e;’s for i = 1,--- ,n are central idempotent ortogonal elements and
moreover, e; acts as a unit in A; for alli = 1,---,n. It also holds that
Ai = €iA = Aei.

d) Every A; fori=1,--- ,n is a simple K-algebra.

PROOF. Let us check all the statements:

a) Let us consider A; = Hy(A), where W; is an irreducible A-module.
Since A is semisimple and for ¢ = 1,--- ,n, A; # 0, there exists a simple
W; <4 A; (minimal right-ideal of A) with W; = W;. Therefore we can
work with W; as a minimal right-ideal of A. Let us consider now an
arbitrary element a € A and let us consider the A-homomorphism:

wo: W; — aW;
r > ar
It is straightforward to see that ¢ is an epimorphism. Since Keryp, is an
ideal of W; and W; is minimal, it follows that Kerp, = 0 or Keryp, = W;.
In both cases, we can conclude that aW; C A;. Therefore AW, < A;. Let
W be a minimal right-ideal of A with W = W; with isomorphism «. By
a previous Theorem, there exists some idempotent element e; € A such
that W; = ;A and thus, e,W; = e;(e;A) = e2A = ;A = W, and hence,
W = (W)a = (e;W;)a = (e;a)W;. Tt follows that A; < AW; since they
are the homogeneous components of A (isomorphic to a sum of W;’s).
Therefore we get the other inclusion: 4; = AW, for i = 1,--- ,n. Now,
since A = @}, A; is a direct sum of ideals, 4;4; C A,NA; =01if i # j.

b) Let B be an ideal of A. Since A is semisimple, we get that B is completely
reducible as A-module, therefore we can write it as B = B1 ® --- @ B,
where B; is a minimal right-ideal of A, ¢ = 1,--- ;n. Assume now that
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B; =2 W; for all ¢ = 1,--- ,n, then applying last item we get that A; =
AB; C AB C B. Thus, B can be written as the sum of some A;’s.

¢) Tt follows from Theorem 4.7. Moreover, for each i = 1,--- ,n, let a; € A;.
It holds that a; = a;1 = a;(e1 +- - - +e,) = aie;. Applying the unit in the
left side, we also get that a; = e;a;, and thus e; acts as a unit for all the
elements of A;.

d) Assume that B is an ideal of A; and let j # ¢, then BA; = 0, because
Applying A in the other side, we also conclude that AB C B. Thus B
is an ideal of A, but notice that, by b), the A4;’s are the unique minimal
ideals of A. Therefore B =0 or B = A;. Hence A; is a simple K-algebra.

O

Definition 4.12. [Faithful] Let A be a K-algebra and let V' be an A-module. We
say that V is faithful if for each a € A, the condition Va = 0 implies a = 0.

Remark 4.13. Let R be a faithful representation of a given group G with repre-
sentation space V. Then V is not necessarily a faithful K G-module.

Theorem 4.14. Let A be a semisimple K -algebra. As we have already seen, we
can write A = @, A; with A; = Hw,(A;), where W; is a minimal right-ideal of
A, W; <Ay and Wy 2W; if j #14, for eachi=1,--- ,n. Then:

a) There exists exactly n irreducible A-modules up to isomorphy.

b) IfV is an irreducible A-module, then there exists somei € {1,--- ,n} such
that V= W; such that A; = Hy(A). Moreover, V is a faithful A;-module
and VA; =0 if j #1i.

c) If V#£0 is an A-module, then V=VA &---®VA,=Ver®---®d Ve,
and VA; = Hy, (V).

Proor. We will prove all the items together. Let V be an irreducible A-
module, then, as we already know, V is isomorphic to a composition factor of
A, which are, up to isomorphy, {W1,---,W,}. Notice that we have used that A
is semisimple. Suppose now that V' = W,, therefore, A; = Hy,(A) = Hy(A).
Moreover, if j # 14, VA; =2 W;A; = 0. Let us see that V is faithful; Let us consider
J={a € A;: Wia = 0}. It is straightforward to see that J is an ideal of A;
and A; is simple (last Theorem) therefore, J = A; or J = 0. Notice that J # A;
because e; ¢ J, thus J = 0 and we can conclude that W; is a faithful A;-module.
This proves a) and b).

Let V be an arbitrary A-module. It follows from A being semisimple that
V' is completely reducible. Notice that all the irreducible A-submodules of V' are
isomorphic to some W;, therefore we can write V as V- = @, Hw, (V). Moreover:

VAi = 69f]v1/7(‘/)14Z = HWZ(V)Az = HWZ(V) = HWZ(V)ez = Vei
j=1

This means that we can write V asV =VA; ®---dVA,=Ve1d---dVe,. O

Corollary 4.15. Let A be a K-algebra. The following statements are equivalent:
1) A is simple.
2) The regular A-module is homogeneous.
3) A has a faithful irreducible A-module.
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PROOF. Let us check all the statements:

1)>>2) If A is simple, then A = Hy (A) for some irreducible A-module, W.

2)>3) Apply the last Theorem for the case n = 1.

3)>1) Let V be a faithful irreducible A-submodule. Since it is irreducible, then
VJ(A) = 0 and since it is faithful, J(A) = 0, therefore A is semisimple
and we can write it as A = A; @ --- ® A,,. Notice that there must exist
some ¢ = 1,--- ,n such that V = A;, therefore by ortogonality, VA; =0
for all j # ¢, since V was faithful, A; = 0 for all j # 7 and we can conclude
that A = A;, i.e., A is simple.

O

2. Wedderburn’s Theorem

In order to prove Wedderburn’s Theorem we firstly need to present the Jacob-
son’s density Lemma:

Lemma 4.16. [Jacobson] Let A be a K-algebra and let V' be an irreducible A-
module. Consider L = End (V). Notice that L can be seen as a division algebra for
the composition of functions and moreover, V' can be seen as an L-module with the
lawvx f = (v)f.'. Let {v1, - ,v,} be a family of linearly L-independent elements
of V and let {wy,- -+ ,wy} be an arbitrary family of elements of V. Then there exist
some a € A such that v;a = w; for eachi=1,--- n.

PROOF. It suffices to show that we can find elements a; € A fori=1,--- ,n
such that vja; = w; if j = 4 and vja; = 0 if 4 # j. In this situation the desired
element a, will be precisely a = E:L:l a;. Let us proceed by induction on n.

For the case n = 1, we got that v; # 0 because it is linearly L-independent.
Hence, 0 #£ 11 A <4 V, and V is irreducible, thus v1A = V and given any w; € V
we can find some a € A with w; = vi1a.

Assume the statement hold for any family of m < n linearly L-independent

elements. Hence, applying L.H. for each i € {1,--- ,n} there exists some a € A such
that:
n—1
P /_/H
<(U1a7"' y Uiy v o 7vna)> =Ve---aV

Now, let us check that the following statement is false:

Vae A (na=---=vi1ja=vi416a=--=va=0 = v;a=0) *

If we assume towards a contradiction that this is true, we can then define the
following function:

n—1
—
T: Ve.---aV — V
(vlaa'” 7@3'” ,vna) —  va

Since we have assumed that the statement * holds 7 is well defined, in fact if
(ulav"’ au/ﬁla"' auna) = (’Ula,"' 7@;"' avna)
then (u; —vj)a = 0 for all j # i and therefore (u; — v;)a = 0, i.e., u;a = v;a.

Moreover, T is an A-homomorphism.

1L eft to the reader
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n—1

——
Fix now any 1 < k < n—1 and let g, the natural injection of VintoV &g --- @V
given by:

n—1

—
eg: V. — V...V
mo (0,"',7’7’1,,"',0)

where m is in the k-th position. It holds that 5 is an A-homomorphism for each
1 < k < n—1. Therefore, for each 1 < k < n — 1 let us define 7, = &7,
7 € Hom(V,V) and for each ¢ = 1,--- ,n it holds:

n

n
’Ui:(’Ul,"'77/J\z',"'7'Un)T: Z (07"'7@7"'71}167"';0)7—: Z /Uk:(sk:T)

k=1, k#i k=1, ki
Which is a contradiction because {v1, - -+ , v, } was a family of linearly L-independent
elements. Therefore the statement * is false and for each i = 1,--- ,n we can find

some b; € A such that v;b; = 0if j # ¢ and v;b; # 0.

Applying the case of n = 1 for the specific element v;b; # 0 there exists some
b € A such that v;b;b; = w;. Now, let us define a; = b;b}. It holds that v;a; = w;
and vja; = v;(b;b]) = (v;b;)b; = 0 if j # 4. This concludes the proof. O

Remark 4.17. As a special case, notice that this result is a generalization of a
Theorem coming from Linear Algebra about the existence of linear functions that
transforms a given linear system of n-vectors into another set of n-vectors.

In fact, let us consider V, a K-vector space and let {vy,---,v,} be a family
of n K-linear independent vectors and let {wy,--- ,w,} be an arbitrary family of
vectors. Then there exists a € Endg (V) such that v;a = w; for each i =1,--- n.
It follows from the previous Lemma by taking A = Homg(V,V), hence V is an
irreducible A-module and L = Homa(V, V).

Notice also that Jacobson’s Lemma is also valid for any ring A.

Lemma 4.18. Let A be any ring and let V. = @;_, V; and W = @[, W; be

two A-modules. For i = 1,--- n, let g; be the natural injection on V; and for
j=1,---,m, let m; be the natural projection on W;, that is:
g: Vi — V T w — W;
vo— v Uk U
It holds:

1) Assume that for each pair (i,j) with1 <i < mand1 < j < n, ¢;; €
Homa(V;, W;), then we can define ¢ € Homa(V, W) given by:

[ e - Gin | v |
oo+ +wv,) =
L om1 o P | | on |
2) Conversely, if p € Homa(V, V) we define for each pair (i,7) with 1 <i <

m and 1 < j <n. We define p;; = mipe; € Homa(W;,V;). It also holds:

Y11 o Pin U1
4,0(121+"'+Un):

Pm1 e Pmn Un
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3) Therefore as additive groups, we have the following isomorphism:

HomA(Vl,Wl) HomA(Vn,Wl)
Homa(V, W) = ; s
Homa(Vi,Wy,) -+ Homa(Vy, Wy,)
n)
—
4) In particular, if V" =V @---®V, then we have the following ring
isomorphism:

EndaA(V™) = Mat, (Ends(V))

PRrOOF. The proof is left to the reader. We give a hint for item b). Notice
that:

vy
((pz])zj] = Z(p”(vj) :Zﬂ-zgpgj(q)j) :SD(’UI ++Un)
Up, 1,3 i,j
This happens because ZZ m; = idwy. 0

Remark 4.19. Let D be a division ring, then D°P denotes the opposite division
ring of D, that is D° has the same underlying set and also the same addition,
but we change the product that is defined as x -y := yx. In this case, if V is a
n-dimensional D-vector spacem then:

Endp(V) = Mat, (DP)
n)
——
PROOF. From V being a D-vector space, we get that V=D & ---® D as D-
module. Using the previous Lemma, Endp(V) = Mat,(Endp(D)). Therefore it

is enough to show that Endp(D) = D°P. Let ¢ € Endp(D) and let z € D it holds
o(z) = zp(1). Therefore we define:

&: Endp(D) —s D°P
@ — (1)

It is a well-defined, injective and surjective function. We need to see that it is also
an homomorphism. Let
varphi, v € Endp(D) and let « € D, it holds:

(p)(x) = p($(X)) = p(x9p(1)) = [z (V)]p(1) = (2)(p(1) (1)) = (2)[@()2(¢)
Finally we get that ®(p1y) = ®(¢)®(¢)) and we can conclude that Endp(V)
Mat,,(D°P).

Theorem 4.20. [Wedderburn] The following statements hold:

a) Let A be a simple K-algebra and let V' be an irreducible A-module. Con-
sider D = End (V') (which is a division algebra). Then A = Endp (V) =
Mat, (D°P) where n = dimp(V). Moreover, if K is algebraically closed
(or more general, if Enda(V) = K) then A is isomorphic to a ring of
matrices over K.

b) Let D be a division K -algebra and let V be a D-module such that dimp (V) =
n, then A := Endp(V) = Mat, (D°P) is a simple algebra that has V as
irreducible and faithful module. Moreover D = End (V).

om —
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5

If D and E are two division algebras with Mat, (D) = Mat,(E) then
m=nand D=2 FE.

Proor. We will prove each statement:

a)

Using some previous results, it is straightforward to see that V is, up
to isomorphy, the unique irreducible A-module and notice that it is also
faithful. Let us define the following function:
a: A — Endp(V)
a — afa): V. — V
v va
a is well-defined. In fact, let a € A, v € V and k € K, it holds:
ala)[kv] = (kv)a = k(va) = ka(a)(v) = afa) € Endg(V)
moreover, for each d € End4(V), it also holds:
(vd)a(a) = (vd)a = (va)d = (va(a))d = «afa) € Endp(V)
It is left to the reader to check the fact of being o a K-algebra homo-
morphism as well. Now let a € A. Notice the following implications: if
a(a) = 0 then for each v € V, va = 0, therefore Va = 0 and using that V'

is faithful we conclude that ¢ = 0, this means that « is a monomorphism.
Let {v1,--- ,v,} be a D-basis of V and let f € Endp(V). By Ja-

cobson’s Lemma, there exists some a € A such that f(v;) = v;a for
i =1,---,n, therefore f = a(a) and hence, « is an epimorphism. Finally,
we get:

A= Endp(V) = Mat, (D)

The rest of the item follows from Schur’s Lemma.

By construction, V' is a D-module and hence it is also a faithful irreducible
A-module. Let d € D, v € V and a € A, notice that (va)d = (vd)a.
Therefore, D can be embed in Ends(V). By a previous Corollary, it
follows that A is a simple algebra. Now, let f € Enda(V) and consider
any 0 # v € V (V is a completely reducible D-module), we can write
V = vD®W for some D-module W. Let us consider the natural projection
w:V = vD, we get that m € A, therefore: (v)f = (vn)f = (vf)mr € Vi =
V' D, therefore there exsits some d € D with vf = vd. Thus, if w € V
there exists some a € A such that w = va and therefore we get:

(w)f = (va)f = (v)fa = (vd)a = (va)d = wd

Last statement is valid for each w € V| therefore f = d. As a consequence,
we conclude that Enda(V) = D.
Let A be a K-algebra such that A = Mat, (D) & Mat,(E). Applying
item b), it holds that A is a simple algebra. Therefore, if V' is the unique
isomorphy type of the irreducible and faithful A-module then Ends (V) =
D°P =2 E°P and hence, D = E. In particular we get that m = dimp (V) =
dimg(V) = n.

O

We can summarize the preceding Theorem for the case of semisimple K-algebras:

Theorem 4.21. Let A be a semisimple K -algebra. It holds:
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a) A= @f:l A; where A; = Mat,,(D]") are rings of matrices over a divi-
ston algebra D; fori=1,--- k. Moreover if i # j, then A;A; = 0.

b) A has, up to isomorphy, k irreducible A-modules that are not isomorphic
to each other, V; for i = 1,--- |k (i.e., k irreducible representations up
to equivalence). It also happens for i = 1,--- 'k that V; is an irreducible
A;-module, Qajﬂ A; annihilates V; and, moreover, V;A; = V;. It also
occurs that Enda,(V;) = D, therefore, if we denote n; = dimp,(V;), then
dimg (V;) = nidimg (D;) and therefore:

k
dimg(A) = Z nZdimg (D)
i=1

¢) In particular, if K is algebraically closed it holds that D; = K for i =
1,--+,k and hence, dimg (Vi) = n; and finally, dimg (A) = S°F_ n2

i=11% -
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CHAPTER 5

Indecomposable Modules

Definition 5.1. [Indecomposable] A non-trivial A-module M is indecompos-
able if the condition M = M; & M implies that M; =0 or My = 0.

Definition 5.2. [Local] An algebra A is called local if the set of unit elements
I:={a € A: ahasno inverse} is an ideal of A. Notice that in this case, I is the
unique maximal right[left]-ideal of A.

Theorem 5.3. Let A be an algebra:

a) If A is local, then I = J(A). In particular, if a € A, then it is a unit or
a nilpotent element.
b) A is a local algebra if and only if A/ J(A) is a division algebra.

PROOF. For the first statement we will use the remark made on Definition 5.2;
it follows that J(A) = I. Let a € A be a non-unit element then a € I = J(A).
Let us remember that J(A) is the greatest nilpotent ideal of A and therefore, a is
nilpotent. For the second statement, let us check the two implications:

> Assume that J(A) = I and let a+J(A) € A/J(A) be a non-zero element of
the quotient, then a & J(A) therefore it must be a unit element, therefore
there exists some b € A such that ab = ba = 1. Notice that b+ J(A) # 0
and it is the inverse of a + J(A).

< Assume that A/J(A) is a division algebra. Let us see that I = {a €
A : a has no inverse} = J(A). Consider any a € A without right-inverse
therefore aA C A (because 1 € A). There exists some maximal right-
ideal Ay of A with aA C Ay C A. By construction of J(A), we get that
J(A) C Ay. Notice also that:

(A + J(A))/J(A) C Ao/ J(A) C A/J(A)

but A/J(A) is a division algebra that has no proper ideals, therefore
Ap/J(A) = 0 and thus, Ag = J(A). It leads to (aA + J(A))/J(A) =0
and hence, a € J(A). It means, that every element of A that has no
right-inverse belongs to J(A).

Assume that b has a right-inverse, i.e., there exists some ¢ € A such
that bc = 1. If ¢ has no right-inverse then ¢ € J(A), and using that J(A)
is an ideal of A we have that 1 = bc € J(A) which is a contradiction.
Therefore ¢ has right-inverse, i.e., there exists some d € A with cd = 1.
Therefore b = b(ed) = (be)d = d. Thus, ¢ is an inverse of b and b is a unit
element. We conclude that every non-unit element belongs to J(A), i.e.,
I C J(A). But it is straightforward to see that J(A) C I because every
ideal of A must not contain any unit element. Thus, A is local.

O
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Lemma 5.4. [Fitting Lemma) Let M be an A-module and let o € End (M) be
an A-endomorphism. It holds:

a) Ing € N such that M = Kera™ @ Ima™.
b) « is injective if and only if « is surjective.

ProoF. We will only prove the first statement. Consider the family Ima’ =
{Ma*: i€ N} (a® = Id). M has finite dimension, therefore we can consider a
minimal element M a7, for some n; € N. It follows that for every k > 0, Ma™ T+ =
(MaF)a™ C Ma™. Since Ma™ was chosen to be minimal, we get that Ma™ ++ =
Ma™ for each &k > 0.

Now consider the family {Kera®: i € N} and take Kera™ to be its maximal
element. It holds that for each & > 0, Kera™ C Kerans + k. Since Kera™ was
chosen to be maximal, we get that Kera™ = Kera™tk for each k > 0.

We set ng = maz(ni,ns). Let k > ng, and m € Kera® N Ima* be an arbitrary
element. On one side, we can write m as mja for some m; € M, therefore,
mak = (mia*)a* = ma®*. On the other side, since m € Kera* then ma* = 0.
Thus, mi1a?* = 0. Therefore m; € Kera?* = Kera®. It means that m = 0 and we
conclude that Kera® N Ima* = 0.

Now let m € M, it holds that ma* € Ma* = Ma?*. Therefore Im; € M such

that ma* = mya?* and we can write m as m = (m — mlak) + mya®. Notice that
(m—mia®)ar = ma* —mia?* = ma* —ma® =0, thus m —m o € Kera® and it
also holds that m;a* € Ma* = Ima*. Therefore M = Kera® + Ima* and finally,
M = Kera® @ Imak. [l

Theorem 5.5. Let M be an A-module and let us set E = Enda(M). It holds:

a) M is an idecomposable A-module if and only if 0 and 1 are the only idem-
potent elements of E.
b) M is an idecomposable A-module if and only if E is a local algebra.

Remark 5.6. We only need the condition dimg(A) < oo for the left implication
(<) on item b) . The other statements hold for arbitrary dimension.

PROOF. Let us firstly check the two implications of item a):

> Assume that M is indecomposable and let f € E be an idempotent
element of E. As we already know (previous Chapter), we can write
M=Mfe®M(1 - f). Notice that M f and M (1 — f) are A-submodules
of M, therefore M f = 0 which leads to f = 0 or M(1 — f) = 0 which
implies that f = 1.

<& Assume that there are no more idempotent elements on E than 0 and
1. Let us prove that M is an idecomposable A-module. Assume that
M = My, & My with M; <4 M, i=1,2. Consider the natural projection
m : M — M on the first component. It holds that Kerm = M, and
Imm; = Mj. Notice that 77 = 7 is an idempotent element of E, therefore
w1 = 0 or m; = 1. For the first case, M = Ker0 = Kerm; = M, for the
second one M = Imld = Imm; = M.

Let us prove the second statement:

<& Assume that E is a local algebra. Let us prove some more general result.
Let T be a local K-algebra and let us see that there are no more idem-
potent elements on T' than 0 and 1 (it will lead to the indecomposability
of M by item a)). Let e € T be an idempotent element of T. It holds
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that e is a unit or a nilpotent element. For e being a unit element we get
that 3f € T with ef = 1 therefore, 1 = ef = e?f = e(ef) = e. For the
nilpotent case, we can find some k € N with e¥ = 0, but notice that e is
idempotent, therefore, 0 = e* = e.

> Assume that M is an indecomposable A-module. Using the Fitting Lemma,
we can write M = Kerf* @ Imf*. Therefore Kerf* =0 or Imf* = 0.
If Kerfk =0, then f* is a monomorphism and we conclude that f* is an
automorphism, i.e., we can find some g € E with fFg = gf* = 1. But
notice that (gf*=1)f = f(gf* ') = 1, therefore f is a unit element. For
the case Imf¥ = 0, we get that f* = 0 and thus, f is nilpotent. Finally,
every element of F is either unit or nilpotent.

We will prove that the set of non-unit elements of E is an ideal;
Let @ € E be a non-unit element of ¥ and let 8 € E. Notice that
« is not a monomorphism because it is not a unit, therefore, aplying
Fitting’s Lemma, we get that 0 # Kera C Ker(af), therefore of is not
a monomorphism, then it is not a unit element.

Now let a1, as € E be two non-unit elements and let us check that also
(a1 +ag) is not a unit. Assume towards a contradiction, that (a3 +as) is a
unit element, then there exists some v € E with (a1 +a2)y = ayy+agy =
1. Let us set 8; = ayv for i = 1,2. Notice that 5; + B2 = 1, thus
B1 =1 — s, therefore:

B1B2 = (1= B2)Ba = o — B3
Baf = B2(1 — B2) = B2 — B3
Using the previous result, 5; = «;7 is not a unit element for i = 1,2,

therefore (; is a nilpotent element for ¢ = 1,2. There exists some n € N
such that 87" = 553 = 0. Hence:

2n
Gt s =3 (1) sigr =0

=0

= [1B2 = BB *

It contradices the equation 31 + 82 = 1. Therefore, a + a5 is not a unit
element.

If @ € F is not a unit element, it is straightforward to see that —« is
also a non-unit element. Moreover, let a, 5 € E with a being non-unit,
then Ba is not a unit because Im(Ba) C I'ma C M, therefore Sa is not
a unit. It follows that the set {ow € E: « is not a unit} is an ideal of E,
and we finally get that F is a local algebra.

U
Theorem 5.7. [Krull-Schmidt] Let M be an A-module, then:
a) M = My, @ --- @ M, where M; is an idecomposable A-module for i =
1, n.
b) Last decomposition is unique up to index ordenation; If M = N1 @®- - -® Ny,
where Nj is an idecomposable A-module for j =1,--- k, thenn =k and

M; =2 N; up to reordenation.

PROOF. Let us prove each statement:

a) We will use induction on dimy (M). Assume that the statement is true for
A-modules with dimension lower than dim g (M). If M is indecomposable
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we are done, take n = 1 and M; = M. Therefore we can assume that M is
not indecomposable, i.e., there are 0 = My, My <4 M with M = M, M.
Notice that dimy(M;) < dimg (M) for i = 1,2 therefore, applying the
inductive hypothesis, we have that M; = EB?;I Mij, for i = 1,2 with M;;
indecomposable for j = 1,---n;. and we get the desired result:

2 n;
M =M, & My = @ EP Mij

i=1 j=1
b) Assume that M = M; & ---® M,, = N1 & --- & Ni. We will prove that,
for an specific reordenation of the indices, it holds that M; = N; and it
also holds that M X N1 & Mo ®--- & M,, =2 N1 & --- @ Ng. At this point,
it is enough to apply an inductive step to conclude that n = k and also

that M; 2 N, fori=1,--- ,n up to reordenation.

Let us check the above affirmations; Let us set N = @?21 N;. Notice
that M = N, assume that they are isomorphic via ¢. Let m; be the
projection of N on each M; for i = 1,--- ,n and let p; be the projection
of M on each Nj for j =1,--- k. It holds that 1 = Z?:l pj =D T
Therefore, m = 1m; = (Z§=1 p;)m Z?Zl p;m1. Let us denote p;m :=
(pjm1)|m € Enda(My). Notice that Enda (M) is a local algebra because
M, is indecomposable, therefore for each j € {1,---,k}, p;m is either
a unit or a nilpotent element. Assume, towards a contradicition that for
each j € {1,---,k}, pjm is a nilpotent element, thus 1 = Z?Zl P
would be nilpotent, which is a contradiction. Hence, there exists some
j € {1,--- ,k} that we can assume, without loss of gnerality, j = 1, for
which py7 is a unit.

Let us denote X := Mip; and Y = N; N Kerm and let us check that
N1 = X @Y. First notice that Ny = X +Y; let v € Ny, notice that vm €
M, therefore one can find some v € M; with vmy = (upq)m1, therefore
(upy — v)m = 0 which leads to affirm that up; —v € Kermy NNy =Y.
Thus, v = up; + (v — up1). Secondly let us check that X NY = 0; let
v € XNY then v = up; for some u € M; and v € Kerm N Ny, ie.,
vmy = upym = 0. This means that u € Kerpym = 0. It follows that
u = 0 and hence, v = 0. Finally Ny = X &Y.

Since V; is indecomposable, then X = 0or Y = 0. For X = 0 we get a
contradiction because Myp;m = My = 0, therefore Kermy "Ny =Y = 0.
It follows that Mipy = X = Ni. Moreover, (p1)a, is surjective and
(m1)|n, is injective. From py7; being an isomorphism, there exists some
g € Enda(My) such that p171g = 1y = (p171) |9 = 1as,, and finally we
get that (p1)as, is injective and we conclude that p; is an isomorphism.
It leads to My = N;.

It follows from Ny N (Ms @ --- @ M,,) = Ny N Kerm; =Y = 0 that
dimN; = dimM;. And we obtain our desired result:

M=N &My&---& M,
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CHAPTER 6

Group Algebras

In this chapter, we develop the most important example of a group algebra over
a field. We will get into detail about the previous results on the group algebra KG.
The fundamental result on this chapter, and one of the most important results on
the whole theory is that of Maschke, already proved in Chapter 3. In this chapter,
G will denote a group and K will be a field.

Theorem 6.1. [Maschke| The group algebra is semisimple if and only if
carK 1 |G|

We can use the equivalence: semisimple algebra < every module over the
algebra is completely reducible to state last Theorem with this equivalent form

Theorem 6.2. [Maschke] Fvery KG-module is completely reducible if and only
if carK 1|G|.

Theorem 6.3. Let K be a field and let G be a finite group. Let us consider the
center of KG, Z(KG) ={zx € KG: Yy € KG (zy =yx)}. Z(KG) is a K-algebra
which is a subalgebra of KG. Let {C;: i =1,--- ,n} be the set of conjugacy classes
of G and let us denote C; = 3 o @ fori=1,---,n. Then {Cy,---,Cy} is a
K-basis of Z(KG). In particular, dim(Z(KQ)) is equal to the number of conjugacy
classes of G.

PROOF. For eachi=1,--- ,n and g € G it holds:
g ' Cig=g" (Z w) 9= g lzg=> x=C;
z€C; z€C; z€C;

It means that C; € Z(KG) for each i = 1,--- ,n. Moreover, the set {C1,---,C,}
is a K-linearlly independent because C; N C; = 0 if i # j. Let dec agg be an
arbitrary element of Z(KG), then for each h € G:

Z agg = 1 Z agg | h= Z agh_lgh
geG geG geG
this means that ay = ajg,—1 for each h € G. Then:
D a9 =2 ai| > 9
geG i=1 gel;
it follows that {Cy,---,Cy} is a set of generators of Z(KG). O
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Theorem 6.4. Let G be a finite group and let K be a field with Endxa(V) =2 K
for each irreducible KG-module V' (in particular, when K is algebaically closed)
and assume that carK 1|G|, then:

KG = Mat,, (K)® - ® Mat,, (K)

where h is the number of conjugacy classes of G. Moreover, KG has, up to isomor-
phy, h wrreducible representations Vi,--- , V. It also happens that, up to indeces
reordenation, dimg (V;) = n; and ny = 1. Thus, |G| = Z?zl n? and G has, up to
isomorphy, h irreducible representations.

PROOF. It is almost everything proved. By Maschke’s Theorem K G is semisim-
ple and using Wedderburn’s Theorem we get that KG = @;_, Mat,,(K) where s is
the number of irreducible K G-modules and the n;’s are the respective dimensions.
Moreover Z(KG) = Y7 | Z(Mat,,(K)). The dimension of each Z(Mat,, (K)) is
1, therefore s = dimg (ZG) = h. Taking dimensions we get that

h
dimg(KG) = |G| = > n}
1=1

with ny = 1 (it corresponds to the trivial module and becomes associated to the
conjugacy class of 1). |

Remark 6.5. Let car K = p for some arbitrary prime number p, then the number
of isomorphic types of irreducible K G-modules is equal to the number of conjugacy
classes of p’-element of G. If we avoid the hypothesis Endgg(V) =& K for each
irreducible KG-module V, there it also exists a related result that gives the number
of isomorphic types of irreducible K G-modules.

Example 6.6. Let G = Y3 be the non-abelian group of order 6. G has 3 conjugacy
classes, therefore G has 3 isomorphy types of irreducible CG-modules. In Chapter
2 we have already built the irreducible CG-module of dimension 2. Notice that
n1 = 1 and ny = 2 therefore n3 = 1 in order to get 6 = 1 + 22 + n% Then there
exists a representation R : G — C \ {0}. Notice that KerR # G and it also holds
that KerR # {1} (otherwise, G = G/{1} = G/KerR = C\ {0}, but C \ {0} is
abelian). Therefore it must necessarily hold that |[KerR| = 3 and R(z) = —1 and
R(y) = 1.

Theorem 6.7. Let G be a group and let K be a field with carK t |G| such that
Endia(V) 2 K for each irreducible KG-module. With the previous notation, V;
has multiplicity n; on the reqular KG-module.

PrOOF. It holds that KG = @, a;, where A, = Mat,,(K). It follows
from Chapter 4 that the simple algebra A; has exactly on irreducible and faithful
module V; with dimension n; (up to isomorphy) for i = 1,--- ;n. It also hlds that
dme(Al) = n227 i.e.,

n;)

—
AxVio--oV

which proves the theorem. ([l
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