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1. SYMMETRIES AND (GROUPS

Symmetries Group of Symmetries

The symmetries Sym(T) of the
triangle T < IR? can be described as

permutations of its set of vertices

00 {1,2,3}



1. SYMMETRIES AND GROUPS

Symmetries Group of Symmetries

Rotations...

Sym(T) = {1,(123),(132),...}.

(0.0)
L
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Symmetries Group of Symmetries

.. and reflections.

Sym(T) = {1,(123),(132),(23),...}.

(0,0)
L
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Symmetries Group of Symmetries

.. and reflections.

Sym(T)

oo™ {1,(123;(132),(2 3),(12),...}.



1. SYMMETRIES AND (GROUPS

Symmetries Group of Symmetries

Rotations and reflections.

Sym(T) = S3 =
©00) {1,(123),(132),(23),(12),(13)}.



o Klein's Erlangen Program (1872).

“Geometry is its group of symmetries.”



o Klein's Erlangen Program (1872).

“Geometry is its group of symmetries.”

» Take M your favorite mathematical object.
Aut(M) = {¢: M — M | ¢ is a bijective morphism of M} is a group.

Aut(M) acts (as automorphisms) on M.



E. T. Bell (1938).

“Wherever groups disclosed themselves, or could be introduced, simplicity crystallized

out of comparative chaos.”



E. T. Bell (1938).

“Wherever groups disclosed themselves, or could be introduced, simplicity crystallized

out of comparative chaos.”
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Finite groups are
» Natural,

o ubiquitous in Mathematics, and

o extremely useful.
Their systematic study didn't start until the end of the XIX century.
Why did it take so long to realize the importance of the notion of group?

A possible answer: There was not an abstract definition!



E. Galois (around 1830) studied the complex roots of rational polynomials.

o Importance of the interaction between the symmetries (in his case permutations of

the roots respecting their algebraic properties.)

o Introduced the notions of normal subgroup, solvable group and simple group.



E. Galois (around 1830) studied the complex roots of rational polynomials.
o Importance of the interaction between the symmetries (in his case permutations of
the roots respecting their algebraic properties.)

o Introduced the notions of normal subgroup, solvable group and simple group.

Definitions
o A subgroup N of G is normal if for every g € G then g7 'Ng = N = \.
o« A group G is simple if it does not have proper normal subgroups.

» Jordan-Holder theorem asserts that simple groups are the atomic constituents of

finite groups.

» Solvable groups are groups in which every simple atomic group constituent is cyclic.



We owe the modern definition of group to Cayley (1878).



We owe the modern definition of group to Cayley (1878).

Once we have an axiomatic definition, how to study abstract finite groups (very much
simplified)?
o Via their actions on sets: Permutation Groups.

a: G — Sg homomorphism.

» Via their realizations as groups of matrices (linear actions on complex vector

spaces): Representation Theory .

p: G — GL,(C) homomorphism.



2. CHARACTER THEORY OF FINITE GROUPS

p: G — GL,(C) representation «— V = C" vector space with a linear G-action.

p irreducible «<—— V has no proper G-invariant subspace.

Irreducible representations are the building blocks of the representations.




2. CHARACTER THEORY OF FINITE GROUPS

p: G — GL,(C) representation «— V = C" vector space with a linear G-action.

p irreducible «<—— V has no proper G-invariant subspace.

Irreducible representations are the building blocks of the representations.

Examples
o The trivial representation of G is 15: G — C* with 15(g) = 1 for every g € G.

o In general, Hom (G, C*) are irreducible representations.

The degree of the representation p is n (the dimension of the underlying space V).



A more specific example

S3 as the group of symmetries of a regular triangle.

Rotation 27/3

(0,0)
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A more specific example

S3 as the group of symmetries of a regular triangle.

Reflection x =0 p: S3 —> G‘LQ(C)

(123)— (_ ) ,
e (3°)

/ p is an irreducible representation of S3
of degree 2.

N N | =

S
|G,

N[ w




Representations can get cumbersome!

The (Fischer-Griess) Monster group M
» M is a simple group.

oM has 240.320.59.76.112.133.17-19-23-29-31-41-47-59 - 71 elements.

» The smallest degree of a nontrivial irreducible representation is
d = 196883 = 47 -59 - 71.

We actually study the trace of representations...



Given a representation p: G — GL,(C) of degree n, its trace
x: G—C
g — Tr(p(g)),

is a character of G.



Given a representation p: G — GL,(C) of degree n, its trace
x: G—-C
g — Tr(p(g)),
is a character of G.
» X(1) = n is the degree of x (of p).

» X(g¥) = x(g) for every g,x € G.
o X is irreducible if p is irreducible < x # x1 + X».

Every character can be written as a sum of the elements of Irr(G), the set of

irreducible characters of G.



Examples

o The trivial character of G is 1, the trivial representation of G.

o The characters Hom(G, C*) < Irr(G) are all the irreducible characters of degree 1

of G. These are the only characters that are group homomorphisms.

o The irreducible character associated to the representation p of S3 we built before
X : S3 — C is determined by x(1) =2, x((123)) = —1 and x((2 3)) = 0.



Properties of (irreducible) characters
» Any representation p of G is determined up to isomorphism by its character

x =l1rop.
» Characters are complex functions on the conjugacy classes of G.

» Every character can be written uniquely as a sum of Irr(G).

Irr(G)| = k, the number of conjugacy classes of G.



Properties of (irreducible) characters
» Any representation p of G is determined up to isomorphism by its character

x =l1rop.
» Characters are complex functions on the conjugacy classes of G.

» Every character can be written uniquely as a sum of Irr(G).

Irr(G)| = k, the number of conjugacy classes of G.

In particular, we can display all the information on the values of Irr(G) in a (k x k)
matrix X(G) known as the character table of G.



Classes S3: 1 (123
Is, 1
sign 1

X 2 —

_ =

X(S3) =

1 1 1
1 1 -1
2 -1 0
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The character table of the Monster group M

A bit closer...
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The character table of M was computed (by Fischer, Livingston and Thorne) before

Its existence was proven.
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Applications of Character Theory (to Group Theory)

Burnside's p?qP-theorem (1904)

Every group of order p?g? is solvable.

e A proof without the use of Character Theory was not found until 1972 by Bender.



Applications of Character Theory (to Group Theory)

Burnside's p?qP-theorem (1904)

Every group of order p?g? is solvable.

e A proof without the use of Character Theory was not found until 1972 by Bender.

Feit-Thompon's odd order theorem (1963)

Every group of odd order is solvable.

e The paper is 255 pages long. A mixture of techniques from group theory (Fitting,
Hall, Sylow...) and character theory (Burnside, Frobenius,...).



Thompson was awarded a Fields Medal in 1970 for his work on groups of odd order.

Richard Brauer, at the ICM (1970).
“The central outstanding problem in the theory of finite groups today is that of

determining the simple finite groups. One may say this problem goes back to Galois.

In any case Camille Jordan must have been aware of it.”



Thompson was awarded a Fields Medal in 1970 for his work on groups of odd order.

Richard Brauer, at the ICM (1970).
“The central outstanding problem in the theory of finite groups today is that of
determining the simple finite groups. One may say this problem goes back to Galois.

In any case Camille Jordan must have been aware of it.”

The Feit-Thompson theorem made the community believe that a complete

classification of finite simple groups could be possible. And they were right...
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["] Alternating Groups
[T Classical Chevalley Groups
= Chevalley Groups
[T Classical Steinberg Groups
Steinberg Groups
[T suzuki Groups
["] Ree Groups and Tits Group*
["] Sporadic Groups
[T Cyclic Groups

*The Tits group 2F, (2)" is not a group of Lie type,

but is the (index 2) commutator subgroup of 2F,(2).
Itis usually given honorary Lie type status.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.

Copyright © 2012 Ivan Andrus.

Dynkin Diagrams of Simple Lie Algebras
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3. BRAUER’'S PROBLEM 12.



3. BRAUER’S PROBLEM 12.

It has been said by E. T. Bell that “wherever groups disclosed
themselves or could be introduced, simplicity crystallized out of
comparative chaos.” This may often be true, but, strangely
enough, it does not apply to group theory itself, not even when we
restrict ourselves to groups of finite order. We are reminded of
the educators who want to educate the world and cannot handle
their own children. A tremendous effort has been made by mathe-
maticians for more than a century to elear up the chaos in group
theory. Still, we cannot answer some of the simplest questions,

This is the start of a landmark survey article by Brauer (1963) containing a long list of

deep problems on Character Theory.

This list still guides our research today!



Brauer's Problem 12

How much does X(G) know about the Sylow subgroups of G? (And more generally

about local subgroups.)
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about local subgroups.)

X(G) knows a lot about the global structure of G.
o |G| = erhr(G) x(1)?, number of conjugacy classes, conjugacy class sizes.

o Normal structure of G and character tables of quotient groups (solvability,

nilpotency, simplicity,...).
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» X(G) does not determine G up to isomorphism.



Brauer's Problem 12
How much does X(G) know about the Sylow subgroups of G? (And more generally

about local subgroups.)

X(G) knows a lot about the global structure of G.
o |G| = erhr(G) x(1)?, number of conjugacy classes, conjugacy class sizes.

o Normal structure of G and character tables of quotient groups (solvability,

nilpotency, simplicity,...).

» X(G) does not determine G up to isomorphism.

Brauer's Problem 12 asks about the p-local structure of G (much harder question)

P e Syly,(G), Ng(P) ={ge G| P =P} and Ce(P)={ge G| |g, P]=1}.



What does X(G) know about P € Sylp(G)?

As Sylow theory is a cornerstone in Group Theory, Global-Local theory is today a

cornerstone in Representation and Character Theory.

Property or invariant X(G)
P v’ (elementary)
P normal in G v’ (elementary)
Ng(P)=P v' p odd [Navarro-Tiep-Turull, 2007] (using CFSG)
v p = 2 [Schaeffer Fry, 2019] (using CFSG)

Ng(P) = PCg(P) v’ p odd [Navarro-Tiep-V., 2019] (using CFSG)
v p = 2 [Schaeffer Fry-Taylor, 2018] (using CFSG)

ING(P)| We don't know!




What does X(G) know about P € Sylp(G)?

Property or invariant X(G

P cylic (1-generated) V' [Kimmerle-Sandling, 1995] (using CFSG
v’ [Navarro, 2003] (elementary proof

P abelian v’ [Kimmerle-Sandling, 1995 | (CFS
V' [Kessar-Malle, 2013], [Malle-Navarro, 2020] (CFS

(D)

)
)
)
v p € {2,3} [Rizo-Schaeffer Fry-V., 2020] (using CFSG)
)
)

(D)

P 2-generated v’ p = 2 [Navarro-Rizo-Schaeffer Fry-V., 2020] (CFSG)
p = 3 conjecturally yes [Navarro-Rizo-Schaeffer Fry-V., 2020]
p =57 We don't know!!

What's the key for some much progress in the last decade?



4. GLOBAL-LOCAL CONJECTURES
p prime dividing |G|.

Global side: Irry(G) = {x € Irr(G) | (x(1),p) = 1}.

Local side: Irry(Ng(P)) = {4 € Irr(Ng(P)) | (%(1),p) = 1}.

Philosophy: Certain invariants on the character theory of G (global) can be computed
looking at Ng(P) (local).



4. GLOBAL-LOCAL CONJECTURES

p prime dividing | G|.

Global side: Irry(G) = {x € Irr(G) | (x(1),p) = 1}.

Local side: Trry(Ng(P)) = {9 € Irr(Ng(P)) | ($(1), p) = 1}.

Philosophy: Certain invariants on the character theory of G (global) can be computed
looking at Ng(P) (local).

The McKay Conjecture (1971)

Irry(G)| = |Irry (NG (P))] -



4. GLOBAL-LOCAL CONJECTURES

p prime dividing | G|.

Global side: Irry(G) = {x € Irr(G) | (x(1),p) = 1}.

Local side: Trry(Ng(P)) = {9 € Irr(Ng(P)) | ($(1), p) = 1}.

Philosophy: Certain invariants on the character theory of G (global) can be computed

looking at Ng(P) (local).

The McKay Conjecture (1971)
‘II‘I‘p/(G)| — |III'p/(N(;(P))| o

If N¢(P) = P, then McKay predicts |Irry(G)| = k(P/P") = |P : P| is a power of p.

But this property does not characterize groups with a self-normalizing Sylow.



Take G = Gal(Q(e*™/I¢)/Q). Then the group G acts naturally on Irr,(G) and

Irry(NG(P)). These actions are not permutation isomorphic.

The following is a revolutionary conjecture in the field. (Q, stands for the field of

p-adic numbers below.)



Take G = Gal(Q(e*™/I¢)/Q). Then the group G acts naturally on Irr,(G) and

Irry(NG(P)). These actions are not permutation isomorphic.

The following is a revolutionary conjecture in the field. (Q, stands for the field of

p-adic numbers below.)

The McKay-Navarro Conjecture (2004)
The actions of H, = Gal(Q,(e*/1¢))/Q,) on Irr(G) and Irry(Ng(P)) are

permutation isomorphic.



Take G = Gal(Q(e*™/I¢)/Q). Then the group G acts naturally on Irr,(G) and

Irry(NG(P)). These actions are not permutation isomorphic.

The following is a revolutionary conjecture in the field. (Q, stands for the field of

p-adic numbers below.)

The McKay-Navarro Conjecture (2004)
The actions of H, = Gal(Q,(e*/1¢))/Q,) on Irr(G) and Irry(Ng(P)) are

permutation isomorphic.

The Mckay-Navarro Conjecture is behind most of the results contained in the tables

abovel

It is a source of inspiration for unveiling new local properties in the character table.






Progress on these conjectures

Isaacs-Malle-Navarro, 2007: To prove the McKay conjecture in full generality, it is
enough to verify the inductive McKay statement on finite simple groups. (New
perspective: Use the CFSG.)

Malle-Spath, 2016: The McKay conjecture holds for p = 2.



Progress on these conjectures

Isaacs-Malle-Navarro, 2007: To prove the McKay conjecture in full generality, it is
enough to verify the inductive McKay statement on finite simple groups. (New
perspective: Use the CFSG.)

Malle-Spath, 2016: The McKay conjecture holds for p = 2.

Navarro-Spath-V., 2020: To prove the McKay-Navarro conjecture in full generality, it

is enough to verify the inductive McKay-Navarro statement on finite simple groups.

Research groups in France, Germany, USA and Spain are currently working on this

statement!



Thanks for your attention!



