Carolina Vallejo Rodriguez

Universidad Carlos Il de Madrid - Instituto de Ciencias Matematicas de Madrid

London Algebra Colloquium



Introduction: Objective

In this talk, all groups will be finite.

G finite group, P € Syl,(G). Assume P = (x, y) (includes P cyclic, dihedral,

semidihedral, generalized quaternion, etc.).



Introduction: Objective

In this talk, all groups will be finite.

G finite group, P € Syl,(G). Assume P = (x, y) (includes P cyclic, dihedral,

semidihedral, generalized quaternion, etc.).

Write £(27,2) to be the number of isomorphism classes of 2-generated groups of order

2". Then
2n2/4+o(n2) < f<2n,2) < 2n2/2+o(n2)

(Jaikin-Zapirain, 2008)



Introduction: Objective

In this talk, all groups will be finite.

G finite group, P € Syl,(G). Assume P = (x, y) (includes P cyclic, dihedral,

semidihedral, generalized quaternion, etc.).

Write £(27,2) to be the number of isomorphism classes of 2-generated groups of order

2". Then
2n2/4+o(n2) < f<2n,2) < 2n2/2+o(n2)

(Jaikin-Zapirain, 2008)

Aim: Understand the character theory of groups possessing a 2-generated Sylow

2-subgroup.
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A representation p: G — GL,(C) is a group homomorphism. The representation p is
irreducible if C" has no proper G-invariant subspace.

The character afforded by p (irreducible) is x € Irr(G),

x: G—C
g — Trace(p(g)) -
The degree of x is x(1) = n.

Examples

o The principal character of G is 15: G — C* with 15(g) = 1 for every g € G.

o In general, Lin(G) = Hom(G,C*) < Irr(G).
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irreducible representation of degree 2.
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Introduction: The basic set-up

Properties
» Characters are constant on G-conjugacy classes.

(G)| = k(G) the number of G-conjugacy classes.
( )E @( 2mi/o(g )

We can display all the information on the values of Irr(G) in a (k x k) matrix known

as the character table of G.

Write Irr(G) = {x;}/_; and {gj}/_; for G-conjugacy class representatives, then

X(G) = [xi(g)]fj-1-

11 1
For example, X(S3) = [1 -1 1
2 0 -1
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2 0 -1
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A classic question

How much information about the structure of G does X(G) contain?

/6=, x(1)?

x€lrr(G)

v |G : G'| = |Lin(G)|. Indeed, G/G’' = Lin(G) =~ Irr(G/G").

v" G-conjugacy class sizes.

v (Higman, 1971) The sets of primes dividing the orders of elements in G.
v G abelian, (p-)nilpotent, (p-)solvable, simple, etc.

X Orders of elements: X (Dg) = X(Qg).

X The exponent of the group: X(p}™) = X(p'*2), for p odd.
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Brauer's Problem 12 (1963)

For a prime p dividing the order of G and P € Syl (G). How much information about
the structure of P does X(G) contain?

Property or invariant X(G)

P v/

Ng(P) =G v

Ng(P) =P v (using CFSG)

[Navarro-Tiep-Turull, '07] and [Schaeffer Fry, '19]
Ng(P) p-nilpotent v (using CFSG)
[Schaeffer Fry-Taylor, '18] and [Navarro-Tiep-V., '19]

ING(P)] ks

Above P < Ng(P) = {ge G | P = P} < G.
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Brauer's Problem 12 (1963)

For a prime p dividing the order of G and P € Syl (G). How much information about
the structure of P does X(G) contain? In particular, can it be decided whether or not
P is abelian?

(Camina-Herzog, 1980) Characterize the commutativity of P € Syl,(G) in terms of

the sizes of the centralizers of 2-elements.
For a prime p dividing |G|, write Irty(G) = {x € Irz(G) | p1 x(1)}.

Theorem (Itd-Michler, 1986)
Let G be a finite group, p a prime and P € Syl (G).

Irry(G) = Irr(G) if, and only if, P < G is abelian.

e This theorem was one of the first applications of the CFSG.
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The commutativity of P

Write G° = {g € G | pto(g)} < G for the p-regular elements of G.
Irr(By(G)) = {x € Irr(G) | Z ) # 0} 3 1 is the principal block of G.

geGY

Brauer's height zero conjecture for principal blocks (1963)
G group, p a prime and P € Syl (G). Let By = By(G).

Irry(By) = Irx(By) if, and only if, P is abelian.

e This is the principal block case of Brauer's Problem 23. It's now a theorem!

(<) Holds by work of Kessar and Malle from 2013 (for arbitrary blocks).
(=) Recently shown by Malle and Navarro (2021).
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Generation properties of P

How much information on the number of generators of P does X(G) contain?

P is n-generated if, and only if, |P/®(P)| < p”, where ®(P) is the Frattini subgroup

(non-generating elements of P).
e Does X(G) know if P is cyclic (1-generated)?

Theorem (Kimmerle-Sandling, 1995)
G and H finite groups with X(G) = X(H) and P € Syl,(G). If P is abelian, then
@ € Syl,(H) is abelian. In such a case P =~ Q.

e From this result, we cannot tell whether P is cyclic or not by just looking at X(G).

Are there ways to do so? Ideally in terms of Irr(By(G)).



Galois action on characters and 1-generation of P

Let G = Gal(Q(e?™/I¢)/Q). Then G acts on Irr(G) (and on Irr(By(G))).

x’(g) =o(x(g)), foroeg, xelrr(G), ge G.



Galois action on characters and 1-generation of P

Let G = Gal(Q(e?™/I¢)/Q). Then G acts on Irr(G) (and on Irr(By(G))).

x’(g) =o(x(g)), foroeg, xelrr(G), ge G.

Write K, ={ce G |a(§)=¢& ifpto(§)} <G.



Galois action on characters and 1-generation of P

Let G = Gal(Q(e?™/I¢)/Q). Then G acts on Irr(G) (and on Irr(By(G))).
x°(g) = o(x(g)), foroeg, xelrr(G), g€G.
Write K, ={ce G |a(§)=¢& ifpto(§)} <G.

e (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action

of K, on Irr(By(G)). v



Galois action on characters and 1-generation of P

Let G = Gal(Q(e?™/I¢)/Q). Then G acts on Irr(G) (and on Irr(By(G))).

x’(g) = o(x(g)), foroe G, xelrr(G), geG.

Write K, ={ce G |a(§)=¢& ifpto(§)} <G.
e (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action

of K, on Irr(By(G)). v

Let 0, € K, be such that 0, .(w) = w'**" if o(w) is a p-power.



Galois action on characters and 1-generation of P

Let G = Gal(Q(e?™/I¢)/Q). Then G acts on Irr(G) (and on Irr(By(G))).
x°(g) = o(x(g)), foroeg, xelrr(G), g€G.
Write K, ={ce G |a(§)=¢& ifpto(§)} <G.

e (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action

of K, on Irr(By(G)). v

Let 0, € K, be such that 0, .(w) = w'**" if o(w) is a p-power.

e By (Navarro-Tiep, 2019 and Malle, 2020) P € Syl,(G) cyclic depends on the action
of specific 02,'s on Irry(By(G)). v v/
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1-generation of P € Syl,(G)

A particular member of K, holds the key.

Recall 01 € G fixes odd roots of unity and 05 1(w) = w? for every 2-power root of

unity w. Write 01 = 051 and Irry(By(G))! for o1-fixed elements.

Theorem A (Rizo-Schaeffer Fry-V., 2020)
G, P e SYlQ(G) and BO — Bo(G)

Irry(By)?t| = 2 if, and only if, P is cyclic.

e Theorem A conjecturally extends to general blocks and defect groups.
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What is special about 077

Recall P/P' ~ Lin(P) = Irr(P/P). For p = 2,
A eIrr(P/P') then A%t = X «= X2 = 1p <= ) € Irr(P/®(P)).
Hence

Irr(P/P)°t = Irr(P/®(P)) ~ P/®(P).

Theorem A (Rizo-Schaeffer Fry-V., 2020)
G, P e SYIQ(G) and BO = Bo(G)

Irry(By)?t| = 2 if, and only if, P is cyclic.

(«<=) Assume P € Syl,(G) is cyclic, then G = M x P and
Irry(Bo)%t| = |Irry(P)7Y| = |lee(P/P')7 = |P/®(P)| = 2.
(=) Requires the use of the CFSG.
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2-generation of P

2-generated Sylow 2-subgroups include cyclic, dihedral, semidihedral and quaternion

groups but many other classes of groups.

Pl 22228t 0 % X(G)
cylic 1| 1| 1| 1] 1]... 1
abelian |1 2 | 3 5 7 | ... |p(n)~ 4mf \f ‘
D-generated | 1 | 2 | 4 | 9 |20 | ... | f(2",2) ~2¢@7




2-generation of P

2-generated Sylow 2-subgroups include cyclic, dihedral, semidihedral and quaternion

groups but many other classes of groups.

P 2122 28| 2% 25 2" X(G)
cylic 11 1] 1]1]... 1 v
abelian |1 2 3 |5 | 7 ... p(n)~ 4n\f \/jn v
D-generated | 1 | 2 | 4 | 9 20| ... | f(2",2)~2°®m |
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2-generation of P

Recall o1 € K, sends 2-power roots of unity to their cube, and
Irry(By(G))t = {x € Irro(By(G)) | x°* = x} -
Theorem B (Navarro-Rizo-Schaeffer Fry-V., 2021)
G, P € Syl,(G) and By = By(G).
Irro(By(G))?t| < 4 if, and only if, P is 2-generated (|P/®(P)| < 4).

e For the general block version of Theorem B, we would like to know if the following

problem has a positive answer.

Problem: Suppose that B is a 2-block of G with defect P < G, such that P is
elementary abelian. Is it true that |Irr(B)| = 4 if, and only if, D = C; x C,7?
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An example. Does G have a 2-generated Sylow 2-subgroup?
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An example. Does G have a 2-generated Sylow 2-subgroup?

A5 X C4.
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Yes, it does! G
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studied in full generality in the literature. Hence both directions were equally difficult,

and required ad hoc reduction theorems and the use of the CFSG.



On Theorem B

Theorem B (Navarro-Rizo-Schaeffer Fry-V., 2020)
G, P e Syl,(G) and By = By(G).

Irry(Bo(G))%| < 4 if, and only if, P is 2-generated (|P/®(P)| < 4).

e If G has even order, then |Irry(By(G))?!| is an even number.
1. The case where |Irry/(By(G))%t| = 2 is taken care by Theorem A.
2. We need to prove that |Irry(By(G))°| = 4 if, and only if, |P/®(P)| = 4.

e The character theory of groups with a 2-generated Sylow 2-subgroup has not been
studied in full generality in the literature. Hence both directions were equally difficult,

and required ad hoc reduction theorems and the use of the CFSG.

e Theorem A and B follow from the Galois refinement of the Alperin-McKay

conjecture proposed by Navarro in 2004.



Thanks for your attention!



