ANÁLISIS DE LA VARIANZA : ANOVA (UN FACTOR)

- 1.-COMPRESIÓN DE LA SITUACIÓN I
- 2.- COMPRENSIÓN DE LA SITUACIÓN II
- 3.-EXPRESIÓN GENERAL DE LA SITUACIÓN: SITUACIÓN ANALÍTICA
- 4.-MODELO E HIPÓTESIS
- 5.-CONDICIONES PARA LA APLICACIÓN
- 6.-DESCOMPOSICIÓN DE LA VARIABILIDAD TOTAL
- 7.-DIVISIÓN DE LA DESCOMPOSICIÓN TOTAL
- 8.-CONTRASTE
- 9.-TABLA "ANOVA"
- 10.-COMPARACIONES MÚLTIPLES; PRUEBA DE TUKEY
- 11.- PRUEBA DE SCHEFFÈ
- 12-METODOLOGÍA INFORMÁTICA EN SPSS/PC
- 13.-PRUEBAS DE COMPARACIONES MÚLTIPLES CON SPSS/PC
- 14.-EJEMPLO: DATOS ORIGINALES
- 15.-EJEMPLO: REDUCCIÓN DE DATOS
- 16.-EJEMPLO: DATOS ESTRUCTURADOS
- 17.-EJEMPLO: REDUCCIÓN DE DATOS ;MEDIANTE EN FACTOR
- 18.-EJEMPLO: HISTOGRAMA COMPARATIVO CON LA NORMAL
- 19.- EJEMPLO: AJUSTE A NORMAL TEST K-S
- 20.-EJEMPLO: PRUEBAS DE HOMOSCEDASTICIDAD
- 21.-EJEMPLO:TABLA "ANOVA"
- 22.-EJEMPLO:COMPARACIONES MULTIPLES MÉTODO "SNK"
- 23.-EJEMPLO:COMPARACIONES MÚLTIPLES MÉTODO "LSD"
- 24.-EJEMPLO:COMPARACIONES MÚLTIPLES MÉTODO "SCHEFFÈ"
- 25.-CONCLUSIONES

EJEMPLO PARA LA COMPRESIÓN DE LA SITUACIÓN:

Supongamos una población de las notas y i.i de un universo de 9 alumnos de tres grupos distintos, así:

grupo 1	grupo 2	grupo 3
5	5	5
5	5	5
5	5	5

evidentemente en este caso la media global es 5 y la de cada grupo también $y_{i,i} = \mu$ cada valor es igual a la media general. NO HAY DIFERENCIAS ENTRE GRUPOS NI DENTRO DE LOS GRUPOS

Supongamos que aplicamos un método de enseñanza (factor) que afecta : subiendo las notas del grupo 1 en 1 punto, las del grupo dos en 2 puntos y no modificando las del grupo 3. Así.

grupo 1	grupo 2	grupo 3
5+1=6	5+2=7	5
5+1=6	5+2=7	5
5+1=6	5+2=7	5

ahora la nota de un alumno sería y_{i,i} = μ + α; en el que los α; son 1, 2, 0 los EFECTOS QUE PRODUCEN EL FACTOR (MÉTODO) EN CADA NIVEL : PARECE CLARO QUE EL FACTOR INFLUYE EN ESTABLECER DIFERENCIAS ENTRE GRUPOS; PERO NO DENTRO

EJEMPLO PARA LA COMPRESIÓN DE LA SITUACIÓN II

Lo más habitual es que haya alumnos que rindan más que otros (por diversas razones aleatorias o que en principio no dependan de un factor) ,son por tanto, comportamientos aleatorios individuales que denominamos $\mathbf{\epsilon}_{i,i}$ implantando algunos en el ejemplo ,sería:

grupo 1	grupo 2	grupo 3
5+1-1=5	5+2+2=9	5+0+3=8
5+1-2=4	5+2+0=7	5+0+4=9
5+1+0=6	5+2+1=8	5+0+0=5

en el que los efectos aleatorios

 $\boldsymbol{\epsilon}_{i,i}$ serían -1,-2,0,2,0,1,3,4,0 que fomentan la

variablidad dentro de los grupos INTRA-GRUPOS

Entonces para cada valor tendremos el modelo $y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}$

TENEMOS DOS TIPOS DE VARIABILIDAD : LA ENTRE GRUPOS (DEBIDA AL FACTOR) Y LA INTRA GRUPOS (DEBIDA A LA ALEATORIEDAD....) .

PARA PODER AFIRMAR QUE EL FACTOR PRODUCE EFECTOS. LA VARIABILIDAD ENTRE LOS GRUPOS HA DE SER SIGNIFICATIVAMENTE GRANDE RESPECTO A LA INTRA GRUPOS

Sea Y una variable aleatoria sobre la que se han tomado N muestras ; de manera que obtenemos k muestras correspondientes a las k categorías(niveles) del factor. Si el tamaño de la muestra para cada categoría es el mismo (n) para todas, estaremos ante un modelo **BALANCEADO** en el que N = nk Y sigue una $N (\mu_i, \sigma)$ para i = 1, 2, 3, ..., k.

			V/ 1 / 2	
	1	2 .	NIVELES DEL FACTOR	k
1	$Y_{1.1}$	$Y_{2.1}$		$Y_{k,1}$
2	$Y_{1.2}$	$Y_{2.2}$		$Y_{k,2}$
j	$Y_{1,i}$	Y 2.i.	Y _{ii}	$Y_{\mathbf{k}.i}$
n	$Y_{1.n}$	$Y_{2.n}$		$Y_{k.n}$

$$i = 1,2,3,....k$$
 $j = 1,2,3,....n$ (en el caso de balanceado)

media muestral correspondiente al nivel i del factor =
$$\frac{1}{n}\sum_{j=1}^{n} Y_{ij} = \overline{y}_{i}$$
.

media general =
$$1/N \sum_{i=1}^{k} \sum_{j=1}^{n} Y_{ij} = \bar{y}$$

MODELO E HIPÓTESIS

EL MODELO SERÍA EL SIGUIENTE :
$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

$$\frac{\text{donde}:}{Y_{ij} = \text{observación j-ésima del nivel i}} \qquad \mu = \text{media general}$$

$$\alpha_i = \text{efecto el i-ésimo nivel del factor} \qquad \epsilon_{ij} = \text{error aleatorio independiente N}(0,\sigma)$$

PANTEAMOS LA SIGUIENTE HIPÓTESIS NULA

$$H_0 = \alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_{\kappa}$$

o bien si consideramos $\mu_i = \mu + \alpha_i$

entonces
$$H_0 = \mu_1 = \mu_2 = \mu_3 = = \mu_K$$
 en definitiva se quiere comprobar la **no influencia** del factor α DE OTRA FORMA : SI TODAS LAS MUESTRAS PROCEDEN DE LA MISMA POBLACIÓN

CONDICIONES GENERALES DE APLICACIÓN.

A- INDEPENDENCIA DE LOS ERRORES. Los errores experimentales han de ser independientes. Se consigue si los sujetos son asignados aleatoriamente. Es decir, se consigue esta condición si las elementos de los diversos grupos han sido elegidos por muestreo aleatorio.

B- NORMALIDAD . Se supone que los errores experimentales se distribuyen normalmente. Lo que supone que cada una de las puntuaciones **y**_{i,i} se distribuirá normalmente . Para comprobarlo se puede aplicar un test de ajuste a la distribución Normal como el de **Kolmogov-Smirnov**

C- HOMOGENEIDAD DE VARIANZAS (HOMOSCEDASTICIDAD). La varianza de los subgrupos ha de ser homogénea $\sigma^2_1 = \sigma^2_2 = \dots = \sigma^2_{\kappa}$ ya que están debidas al error. Se comprobarán mediante los test de : Razón de varianzas (máx/mín), C de Cochran, Barlett-Box,

DESCOMPOSICIÓN DE LA VARIABILIDAD TOTAL

que quedaría establecida de la siguiente forma:

$$\sum \sum (\mathbf{Y}_{ij} - \bar{\mathbf{y}})^2 = \sum \sum (\mathbf{Y}_{ij} - \bar{\mathbf{y}}_{i.})^2 + \sum_{i=1}^k (\bar{\mathbf{y}}_{i.} - \bar{\mathbf{y}})^2$$

$$\text{S.C.T.} = \text{S.C.I.} + \sum_{i=1}^k (\bar{\mathbf{y}}_{i.} - \bar{\mathbf{y}})^2$$

Donde: S.C.T. = SUMA DE CUADRADOS TOTAL

S.C.I. = SUMA DE CUADRADOS INTRA-GRUPOS (within-groups)

S.C.E. = SUMA DE CUADRADOS ENTRE-GRUPOS (between-groups)

En el caso de NO ser BALANCEADO, no habría una solo n sino k distintos valores.

la descomposición quedaría entonces así:

$$\begin{split} \sum \sum \left(\mathbf{Y}_{ij} - \bar{\mathbf{y}} \right)^2 &= \sum_{i=1}^k \sum_{i=1}^{n_i} \left(\mathbf{Y}_{ij} - \bar{\mathbf{y}}_{i} \right)^2 + \sum_{i=1}^k \mathbf{n}_i \left(\bar{\mathbf{y}}_{i} - \bar{\mathbf{y}} \right)^2 \\ \text{S.C.T.} &= \text{S.C.I.} & \text{S.C.E.} \end{split}$$

S.C.T. será la suma de las desviciones de cada Υ_{ii} respecto a la media general $\bar{\mathbf{y}}$

S.C.I. será la variación total de las observaciones alrededor de cada una de las medias muestrales

S.C.E. será la variación de las medias muestrales de cada grupo alrededor de la media general

SI DIVIDIMOS LA DESCOMPOSICIÓN DE LA VARIABILIDAD POR LA VARIANZA

$$\frac{\text{S.C.T.}}{\sigma^2} = \frac{\text{S.C.I.}}{\sigma^2} + \frac{\text{S.C.E.}}{\sigma^2}$$

Dado que las observaciones de las k muestras son independientes , cada uno de los tres sumatorios desde i=1 hasta i=k es la suma de k variables aleatorias que tienen distribuciones χ^2 de tal manera que

S.C.T. /
$$\sigma^2$$
 $\longrightarrow \chi^2$ con (N-1) grados de libertad
S.C.I. / σ^2 $\longrightarrow \chi^2$ con k(n-1) grados de libertad
S.C.E. / σ^2 $\longrightarrow \chi^2$ con (k-1) grados de libertad

en el caso de diseño NO BALANCEADO S.C.I. / σ $^2 \rightarrow \chi$ 2 con $(n_1^{-1}) + (n_2^{-1})...(n_k^{-1})$ grados de libertad

Bajo la hipótesis nula; la variabilidad entre grupos no deberá superar significativamente a la variabilidad intra grupo luego el cociente S.C.E / S.C.I. no deberá ser significativamente grande. Esa Significabilidad nos la dará una distribución de probabilidad asociada. Así:

$$\frac{\text{S.C.E.}}{\text{S.C.I.}} \longrightarrow \frac{\chi^2_{(k-1)}}{\chi^2_{k(n-1)}} \text{ 6 bien } \chi^2_{(N-k)} \text{ si multiplicamos el conciente por N-k/k-1}$$

$$\frac{\text{S.C.E.} \cdot (\text{N-k})}{\text{S.C.I} \cdot (\text{k-1})} \stackrel{=}{\longrightarrow} \frac{\chi^2_{(\text{k-1})/(\text{k-1})}}{\chi^2_{(\text{N-k})/(\text{N-k})}} \longrightarrow \mathbf{F}_{(\text{k-1}),(\text{N-k})} \stackrel{\cong}{\Longrightarrow} \mathbf{F}$$

Así para un nivel de significación 💢 🙃

Si ${f F}>{f F}_{lpha}$ se rechaza la ${f H}_0$ medias de los grupos no son iguales .

Si ${f F} < {f F}_{lpha}$ no se puede rechazar la ${f H}_0$; luego medias de los grupos son iguales no influye el factor

no hay diferencias significativa entre los piveles

TABLA "ANOVA" DE UN FACTOR.

fuente de variación	G.L	SUMA DE CUADRADOS	F (k-1)(N-k)
ENTRE-GRUPOS	k-1	S .C. E.	
INTRA-GRUPOS	N-1 (n ₁ -1)+(n ₂ -1)+(n _k -1) no balanceado	S. C. I.	
TOTAL		S. C. T.	$\mathbf{F} = \frac{\text{S.C.I (N-k)}}{\text{S.C.E (k-1)}}$

COMPARACIONES MULTIPLES ENTRE MEDIAS.

Si se ha **rechazado la hipótesis nula** de igualdad de medias esto supone : EXISTE AL MENOS UNA DIFERENCIA. . PERO NO SABEMOS CUÁNTAS,NI ENTRE QUE MEDIAS.

Para ello se establecen pruebas de comparación múltiple (a posteriori); aquí vamos a ver dos la de TUKEY y la de SCHEFFE.

PRUEBA DE TUKEY (Honestly Significant Difference).

A) Se estiman las diferencias entre las medias de los grupos (Ψ). Así

	$\overline{\mathbb{X}}_1$	$\overline{\mathtt{x}}_{2}$	$\overline{\mathbb{X}}_{\mathtt{k}}$
$\overline{\mathbb{X}}_1$		$\Psi = \overline{X}_1 - \overline{X}_2$	$\Psi = \overline{\underline{X}}_1 - \overline{\underline{X}}_k$
X ₂			$\Psi = \overline{X}_2 - \overline{X}_k$
$\dot{\overline{x}}_k$		-	

B) Se calculará: la desviacione típica según Tukey

$$σ Ψ = √ M.C.I (media cuadrática I.$$

C) Los cocientes entre los diversos Ψ_i / σ_{Ψ} se compararán con la tabla de Tukey que nos indicará que diferencias son significativamente distintas para un α prefijado

PRUEBAS DE COMPARACIONES MULTIPLES CON SPSS/PC+

YA SE VIO LA APLICACIÓN DEL COMANDO

......RANGES = nombre del procedimiento

Los procedimientos y sus comandos son:

PRUEBA	nombre del procedimiento
Student-Newman-Keuls	SNK
Tukey	TUKEY
B de Tukey	BTUKEY
diferencia mínima significativa	LSD(p)
diferencia mínima significativa modificada	MODLSD(p)
recorrido multiple de Duncan	DUNCAN(p)
comparaciones de Scheffè	SCHFFÈ(p)

(p) donde p es el nivel de significación explicitado: 0.01, 0.05, 0.1

	COMPO	NENTE AS	SÍ COMO EL	DÍA QUE S	, QUE SE TAF SE REALIZÓ L	A PRUEB	4		
				I		I		1	
INUTOS		MINUTOS		VINUTOS		MINUTOS		AINUTOS .	
	MARTES		VIERNES		JUEVES		MIERCOLES		MARTES
	VIERNES		MARTES		MIERCOLES		MIERCOLES		MARTES
	MIERCOLES		VIERNES		JUEVES		MIERCOLES		LUNES
204	MARTES	214	VIERNES	207	JUEVES	204	JUEVES	215	MIERCOLES
209	MARTES	212	MARTES	219	MIERCOLES	203	MIERCOLES	205	VIERNES
216	MIERCOLES	208	JUEVES	213	JUEVES	221	LUNES	207	MARTES
207	MARTES	223	JUEVES	216	JUEVES	204	MIERCOLES	206	MIERCOLES
206	MARTES	209	LUNES	225	LUNES	224	JUEVES	216	MARTES
220	LUNES	204	MIERCOLES	208	JUEVES	221	JUEVES	211	MARTES
228	LUNES	202	MIERCOLES	224	VIERNES	206	VIERNES	217	MIERCOLES
220	MARTES	205	LUNES	220	MIERCOLES	200	JUEVES	212	VIERNES
202	MIERCOLES	223	MIERCOLES	222	VIERNES	211	MIERCOLES	216	MARTES
210	MARTES	206	LUNES	228	LUNES	212	MARTES	223	MIERCOLES
200	MARTES	200	MARTES		VIERNES	208	JUEVES	216	VIERNES
205	MIERCOLES		VIERNES		VIERNES	223	JUEVES		MIERCOLES
	LUNES		JUEVES		LUNES		LUNES		VIERNES
	MARTES		JUEVES		VIERNES		LUNES		MIERCOLES
	MARTES		LUNES		JUEVES		JUEVES		MIERCOLES
	LUNES		LUNES		VIERHES		JUEVES		MIERCOLES
	MARTES		LUNES		VIERNES		JUEVES		MARTES

SPSS FRECUENCIES.

VARIABLE A "TIEMPO EN MINUTOS"

REDUCCIÓN DE DATOS

MEDIA	212.240	VARIANZA	4 61.679	MEDIANA	211.000
MODA	204.000	DES.TIPIC	A 7.854	KURTOSIS	-1.142
Coef. ASI	METRIA 0.192	RANGO	28.000	OMINIM	200.000
MÁXIMO	228.000	SUMA	21224.000		

TIEMPOS ESTRUCTURADOS POR DIAS

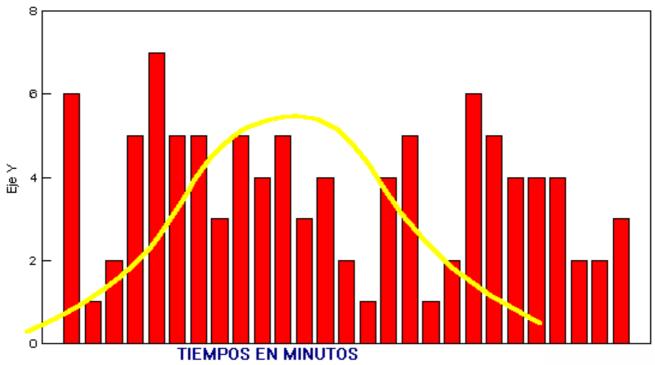
MINUTOS	DIA	MINUTOS	DIA	MINUTOS	DIA	MINUTOS	DIA	MINUTOS	DIA
221	LUNES	215	MARTES	204	MIERCOLES	220	JUEVES	203	XIERNES
228	LUNES	212	MARTES	212	MIERCOLES	210	JUEVES	212	VIERNES
209	LUNES	221	MARTES	219	MIERCOLES	219	JUEVES	224	XIERNES
209	LUNES	204	MARTES	219	MIERCOLES	207	JUEVES	206	VIERNES
220	LUNES	209	MARTES	203	MIERCOLES	208	JUEVES	222	VIERNES
228	LUNES	215	MARTES	219	MIERCOLES	213	JUEVES	216	VIERNES
205	LUNES	207	MARTES	204	MIERCOLES	216	JUEVES	203	VIERNES
228	LUNES	206	MARTES	205	MIERCOLES	224	JUEVES	200	VIERNES
206	LUNES	216	MARTES	215	MIERCOLES	221	JUEVES	208	VIERNES
218	LUNES	211	MARTES	223	MIERCOLES	204	JUEVES	203	VIERNES
222	LUNES	220	MARTES	219	MIERCOLES	200	JUEVES	205	VIERNES
205	LUNES	200	MARTES	206	MIERCOLES	204	JUEVES	210	VIERNES
213	LUNES	210	MARTES	204	MIERCOLES	210	JUEVES	203	VIERNES
218	LUNES	200	MARTES	202	MIERCOLES	208	JUEVES	209	VIERNES
222	LUNES	207	MARTES	217	MIERCOLES	223	JUEVES	215	VIERNES
225	LUNES	216	MARTES	216	MIERCOLES	208	JUEVES	208	VIERNES
225	LUNES	205	MARTES	211	MIERCOLES	223	JUEVES	214	VIERNES
		221	MARTES	223	MIERCOLES	211	JUEVES		
		212	MARTES	220	MIERCOLES	204	JUEVES		
		200	MARTES	206	MIERCOLES	222	JUEVES	8	
		201	MARTES	202	MIERCOLES				
		220	MARTES	200	MIERCOLES				
				219	MIERCOLES				
				210	MERCOLES			9 Jua	n Lejarza

MEDIAS Y DESVIACIONES TÍPICAS POR DIAS (FACTOR)

SINTAXIS SPSS/PC MEANS TABLES=A BY B

Summaries By levels o		EN MINUTOS SEMANA		
Variable	Value Label		Std Dev C viación típica)	
For Entire	Population		7.8536	100
В	1.0 LUNES	217.7647	8.3331	17
В	2.0 MARTES	210.3636	7.0613	22
В	3.0 MIERCOLES	211.5833	7.6324	24
В	4.0 JUEVES	212.7500	7.6218	20
В	5.0 VIERNES	209.4706	6.9022	17
Total Ca:	ses = 100			

HISTOGRAMA TIEMPOS



BONDAD DE AJUSTE DEL TOTAL DE LA MUESTRA DE LA VARIABLE TIEMPO EN MINUTOS

AJUSTE A NORMAL CON

Test Distribution - Normal MEDIA: 212.240

DESVIACIÓN TÍPICA: 7.854

Cases: 100

Most Extreme Differences

Absolute Positive Negative K-S Z 2-tailed P
.10531 .09656 -.10531 1.053 .217

SEGÚN EL RESULTADO DEL TEST .0,217, LA PROBABILIDAD DE QUE LAS DIFERENCIAS SEAN DEBIDAS AL AZAR, AL SER SUPERIOR A CUALQUIER NIVEL DE SIGNIFICACIÓN (0,01;0,05;0,1) . NO PODEMOS RECHAZAR QUE LOS TIEMPOS EN MINUTOS DE ELABORACIÓN DE COMPONENTES SE DISTRIBUYAN COMO UNA N (212,240;7,854)

PRUEBAS DE HOMOSCEDASTICIDAD

SINTAXIS EN SPSS/PC.:

oneway var a by b(1,5)/statistics=3.

Group	Count	Standard S Mean De		
Grp 1 LUNES	17	217.7647	8.3331	Máxima varianza
Grp 2 MARTES	22	210.3636	7.0613	
Grp 3 MIERCOLES	24	211.5833	7.6324	
Grp 4 JUEVES	20	212.7500	7.6218	
	17	209.4706	6.9022	Mínima varianza
Tests for Homogen	eity of V	ariances		

Cochrans C = Max. Variance/Sum(Variances) = .2451, P = 1.000 (Approx.)

Maximum Variance / Minimum Variance 1.458

POR LOS RESULTADOS DE LOS TRES TESTS SE CONFIRMA LA HIPÓTESIS DE HOMOSCEDASTICIDAD ; EN EL CASO DE LA RAZÓN DE VARIANZAS HA DE TENERSE EN CUENTA QUE $F_{17.17.0.05} = 2,26$ Y ASÍ 1,458< 2,26

SINTAXIS EN SPSS/PC.:

oneway var a by b(1,5)/ranges=snk/statistics=all.

RESULTADOS:

Variable A TIEMPO EN MINUTOS By Variable B DIA DE LA SEMANA

Analysis of Variance					
Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
(fuente variación) Between Groups (entre -grupos)	4	742.2716	185.5679	3.2866	.0144
Within Groups (intra- grupos)	95	5363.9684	56.4628		
Total	99	6106.2400			

DADO EL RESULTADO DEL ANÁLISIS ; 0,014 . A PARTIR DE ESE VALOR DE NIVEL DE SIGINIFICACIÓN (HACIA ABAJO) NO RECHAZARÍAMOS LA H O ASI CON NIVEL DE SIG = 0,01 NO RECHAZARÍAMOS PERO CON NIVEL DE SIG =0,05 (HABITUAL) RECHAZAMOS COMPORTAMIENTO HOMOGÉNEO DEL FACTOR.

COMPARACIÓN DE MEDIAS MÉTODO SNK (Student-Newman-Keuls)

SINTAXIS SPSS/PC+

oneway var a by b(1,5)/ranges=snk.

```
Ranges for the .050 level - α = 0.05

2.82 3.37 3.70 3.93

The value actually compared with Mean(J)-Mean(I) is..

5.3133 * Range * Sqrt(1/N(I) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level
```

,	P	7 · · · · · · · · · · · · · · · · · ·
		GGGGG
		rrrrr
		ppppp
Mean	Group	52341
209.4706	Grp 5	
210.3636	Grp 2	
211.5833	Grp 3	
212.7500	Grp 4	
217.7647	Grp 1	* * * *

SE COMPRUEBA QUE LOS LUNES SE COMPORTAN DE MANERA DIFERENTE A LOS DEMÁS DÍAS DE LA SEMANA (en cuanto a las medias de los grupos)

COMPARACIÓN DE MEDIAS MÉTODO SCHEFFÉ con P=0.05

SINTAXIS SPSS/PC+

oneway var a by b(1,5)/ranges=scheffe(0.05).

```
Ranges for the .050 level -
4.44 4.44 4.44 4.44

The value actually compared with Mean(J)-Mean(I) is..
5.3133 * Range * Sqrt(1/N(I) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level

GGGGG
rrrrr
ppppp
Mean Group 52341
209.4706 Grp 5
210.3636 Grp 2
211.5833 Grp 3
212.7500 Grp 4
```

CON ESTA PRUEBA SOLO SE ESTABLECEN DIFERENCIAS ENTRE LAS MEDIAS DE LOS GRUPOS 1 Y 2 (LUNES Y MARTES) RECORDEMOS QUE ESTA PRUEBA ERA MÁS CONSERVADORA

COMPARACIÓN DE MEDIAS MÉTODO SCHEFFÉ con P=0.05

SINTAXIS SPSS/PC+

217.7647 Grp 1 *

oneway var a by b(1,5)/ranges=scheffe(0.05).

```
Ranges for the .050 level -
4.44 4.44 4.44

The value actually compared with Mean(J)-Mean(I) is..
5.3133 * Range * Sqrt(1/N(I) + 1/N(J))

(*) Denotes pairs of groups significantly different at the .050 level

GGGGG

rrrrr
```

```
rrrr
ppppp
Mean Group 52341
209.4706 Grp5
210.3636 Grp2
211.5833 Grp3
212.7500 Grp4
217.7647 Grp1 *
```

CON ESTA PRUEBA SOLO SE ESTABLECEN DIFERENCIAS ENTRE LAS MEDIAS DE LOS GRUPOS 1 Y 2 (LUNES Y MARTES) RECORDEMOS QUE ESTA PRUEBA ERA MÁS CONSERVADORA

ELIMINANDO LA INFORMACIÓN DEL GRUPO (LUNES) Y REELABORANDO EL ANÁLISIS DE LA VARIANZA.

SINTAXIS SPSS/PC+

oneway var a by b(2,4).

Analysis of Variance					
Source	D.F.	Sum of Squares	Mean Squares	F F Ratio Prob.	
Between Groups	2	59.7652	29.8826	.5393 .5858	
Within Groups	63	3490.6742	55.4075		
Total	65	3550.4394	ļ		

EVIDENTEMENTE , DADO EL RESULTADO , NO SE PUEDE RECHAZAR LA HIPÓTESIS DE QUE LAS MEDIAS DEL MARTES, MIERCOLES , JUEVES Y VIERNES SON IGUALES

🛭 Juan Lejarza