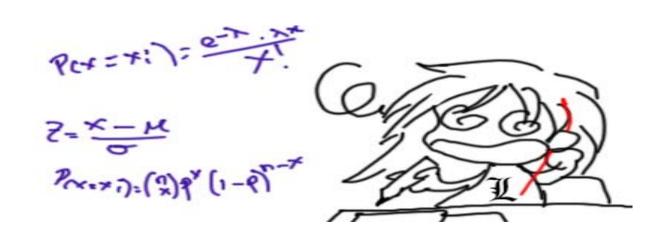


TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

- 1. Nociones básicas de teoría de la probabilidad.
- 2. Variable aleatoria unidimensional.
- 3. Distribuciones Bernoulli y Binomial.
- 4. Distribución Normal.



1. NOCIONES BÁSICAS DE TEORÍA DE LA PROBABILIDAD

Nociones de Teoría de Conjuntos

Espacio Muestral: se refiere al conjunto de todos los posibles resultados de un proceso aleatorio y lo llamaremos Ω (omega).

Ej.: En el lanzamiento de un dado de 6 caras, $\Omega = \{1,2,3,4,5,6\}$

Suceso: Se trata de cualquier subconjunto de posibles resultados de Ω , y lo representamos por A. Decimos que $A \subset \Omega$.

Dos posibles sucesos son: el conjunto vacío (\emptyset) y Ω

En el ejemplo anterior, otros sucesos serían: A= que salga un nº par,

 $A = \{2,4,6\}$ o B =que salga un n° impar, $B = \{1,3,5\}$

Para las operaciones entre sucesos, también se exige que sean sucesos o subconjuntos de Ω . Estas son:

a) Suceso contrario o complementario: Dado un suceso A, se trata del suceso que contiene todos los resultados de Ω que no pertenecen a A. Lo llamaremos A^C .

En el ejemplo anterior, B sería el suceso complementario de A, $B = A^{C}$.

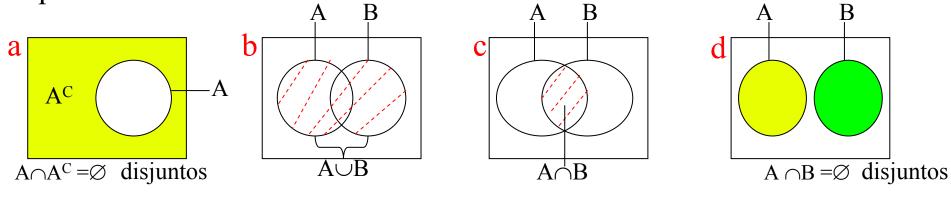
b) Suceso Unión: Dados dos sucesos A y B de Ω , se define como el suceso que contiene todos los resultados que pertenecen a A o a B o a ambos. Notación: A \cup B.

En nuestro ejemplo, $A \cup B = \Omega$, puesto que son sucesos complementarios.

c) Suceso Intersección: Dados dos sucesos A y B de Ω , se define como el suceso que contiene todos los resultados que pertenecen a la vez a A y a B. Notación: A \cap B.

Ejemplo: Sean los sucesos A=nº par y C=nº menor a 4, A \cap C ={2}

d) Sucesos disjuntos o incompatibles: Dos sucesos A y B de Ω son disjuntos si no tienen resultados en común, es decir que $A \cap B = \emptyset$. En nuestro ejemplo, $A \cap B = \emptyset$, por lo tanto serían disjuntos, es decir que $A \cap A^C = \emptyset$.



PROBABILIDAD

La probabilidad de que ocurra un suceso A, p(A), es un número que debe cumplir 3 axiomas:

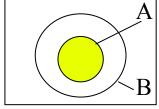
Axioma 1: $0 \le p(A) \le 1$

Axioma 2: $p(\Omega)=1$

Axioma 3: La probabilidad de la unión de sucesos disjuntos entre sí es igual a la suma de las probabilidades de esos sucesos: $p(\bigcup A_i) = \sum p(A_i)$

Propiedades:

- 1. Para cualquier suceso A, $p(A^C)=1 p(A)$
- 2. $P(\emptyset) = 0$
- 3. Dados dos sucesos A y B, si $A \subset B \implies p(A) \le p(B)$



- 4. Dados dos sucesos A y B, $p(A \cup B) = p(A) + p(B) p(A \cap B)$
- **5. Probabilidad Condicionada**. Dados dos sucesos A y B, se trata de la probabilidad de A, dado que se sabe que B ha ocurrido y se define como:

$$p(A / B) = \frac{p(A \cap B)}{p(B)}$$
 se exije que $p(B) > 0$

Ejemplo, en el lanzamiento de un dado, sea el suceso A= que salga un 5, p(A)=1/6, si además se sabe que el suceso B (que salga un n^o impar) ha ocurrido, entonces

$$p(A / B) = \frac{p(A \cap B)}{p(B)} = \frac{1/6}{3/6} = 1/3$$
 el saber que ha ocurrido B ha modificado $p(A)$

6. Sucesos independientes. Dos sucesos A y B son independientes si:

$$p(A \cap B) = p(A) \cdot p(B)$$

En consecuencia, si A y B son independientes, entonces,

$$p(A / B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A) \cdot p(B)}{p(B)} = p(A)$$

la probabilidad de A no varia por el hecho de que se sepa que ha ocurrido B.

В

 $A_i \cap B$

7. Teorema de la Intersección

Si
$$p(A/B) = \frac{p(A \cap B)}{p(B)}$$
 y $p(B/A) = \frac{p(A \cap B)}{p(A)}$, entonces:
 $p(A \cap B) = p(A/B) \cdot p(B) = p(B/A) \cdot p(A)$

8. Teorema de la Probabilidad total

Dados los sucesos $A_1,...,A_i,...,A_n$ disjuntos entre sí. Esto es que: $A_i \cap A_j = \emptyset$ y $\bigcup A_i = \Omega$ Sea B otro suceso. Entonces, los sucesos $A_1 \cap B,...,A_i \cap B$ son disjuntos y $\bigcup A_i \cap B = B$ Se verifica que:

$$p(B) = \sum p(A_i \cap B) = \sum p(B/A_i) \cdot p(A_i)$$

8. Teorema de Bayes

Dados los sucesos $A_1,...,A_i,...,A_n$ disnjuntos entre sí y $\bigcup A_i = \Omega$, tales que $p(A_i) > 0$ y dado otro suceso B, con p(B) > 0, entonces se verificará que:

$$p(A_i/B) = \frac{p(A_i \cap B)}{p(B)} = \frac{p(B/A_i) \cdot p(A_i)}{\sum p(B/A_i) \cdot p(A_i)} \xrightarrow{\text{Teorema Interseccion}} \frac{1}{\sum p(B/A_i) \cdot p(A_i)} \xrightarrow{\text{Teorema Probabilidad total}} \frac{1}{\sum p(B/A_i) \cdot p(A_i)} \xrightarrow{\text{Teorema Probabilidad total}} \frac{1}{\sum p(B/A_i) \cdot p(A_i)} \xrightarrow{\text{Teorema Interseccion}} \frac{1}{\sum p(B/A_i) \cdot p(A_i)} \xrightarrow{\text{Teorema Probabilidad total}} \frac{1}{\sum p(B/A_i) \cdot p(B/A_i)} \xrightarrow{\text{Teorema Probabilidad total}} \frac{1}{\sum p(B$$

EJERCICIO

Un hotel clasifica sus facturas en dos tipos. En dicho hotel son tres los empleados que se dedican a facturar, de forma que el empleado A se encarga del 20% de la facturación, el empleado B del 40% y el C del resto. A partir de un control realizado por la dirección se obtuvo la siguiente información: de la facturación que realiza el empleado A el 80% corresponde al tipo I. El 50% de la facturación realizada por el empleado B corresponde al tipo II. Y por último, el 30% de la facturación del empleado C es del tipo I.

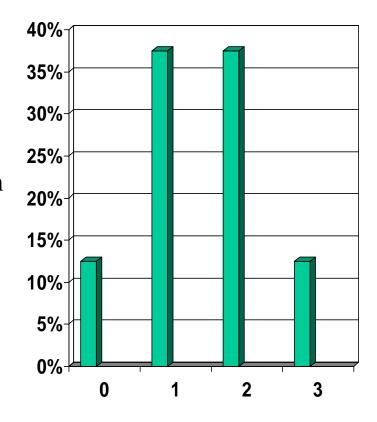
- a) ¿Cuál es la probabilidad de que la factura la haya realizado el empleado C y sea de tipo I?
- b) Si se selecciona una factura al azar, ¿ cuál es la probabilidad de que sea del tipo I?
- c) Se recibe de un cliente una queja por un error encontrado en una factura de tipo I, ¿cuál es la probabilidad de que esta factura no la realizara el empleado C?

2. VARIABLE ALEATORIA UNIDIMENSIONAL

- En ocasiones nos interesa estudiar alguna característica del resultado de un fenómeno o experimento aleatorio que puede ser descrita como una cantidad numérica.
- En estos casos aparece la noción de variable aleatoria (v.a.)
 - Función que asigna a cada resultado un número.
- Las variables aleatorias pueden ser discretas o continuas.
- Variable discreta: puede tomar un número (pequeño o grande) de valores aislados o sueltos.
- Variable continua: puede tomar cualquier valor en uno o en varios intervalos (ingresos, tiempo o duración).

Variables Discretas: Función de probabilidad P(x)

- Asigna a cada posible valor de una variable discreta su probabilidad.
- Ejemplo
 - Número de aciertos en un test, que respondemos al azar, con 3 preguntas con respuesta verdadero o falso.
 - Posibles valores de X=0,1,2,3
 - Las probabilidades P(0), P(1), P(2),P(3)
 las podrás calcular cuando recordemos la distribución Binomial.

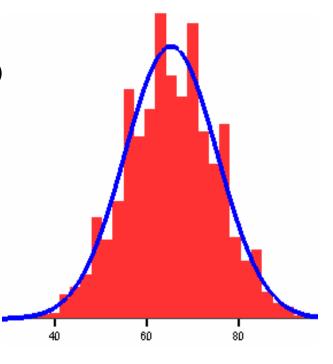


Variables Continuas: Función de densidad f(x)

• Definición

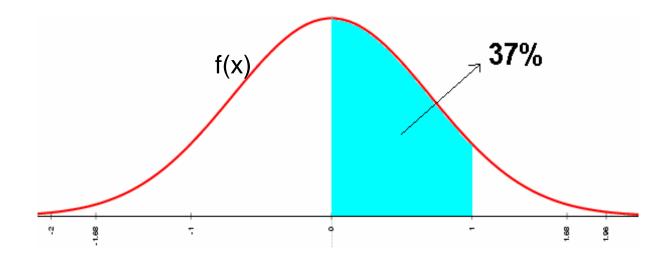
- Es una función no negativa cuya integral (área total)
 es 1
 - Piénsalo como la generalización del histograma con frecuencias relativas para variables agrupadas en intervalos.

- ¿Para qué la voy a usar?
 - Nunca la vas a usar directamente.
 - Sus valores no representan probabilidades.



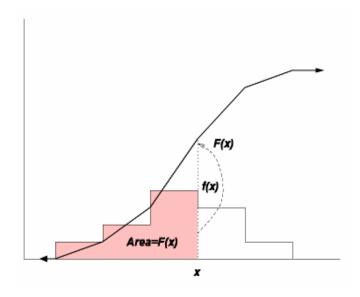
¿Para qué sirve la función de densidad f(x)?

- Muchos fenómenos aleatorios vienen descritos por variables, de forma que interesa calcular las probabilidades de intervalos.
- La integral definida de la función de densidad en dichos intervalos coincide con la probabilidad de los mismos.
- Es decir, identificamos la probabilidad de un intervalo con el **área** bajo la función de densidad.



Función de distribución: F(x) o de probabilidad acumulada

- Es la función que calcula para cada valor de una variable, la probabilidad acumulada hasta los valores menores o iguales a ese valor. F(x)=P(X≤x)
 - Piénsalo como la generalización de las frecuencias acumuladas.
 - A los valores extremadamente bajos les corresponden valores de la función de distribución cercanos a cero.
 - A los valores extremadamente altos les corresponden valores de la función de distribución cercanos a uno.



¿Para qué sirve la función de distribución? Es fundamental para calcular probabilidades en el caso de variables continuas.

Principales Características de una variable aleatoria X: Media y varianza

- Media o Valor esperado
 - Se representa mediante μ ó E[X]
- Varianza
 - Se representa mediante σ^2 ó VAR[X]
 - Mide la dispersión o alejamiento de los posibles valores de X respecto a la media μ. Siempre toma valores positivos.
 - Se llama desviación típica a σ , su raíz cuadrada. $\sigma = \sqrt{\sigma^2}$
- Transformaciones lineales:

$$Y = a X + b$$

$$\begin{pmatrix} \mu_{Y} = a \mu_{X} + b \\ \sigma_{Y}^{2} = a^{2} \sigma_{X}^{2} \\ \sigma_{Y} = a \sigma_{X} \end{pmatrix}$$

Algunos modelos específicos de distribuciones de probabilidad

- Hay modelos de probabilidad que sirven para representar fenómenos económicos y turísticos.
- Experimentos dicotómicos (con 2 resultados posibles).
 - Bernoulli
 - Contar éxitos en experimentos dicotómicos repetidos:
 - Binomial
 - Y en muchas ocasiones...
 - Distribución Normal
- Las transparencias siguientes están dedicadas a estudiar estas distribuciones de probabilidad específicas.

3. DISTRIBUCIONES BERNOULLI Y BINOMIAL

a) Distribución de Bernoulli

 Tenemos un fenómeno de Bernoulli si al analizarlo sólo son posibles dos resultados:

```
X=1 éxito con probabilidad p
X=0 fracaso, con probabilidad 1-p =q
```

• a) Si se acierta o no al responder al azar una pregunta tipo test con 2 resultados posibles (verdadero o falso).

P(acertar)=
$$P(X=1) = p = 0.5$$
 P(no acertar)= $P(X=0) = 1-p = 0.5$

• b) Según datos del IET, el 40% de los turistas eligen un determinado destino turístico para sus vacaciones. Seleccionar un turista al azar y que elija o no ese destino turístico.

P(elegir destino)=
$$P(X=1) = p = 0.4$$

P(no elegir destino)= $P(X=0) = 1-p = 0.6$

• En ambos ejemplos, la media μ y la varianza σ^2 de la variable aleatoria X son:

Distribución de Bernoulli

• Función de probabilidad:

$$P[X = x] = p^{x} (1-p)^{1-x}, X=1 \text{ \'o } X=0$$

- Media: $\mu = p$
- Varianza: $\sigma^2 = p (1-p)$
- Como se aprecia, en experimentos donde el resultado es dicotómico, la variable queda perfectamente determinada conociendo el parámetro **p**.

X ~ Be(p) que se lee como: la v.a. X sigue una distribución Bernoulli de parámetro p.

b) Distribución Binomial

• Si se repite un número fijo de veces, n, y de forma independiente cada vez, un fenómeno de Bernoulli con parámetro p, la v.a. que representa el número de éxitos obtenidos en las n repeticiones sigue una distribución

binomial de parámetros (n,p).

• X=Número de aciertos en un test, que se responde al azar, con 3 preguntas con dos respuestas posibles (verdadero o falso).

```
Distribución de X: Binomial(n=3,p=0,5) posibles valores de X=0,1,2,3
```

• Según datos del IET, el 40% de los turistas eligen un determinado destino turístico para sus vacaciones. Para un total de 5 turistas seleccionados al azar, la variable aleatoria X representaría el número de turistas de esos 5 que elegiría ese destino turístico.

```
Distribución de X: Binomial(n=5,p=0,4) posibles valores de X=0,1,2,3,4,5
```

Distribución Binomial

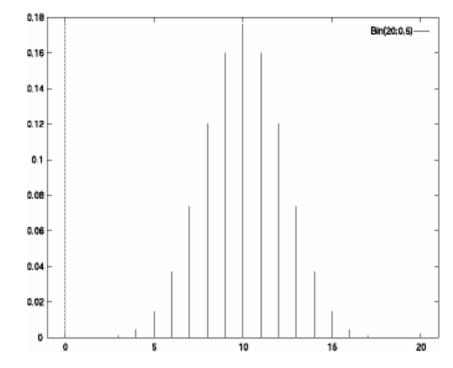
Función de probabilidad:

$$P[X = x] = \binom{n}{x} p^{x} (1-p)^{n-x}, X=0,1,2,...,n$$
 $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ es un n° combinatorio

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 es un n° combinatorio

- Calcula la probabilidad de obtener x éxitos y n-x fracasos.
- Problemas de cálculo si n es grande y/o p cercano a 0 o 1.
- Media: $\mu = n p$

Varianza: $\sigma^2 = n p (1-p)$



4. DISTRIBUCIÓN NORMAL

- Es apropiada para modelizar:
 - Altura, peso, coeficiente de inteligencia...
 - Modeliza fenómenos socio-económicos
 como los ingresos, las ventas, los beneficios, etc.

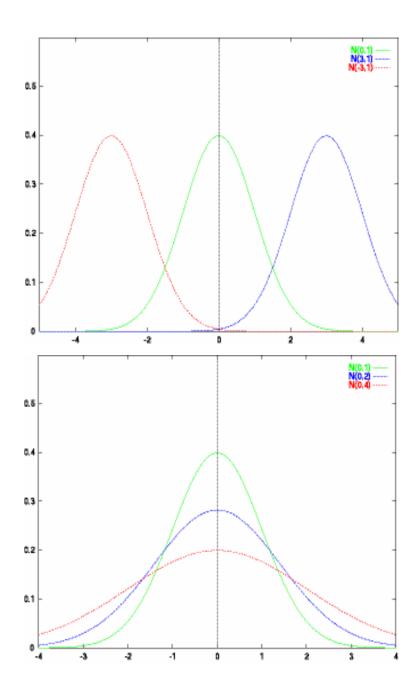
- Ejemplo: sea X una variable aleatoria que expresa el gasto anual en turismo y viajes, en euros, de los hogares valencianos. Se supone que el comportamiento de dicha variable se puede modelizar mediante una distribución Normal con media 1700 € y su desviación típica 200€.
- Está caracterizada por dos parámetros: La media, μ , y la desviación típica, σ (también puede ser la varianza σ^2).
- Su función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

N(μ, σ): Interpretación geométrica

 Se puede interpretar la media como un factor de traslación.

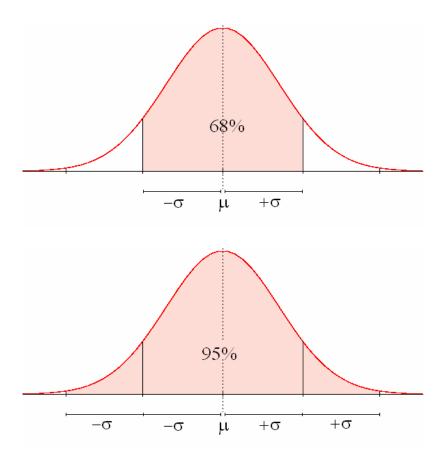
• Y la desviación típica como un factor de escala, grado de dispersión,...



$N(\mu, \sigma)$: Interpretación probabilista

• Entre la media y una desviación típica tenemos siempre la misma probabilidad: aprox. 68%

• Entre la media y dos desviaciones típicas aprox. 95%



Algunas características de la Normal

- La función de densidad es simétrica respecto a la media μ.
 - Media, mediana y moda coinciden.
- No es posible calcular la probabilidad de un intervalo simplemente integrando la función de densidad, ya que no tiene primitiva expresable en términos de funciones 'comunes'. Por eso utilizaremos unas tablas.
- Todas las distribuciones normales N(μ, σ²), pueden transformarse mediante una transformación lineal especial llamada tipificación. La distribución resultante al tipificar se llama Normal Tipificada N(0,1). Es otra Normal pero con media 0 y varianza 1.
- Si tomamos intervalos centrados en μ, y cuyos extremos están...
 - a distancia 2 σ, → tenemos probabilidad 95%
 - a distancia o, → tenemos probabilidad 68%
 - a distancia 2'5 σ → tenemos probabilidad 99%

Tipificación

 Dada una variable X Normal de media μ y desviación típica σ, se denomina variable tipificada, Z, de una observación x, a la a la siguiente transformación de X:

$$Z = \frac{X - \mu}{\sigma}$$

- La distribución resultante al tipificar se llama Normal Tipificada N(0,1). Es otra Normal pero con media 0 y varianza 1.
- En el caso de variable X Normal, la interpretación es clara: Asigna a todo valor de $N(\mu, \sigma^2)$, un valor de N(0,1) que deja **exáctamente** la misma probabilidad por debajo.

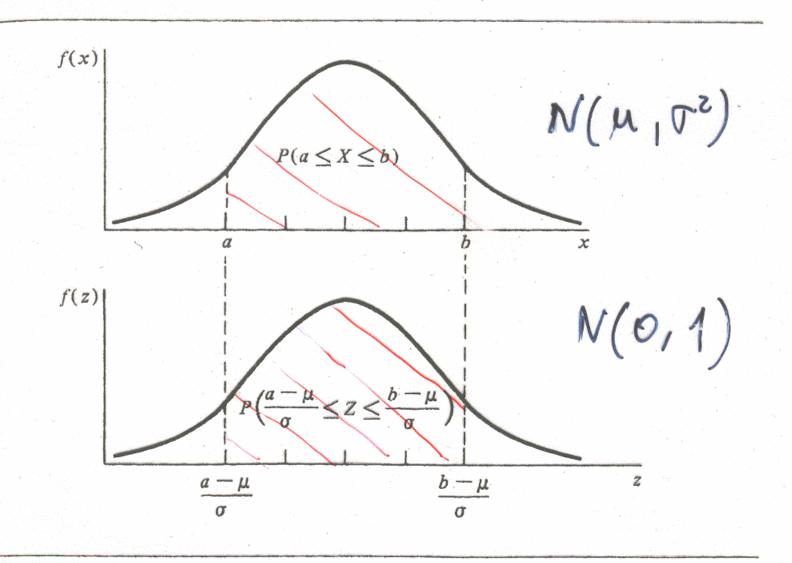


FIGURA 5.3 Correspondencia entre las probabilidades de X y de Z

Propiedad de la distribución Normal de las Transformaciones Lineales

- Sea X una variable aleatoria con distribución Normal $X \sim N(\mu, \sigma^2)$.
- Sea Y una transformación lineal de X: Y = a X + b
- Esta propiedad dice que toda variable aleatoria que sea una transformación lineal de una variable aleatoria con distribución Normal también tiene una distribución Normal.
- Es decir, $Y = a X + b \sim N (\mu_Y = a \mu + b, \sigma_Y^2 = a^2 \sigma^2)$
- Z, la variable X tipificada que tiene una distribución N(0,1), es un caso particular de una transformación lineal de X, por eso también tiene una distribución Normal.

Más información sobre este tema en:

- PARRA, E; CALERO, F.J.: Estadística para Turismo. Ed. McGraw-Hill, Madrid, 2007. Capítulo 9.
- ESTEBAN, J.; y otros.: "Estadística Descriptiva y nociones de Probabilidad", Ed. Thomson, segunda impresión 2006. Capítulos 7 y 8.
- MONTIEL, A.M.; RIUS, F.; BARÓN F.J.: Elementos básicos de Estadística Económica y Empresarial. Ed. Prentice Hall, Madrid, 1997. Capítulos 9, 10 y 11.
- RONQUILLO, A: Estadística Aplicada al Sector Turístico, Ed Ramón Areces, Madrid, 1997. Capítulo 10.
- http://www.uv.es/ceaces/base/probabilidad/simple.htm
 http://www.uv.es/ceaces/base/variable%20aleatoria/simple.htm
 http://www.uv.es/ceaces/base/modelos%20de%20probabilidad/simple.htm
 http://www.uv.es/ceaces/tex1t/1%20normal/simple.htm
- http://webpersonal.uma.es/de/J_SANCHEZ/Capitulo6.PDF