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Abstract—In this paper, we propose the use of support vector
machines (SVMs) for automatic hyperspectral data classification
and knowledge discovery. In the first stage of the study, we use
SVMs for crop classification and analyze their performance in
terms of efficiency and robustness, as compared to extensively used
neural and fuzzy methods. Efficiency is assessed by evaluating
accuracy and statistical differences in several scenes. Robustness
is analyzed in terms of: 1) suitability to working conditions when
a feature selection stage is not possible and 2) performance when
different levels of Gaussian noise are introduced at their inputs.
In the second stage of this work, we analyze the distribution of
the support vectors (SVs) and perform sensitivity analysis on the
best classifier in order to analyze the significance of the input
spectral bands. For classification purposes, six hyperspectral
images acquired with the 128-band HyMAP spectrometer during
the DAISEX-1999 campaign are used. Six crop classes were
labeled for each image. A reduced set of labeled samples is used
to train the models, and the entire images are used to assess their
performance. Several conclusions are drawn: 1) SVMs yield better
outcomes than neural networks regarding accuracy, simplicity,
and robustness; 2) training neural and neurofuzzy models is
unfeasible when working with high-dimensional input spaces and
great amounts of training data; 3) SVMs perform similarly for
different training subsets with varying input dimension, which
indicates that noisy bands are successfully detected; and 4) a
valuable ranking of bands through sensitivity analysis is achieved,

Index Terms—Crop classification, hyperspectral imagery,
knowledge discovery, neural networks, support vector machines
(SVMs).

I. INTRODUCTION

HE INFORMATION contained in hyperspectral data
about the chemical properties of the surface allows the
characterization, identification, and classification of the surface
features by means of recognition of unique spectral signatures,
with improved accuracy and robustness. Pattern recognition
methods have proven to be effective techniques in applications
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of this kind [1]. In fact, classification of surface features in satel]-
lite imagery is one of the most important applications of remote
sensing. Nevertheless, it is often difficult and time—consumjng
to develop classifiers by hand, so many researchers have turned
to techniques from the fields of statistics and machine learning
in order to automatically generate both supervised and unsy.
pervised classifiers. Unsupervised methods are not sensitive to
the number of labeled samples, since they work on the whole
image, but the correspondence between clusters and classes is
not ensured. Consequently, supervised methods are preferable
when the desired input-output mapping is well-defined and a
dataset of true labels is available, as occurs in our case study.
However, the main problem with supervised methods is that
the learning process depends heavily on the quality of the
training dataset and the input space dimensionality [2]. In both
cases, data in the input space is represented in the form of an
N-dimensional vector for each pixel, where N is the number
of spectral bands. Certainly, the quality of data and the high
dimension of the input space are main issues to be addressed,
given the high cost of true sample labeling, the high number of
spectral bands, and the high variability of the earth’s surface.
Therefore, robust methods for hyperspectral data classification
are needed, as they are insensitive both to noise and to the high
input dimension,

In order to circumvent problems when dealing with a hi gh-di-
mensional input space, in practice, a preprocessing (feature se-
lection/extraction) stage is often introduced. Numerous feature
selection methods have been proposed in the literature: principal
component analysis (PCA) [3], wavelet transforms [4], modular
neural networks [5], linear filterin g [6], etc. However, the design
and application of this stage is time-consuming, scenario-depen-
dent, and sometimes needs a priori knowledge. Consequently,
many advanced supervised methods have been developed to
tackle the problem of automatic hyperspectral data classifica-
tion with a simple feature selection or without one: statistical ap-
proaches [7], tuzzy models [8], projection pursuit classifiers [9];
radial basis function (RBF) neural networks [10]-[12], multi-
layer perceptrons [13]-[16], genetic algorithms [17], self-orga-
nizing maps [18], etc. Few works, however, have benchmarked
state-of-the-art nonlinear classifiers for hyperspectral imagery.

In this context, support vector machines (SVM) have recently
been proposed as efficient (nonlinear) supervised classification
and regression tools [19], [20]. SVMs are not drastically
affected by the curse of dimensionality, or its Hughes attendant
[21], and offer solutions with an explicit dependence on the
most informative patterns in the data. These characteristics
make them suitable for hyperspectral data classification and
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knowledge discovery,! respectively. Previous works using
SVMs have shown successful classification performance of
multispectral [6], [23]-[27] and hyperspectral [28]-[30] data.
Nevertheless, further work must be carried out in order to study
robustness in noisy situations (presence of redundant bands),
high-dimensional input spaces, and changing environments
(several images). In addition, few efforts have been made to
compare SVMs with other widely used pattern recognition
methods, such as RBF networks or soft computing approaches,
~ and little attention has been done to analyze the structure of
~ the final model. The latter is a very interesting option because,
| once the model is built, its parameters (weights in the case
| of neural networks, or support vectors in the case of SVMs)
| contain valuable information about the problem. Analysis of
. the model can allow us to perform a ranking of the available
~ features and, consequently, to gain knowledge in the problem
by identifying relevant or meaningless features.

In this paper, we extend the work presented in [31] and [32]
and propose the use of SVM:s to develop robust crop cover clas-
sifiers and to obtain an interpretable thematic map of the crops
on the scenes using hyperspectral imagery. The work can be di-
vided in two stages, as follows.

1) Classification. We first compare SVMs to other
well-known machine-learning methods such as mul-
tilayer perceptrons (MLP) [33], RBF neural networks
[34], and co-active neurofuzzy inference systems
(CANFIS) [35]. Comparison is carried out in terms
of accuracy and robustness regarding the input space
dimension and presence of noisy bands.

2) Knowledge discovery. We analyze the distribution of the
support vectors in the input spaces and perform sensitivity
analysis on the best classifier in order to attain a ranking of
the input bands significance. Some physical conclusions
are drawn.

The paper is outlined as follows. In Sections II and III,
~ data collection and the experimental setup are presented,
. respectively. The classification methods used are described in

~Section IV, with special emphasis on SVMs. The classification
results are presented in Section V. In Section VI, we analyze
the model structure. In Section VII, we end this paper with
some conclusions and a proposal for future work.

II. DATA COLLECTION

This work is a contribution to the Digital Airborne Imaging
Spectrometer Experiment (DAISEX) project, funded by the Eu-
ropean Space Agency (ESA) within the framework of its Earth
Observation Preparatory Program during 1998, 1999, and 2000
(more details are at http://io.uv.es/ projects/daisex/). Three data
acquisition campaigns were carried out in the area of Barrax,
Spain. We have used six hyperspectral images acquired with
the HyMAP spectrometer during the DAISEX-1999 campaign.
- This instrument provides 128 bands across the reflective solar

'A knowledge discovery learning scheme is constituted by a preprocessing
Slage, a data mining step (in which a classifier is developed), and a model anal-
ysis phase. In such an approach, the last objective is “to process the data in order
10 extract valid, novel, potentially useful, and ultimately understandable struc-
. lure in data” [22] (see also citeseer.nj.nec.com/bradley98mathematical.html).
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Fig. 1. HyMAP spectral channels and the atmospheric transmission over the
different spectral ranges.

Fig. 2. Flight pattern followed for DAISEX-1999 at Barrax. The intersecting
box indicates the area selected for this work.

wavelength region of 0.4-2.52.5 um with contiguous spectral
coverage (except in the atmospheric water vapor absorptions
bands), bandwidths around 16 nm, very high SNR, and a spatial
resolution of 5 m. Fig. 1 shows the distribution of the HyMAP
channels over the spectral domain.

The HyMAP images acquired in the DAISEX-1999 cam-
paign correspond to two consecutive days (one flight on the
first day and two flights on the second day). A flight consisted
of two overpasses, one in the north—south direction (BARI)
and the other in the east—west direction (BAR2), which yielded
six images of the same area (Fig. 2). The acquisition of images
from the same area in two days under different illumination
conditions ensures the robustness of the results. One acquisi-
tion of the two flight directions took place at solar noon (at
12:00 UTC or 14:00 local time) assuring a recording of the
hot-spot conditions. Two further acquisitions were planned
at =3 h (9:00 UTC) and +3 h (15:00 UTC) from solar noon.
This makes it possible to see angular reflectance changes not
only with a view angle but also with an illumination angle
(three solar elevation/azimuth angles). Table I shows the data
acquisition program.

The calibration in the reflecting region of the HyMAP spec-
trometer was made during the flight and using the vicarious
calibration [36]. The atmospheric correction was based on the
MODTRAN atmospheric model with the software package
ATCOR-A (atmospheric correction, airborne version) by the
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TABLE I
SOLAR POSITION DURING IMAGE ACQUISITIONS

Solar Position

Image Date Hour
Elevation Azimuth
BARI_12 06/03/1999 11:52 73.03 168.49
BAR2.12 06/03/1999  12:08 73.25 181.31
"BARI.09 06/04/1999  8:01 3751 88.75
BAR2.09 06/04/1999  8:16 38.64 91.17
BARI_15 06/04/1999  14:58 30.07 258.35
BAR2.15 06/04/1999  15:11 47.56 260.86

Fig. 3. Noise analysis in a HyMAP image. Incoherent noise observed in band
65 (1.487 pem) for alfalfa crop.

Deutsches Zentrum fiir Luft-und Raumfahrt (DLR) [37]. At
the same time as one aerial campaign took place, another
one took place on the ground level [38] with the acquisition
of atmospheric measurements, spectral measurements at the
surface, measures of temperature, and samples of vegetation.
The use of a global positioning system plus location of ground
control points enabled an accurate geocoding of the HyMAP
images.

After data acquisition, a preliminary test was carried out to
measure the quality of data. No significant signs of coherent
noise were found. In order to analyze the incoherent noise, we
represented boxplots of the reflectance mean values () with
standard deviation (o) and the factor ./ for pixels from the
same crop. Despite the fact that noise was in general very low,
it was far too high in some bands. A high level of noise was
found at bands 1 (0.40 pm), 65 (1.49 ;im), and 128 (2.48 ;um)
for DAISEX-1999 (Fig. 3). Bands 2. 66, 67, and 97 were also
considered noisy bands due to their high variability. In fact,
The HyMap-1999 bands 1 and 128 were no longer available in
DAISEX-2000 due to the high level of noise they suffered. This
issue constitutes an a priori difficulty for models that take into
account all available bands.

For classification purposes, six different classes were iden-
tified in the designated area (corn, sugar beets, barley, wheat,
alfalfa, and soil), which were labeled from #£1 to #6, respec-
tively. In this sense, the task is referred to as a multiclassifi-
cation pattern recognition problem. The samples were chosen
to have good spatial coverage so the natural variability of the
vegetation could be ensured. Three types of units were chosen
for sampling, which were based on the type of variability that

Fig. 4. Pictures of different representative fields at Barrax during the
DAISEX-1999 campaign considered for classification purposes. (Top (o
bottom and from left to right) Corn, sugar beets, barley, wheat, alfalfa, and soil.

they represent: full covered fields (alfalfa, wheat, and barley),
sparsely vegetated fields (corn and small sugar beets), and bare
soil fields. Corn was in an early stage of maturity with fields
from two-leaf to five-leaf corn. Bare soils ranged from com-
pacted marly soil to wide surfaces of red clay soil (smooth as
well as rough). Alfalfa was representative of a homogeneous
canopy. Sugar beets were in an early stage of phenology and
showed small coverture, and the soil was rather heterogeneous
(Fig. 4).
III. EXPERIMENTAL SETUP

Once the desired input—output mapping, for training and val-
idation are defined, a feature selection stage is usually used to
reduce the dimension of the input space. This can make the
training process feasible and improve results by removing noisy
bands. However, the design and application of dimension-re-
duction techniques is time-consuming and scenario-dependent,
which are obvious problems to circumvent. In fact, we are not
only interested in the classification accuracy provided by each
method but also in their suitability to working conditions when
a feature selection stage is not possible. The high amount of data
potentially available generates problems for data processing. In
that sense, providing automatic classification procedures to a
ground browsing system could aid in this task. We have simu-
lated these possible situations by considering models with and
without a feature selection stage. The proposed learning scheme
is shown in Fig. 5. In this approach, a preprocessing stage se-
lects different subsets of representative bands, which are used
to train the selected classifiers. A review of the methods used
is provided in the next section. Additionally, SVMs are used to
train models with all available bands. Finally, models are com-
pared in terms of robustness and accuracy.

In a previous work [39], we presented a dimensionality
reduction strategy to eliminate redundant information and a
subsequent selection of the most discriminative features based
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Fig. 5. Diagram of the hyperspectral data classification process. A training dataset is extracted from the six collected images, and then a CART-based feature

selection stage yields three representative subsets (consisting of six, three, and two bands, respectively). An additional
dataset (128 bands) is incorporated into the training process as an additional scenario. Four classifiers

TABLE 1I
CHARACTERISTICS OF THE REPRESENTATIVE BANDS EXTRACTED THROUGH
ANALYZING CART SURROGRATE AND MAIN SPLITS

Band width Characteristics
[ppm]

0.0160

Bands Wavelength
[pem)]

6 0.5030

Leaf
(carotenes
chlorophyll s).
Chlorophyll-a
maximum absorption.
Red edge (change
Visible-Near In-
frared). Leaf Area
Index.

Beginning of Near In-
fraRed (NIR) with
high reflectance and
low absorbance. Leaf
biomass and struc-
ture.

Water  absorption.
Soil  moisture and
leaf water content.
Water  absorption.
Dry matter and soil
minerals.

pigments
and

0.6710 0.0156

22 0.7470 0.0155

24 0.7770 0.0164

99 1.9860 0.0215

118 2.3210 ~0.0200

on classification and regression trees (CARTSs). CARTs allow

nonlinear feature selection by inspecting main and surrogate

“splits. In CART, we can control the complexity of the final

tree and select the smaller tree with the lowest error. Each

variable in the tree has a score of importance that is based
on how often and with what significance it served as primary
or surrogate splitter throughout the tree. Confidence on this
analysis can be ensured, since the classification rates of the
best CART achieved average recognition rates higher than
91% in the validation set, suggesting that the underlying
differences between classes were captured. The introduction
of linear rules in cach node of the tree improved results but
made it more difficult to “illuminate” the model. This work
yielded three subsets of representative features (six, three, and
two bands) that constitute three different pattern recognition
problems, respectively. The subset consisting of six bands is
shown in Table 1I. The subset with three bands used 6, 22, and
99 reflectance bands and the subset with only two bands was
formed by bands 17 and 22. We can conclude that analysis

“of the CART model is time-consuming and needs an expert
‘User with in-depth knowledge of the problem at hand. These
‘drawbacks are usually shared by a great number of supervised

feature selection models. Therefore, despite the reliable feature

Selection extracted from CART, a method that is less sensitive
10 input space dimension would be beneficial.

scenario considering the whole training
are, thus, implemented and tested in the six whole images.

7 Min
x(2) Moy

s
W,C
Outprt = — L1272
x(2) o [T
1’72
=T,

Normalization

It
layer- x

gn'aw;mp (multiplication)
Fig.6. Schematic of the neural networks used in this work. (a) In an MLP, each
neuron passes the weighted sum of its inputs through a sigmoid-shape function
(e.g., hyperbolic tangent). The output of a neuron in a given layer acts as an input
to neurons in the next layer. In the network illustration, each line represents a
synaptic connection. (b) In an RBF neural network, the sigmoidal activation
function of an MLP is replaced by a Gaussian function with adjustable widths
and centers. () A two-input one-output CANFIS network and an illustration of
output calculation.

For classification purposes, two datasets (training and valida-
tion sets) were built consisting of 150 labeled samples per class.
Finally, a test set consisting of the true map of the scene over
complete images was used to select the best model. In each of
the six images (700 x 670 pixels), the total number of test sam-
ples is 327 336 (corn 31 269; sugar beets 11 322; barley 124 768;
wheat 53 400; alfalfa 24 726; and soil 81 851), and the rest is
considered to be unknown.

IV. MACHINE-LEARNING METHODS

In this work, four classification approaches (both neural and
kernel methods) have been used. Since neural networks have
been extensively employed in hyperspectral data classification
and SVMs are relatively new in this field, only a brief back-
ground is provided regarding the former,

A. Neural Networiks

The traditional model of a feedforward multilayer neural net-
work, commonly known as a multilayer perceptron, is com-
posed of a fully-connected layered arrangement of artificial neu-
rons in which each neuron of a given layer feeds all the neurons
of the next layer [33] [Fig. 6(a)]. An MLP for multiclassifica-
tion requires an output node for each class if no output coding is
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performed. Training of the network can be accomplished using
the backpropagation learning algorithm [40].

In an RBF neural network, notationally, the sigmoid-shape
activation function of an MLP is substituted by a Gaussian func-
tion [Fig. 6(b)]. The learning rule to update weight and variance
vectors can be derived by using the delta rule. Gaussian-like
RBFs are local, i.e., give a significant response only in a neigh-
borhood near the center. These features induce good mappings
but, in turn, may produce overfitting and yield poor results with
uncertain inputs (noisy environments).

A very promising paradigm in machine learning is constituted
by the neurofuzzy approach, in which fuzzy logic and neural
networks are combined. The CANFIS model integrates adapt-
able fuzzy inputs with a modular neural network to rapidly and
accurately approximate complex functions [Fig. 6(c)]. Fuzzy
inference systems are also valuable, as they combine the ex-
planatory nature of rules [membership functions (MFs)] with
the power of neural networks. These kinds of networks solve
problems more efficiently than neural networks when the un-
derlying function to model is highly variable or locally extreme,
since in those cases, MLP or RBF networks attempt to discover
a global optimization. The fundamental component of CANFIS
is a fuzzy axon which applies membership functions to the in-
puts. Basically, two membership function types can be used
(Gaussian or generalized bell). Fuzzy axons are valuable be-
cause their MF can be modified through backpropagation during
network training to expedite the convergence. A second advan-
tage is that fuzzy synapses aid in characterizing inputs that are
not easily discretized. The second major component of CANFIS
is a modular network that applies functional rules to the inputs.
Two fuzzy structures are mainly used: the Tsukamoto model and
the Sugeno (TSK) model. Finally, a combiner is used to apply
the MF outputs to the modular network outputs. The combined
outputs are then channeled through a final output layer, and the
error is backpropagated to both the MF and the modular net-
work. Full details of this network can be found in [35].

B. Support Vector Machines

Neural networks and other gradient-descent-based methods
are trained in order to minimize the so-called empirical risk, i.e.,
the error in the training dataset and, therefore, follow the empir-
ical risk minimization (ERM) principle. However, to attain sig-
nificant results in the validation set (“out-of-sample” dataset),
stopping-criteria or pruning technigues must be used. On the
other hand. SVMs have been recently proposed as an efficient
method for pattern classification and nonlinear regression. Their
appeal lies in their strong connection to the underlying statistical
learning theory where an SVM is an approximate implementa-
tion of the method of structural risk minimization (SRM) [19].
This principle states that a better solution (in terms of general-
ization capabilities) can be found by minimizing an upper bound
of the generalization error.

SVMs have many attractive features. For instance, the solu-
tion of the quadratic programming (QP) problem is globally
optimized, while with neural networks, the gradient-based
training algorithms only guarantee finding a local minima. In
addition, SVM can handle large input spaces, which is espe-
cially convenient when working with hyperspectral data, can

(a) (b)

@
(6] (©]
-£ iwl
A N
margin ?‘-‘;I margin

Fig. 7. (a) ODF in a linearly separable problem. Optimal margin hyperplane
is equivalent to minimizing [|w|. Only support vectors (gray-squared
samples) are necessary to define the ODH. (b) Linear decision hyperplanes in
nonlinearly separable data can be handled by including slack variables ¢, o
allow classification errors.

effectively avoid overfitting by controlling the margin, and can
automatically identify a small subset made up of informative
points, namely support vectors (SVs). Consequently, they have
been used for particle identification, face recognition, text
categorization, time series prediction, engine knock detection,
bioinformatics, database marketing, etc. The reader can visit
http://www.kernel-machines.org for introductory tutorials,
publications and software resources.
Support vector methods report four basic characteristics:

* High generalization capabilities. The classification
methodology attempts to separate samples belonging
to different classes by tracing maximum margin hyper-
planes, known as optimal decision hyperplanes (ODHs)
[Fig. 7(a)]. Therefore, the global optimization ensures
good a priori generalization (performance on previously
unseen data) capabilities. Maximizing the distance of
samples to the ODH is equivalent to minimizing the norm
of w and this becomes the first term in the minimizing
functional. For better manipulation of this functional, the
squared norm ||w||? is preferred.

o Slack variables. When data are not linearly separable,
SVMs relax the constraints by introducing positive slack
variables &; (allowed errors) for each sample 7 [41].
The cost associated to each sample is included in the
functional to be minimized. Thus, for an error to occur,
the corresponding &; must exceed unity, so >, &; is an
upper bound on the number of training errors. Hence, a
natural way to assign an extra cost for errors is to change
the objective function to be minimized from ||w|[?/2 to
lw]|?/2 + €3, &, where C is a parameter to be chosen
by the user. A larger C' corresponds to assigning a higher
penalty to errors.

* Feature spaces. SVMs can also build nonlinear decision
functions by transforming input data R to a high (pos-
sibly infinite) dimensional feature space (R, [/ > N)
where data are linearly separable. This rather old trick
[42] was used in [43] to accomplish nonlinear SVMs in a
straightforward way (Fig. 8). The basic idea of this method
is that data appear in the training algorithm in the form
of dot products, x; - x;. Therefore, if data are previously
mapped ¢ to some other Euclidean space H , they appear
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Fig. 8. So-called “kernel trick” consists of mapping the training samples into
a higher dimensional feature space via a nonlinear function ¢ and constructing

2 separating hyperplane with maximum margin there. This yields a nonlinear

- decision boundary in input space. The figure has been adapted from [20].

again in the form K (x;,x;) = ¢(x;) - ¢(x;). One does
not need to know explicitly the mapping ¢ consequently,
but only the kernel function K (-, -). The pair {H, ¢} will
exist with the properties described above if Mercer’s con-
ditions are satisfied [44].

o Support Vectors. The decision hyperplane is constituted
by a linear combination of (few) nonlinearly transformed
input space samples called support vectors. In order
to solve the minimizing functional, restrictions are in-
troduced in it through Lagrange multipliers, «;. After
solving this quadratic problem with linear restrictions,
only examples with nonzero «; count in the solution (the
support vectors). This feature reports some advantages in
order to analyze the usually complex model, as will be
shown in Section VI.

Once the basic ideas underlying SVMs have been presented,
in the following sections we provide the standard formulations
of the binary classification and multiclassification approaches.

1) Two-Class SVM Formulation: Given a labeled training
dataset ((x1,%1),.--,(Xn,¥n), where x; € RY and
y; € {+1, —1}) and a nonlinear mapping, ¢(-), usually

to a higher dimensional space, H‘\’wﬁ”(ﬂ > N), the SVM

method solves
min 1HWH"’+(*§:EL- (1)
w.Eib | 2 : '

subject to the following constraints:

YT (x)w+b)>1-¢ Vi=1,....n 2)
&30 Vi=1io, n (3)

where w and b define a linear regressor in the feature space,
which is nonlinear in the input space. In addition, &; and C', re-
spectively, are a positive slack variable and the penalization ap-
plied to errors [Fig. 7(b)]. The parameter (' can be regarded as
a regularization parameter that affects the generalization capa-
bilities of the classifier and is selected by the user.

An SVM is trained to construct a hyperplane qf)T(X,')W +b=
0 for which the margin of separation is maximized. Using the
method of Lagrange multipliers, this hyperplane can be repre-
sented as

Zfl’i;f/i(i’(xf) Pp(x) =0 ()

i

where the auxiliary variables «; are Lagrange multipliers. Its
solution reduces to the following:

- 1
Maximize L, = Z a =3 Z oy p(xi) - p(xg)  (5)
2 1.7

subject to the constraints
0<a; £C (6)

> aiyi = 0. (7)

2z
Using the Karush~Kuhn-Tucker (KKT) theorem, the solution
is a linear combination of the training examples that lie closest
to the decision boundary. Only these examples, affect the con-
struction of the separating hyperplane.

The mapping ¢ is performed in accordance with Cover’s the-
orem, which guarantees that patterns, that are nonlinearly trans-
formed to a high-dimensionality space, are linearly separable
there. Working with high dimension converted patterns would,
in principle, constitute an intractable problem but all the ¢ map-
pings used in the SVM learning occur in the form of an inner
product. Accordingly, the solution is to replace all the occur-
rences of an inner product resulting from two mappings with
the kernel function K defined as

K(xi,x;) = ¢(xi) - ¢

Then, without considering the mapping ¢ explicitly, a nonlinear
SVM can be constructed by selecting the proper kernel.

2) Multiclass SVM Formulation: One approach to solving
K -class problems is by considering the problem as a collection
of binary classification problems and then to construct K classi-
fiers (one for each class). The kth classifier constructs a hyper-
plane between class n and the k£ — 1 other classes. A majority
vote across the classifiers or some other measure can then be
applied to classify a new sample. Alternatively, ((k(k — 1)/2))
hyperplanes can be constructed, separating each class from all
the others and then applying a similar voting scheme. In con-
clusion, among the binary settings, we can describe several ap-
proaches: the comparison of each class against all the others
[45], known as one-versus-all; the comparison of each class
against all the other classes individually [46], known as all-pairs,
or the comparison of a subset of classes against the rest of them
using error correcting codes [47]. The last one represents spe-
cific cases of the previous two.

(%) (®)

In this paper, we have adopted the multiclassification
approach, which is formulated as follows. Given a classifier
(wi,bi),j € {0,..., k — 1} for each class, in order to assign a

sample x to a certain kth class, we must calculate the output of
the & classifiers and select the one with the highest output. We
must, thus, solve the following convex problem:
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where x{ represents the sample ¢ from class 7,V7 = 0,..., &k —
LYm = 0,....,k = 1(m # j),and Vi = 1,...,n;. If the

problem is separable, all ¢(xf ) = 0 and, in addition, restriction
(10) indicates that output provided by the classifier j(w?,b?)
to the n; samples x; must be greater than the one provided by
the rest & — 1 classifiers, assuring a minimum margin between
samples belonging to different classes. The minimizing func-
tional guarantees that the margin is maximum. Auxiliary vari-
ables &' have been introduced, as in & = 2, in order to solve
nonlinearly separable problems.

We then proceed as in the two-class case. First, we obtain
the minimizing functional introducing the linear restrictions
through Lagrange multipliers. We then use the KKT conditions
to obtain Wolfe’s dual problem as the maximizing functional
which only depends on the Lagrange multipliers o™. The
nonlinear transformation ¢(-) appears again in such a way that
it is not necessary to know its explicit form and thus, we can
work with the reproducing kernels in Hilbert spaces (RKHS).
See [48] for full details (http://citeseer.nj.nec.com/8884.html).

V. CLASSIFICATION RESULTS

A. Model Development

As regards the MLP and RBF models, we varied the number
of hidden neurons (< 100 to avoid overfitting), the weight
initialization range, and the learning rate (between 0.01 and
3) in order (o determine the best topology. A great amount of
CANFIS models were developed by varying the number (2-8)
and structure (Bell and Gaussian) of the MF and the fuzzy
model (TSK and Tsukamoto), along with the number of hidden
layers (2-5) and step size (0.001-0.1). The momentum term
remained constant and equal to zero.

In the case of SVMs, nonlinear classifiers were obtained by
taking the dot product in kernel-generated spaces. The following
RKHS have been used in this work:

* Lineaii K(x;,%;) = %+X;;

* Polynomial: K (x;,%;) = (x; - x; + 1)%;

» Gaussian (RBF): K(x;,x;) = exp (—v|lx; — x;(|2).
Note that one or more free parameters must be previously settled
in the nonlinear kernels (polynomial degree o, Gaussian width
) together with the penalization parameter C. In all cases, we
considered equiprobable classes for training and validation, and
thus, no individual penalization parameter was used [49]. How-
ever, the test set contains highly unbalanced classes and thus,
the latter practice could improve results if the training process
were intentionally driven by priors. However, this would not be
a fair assumption for our purposes, i.e., achieving an automatic
scenario-independent classifier.

The selection of the best subset of free parameters is usually
done by cross-validation methods but this can lead to poor gen-
eralization capabilities and lack of representation. We alleviated
this problem by using the eightfold cross-validation method?
with the training dataset.

Many discriminative methods, including neural networks and
SVMs, are often more accurate and efficient when dealing with

*The eightfold cross validation uses 7/8 of the data for training and 1/8 for
validation purposes. This procedure is repeated eight times with different vali-
dation sets.
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TABLE 1II
AVERAGE RECOGNITION RATES (ARR [PERCENT]) OF THE SIX IMAGES IN
TRAINING, VALIDATION, AND TEST SETS FOR DIFFERENT MODELS. THE Four
SUBSETS (128, 6, 3, 2 BANDS) ARE EVALUATED, ALL OF THEM CONTAINING
150 SAMPLES PER CLASS. THE COLUMN “FEATURES” GIVES SOME
INFORMATION ABOUT THE FINAL MODELS. FOR THE CASE OF SVMS, Wg
INDICATE IN BRACKETS THE PENALIZATION PARAMETER, THE KERNEL
USED, AND ITS OPTIMAL PARAMETERS (POLYNOMIAL ORDER d OR
GAUSSIAN WIDTH -, ), AND THE RATE OF SUPPORT VECTORS, RESPECTIVELY.
BOLDFACE FONT IS USED TO INDICATE THE BEST KERNEL IN EACH SUBSET.
FOR THE CASE OF NEURAL NETWORKS, WE INDICATE THE NUMBER
OF INPUT X HIDDEN x QUTPUT NODES

METHOD FEATS. TRAIN. VALID. TEST

SVIM128 Linear 99.89 98.78 95.45

SVM128 Polynomial 100 98.78 95.53
(5.59, 4, 12.11%)

SVM128 RBF 100 97.78 94.13
SVM6 Linear 99.89 99.33 94.44
SVM6 Polynomial 99.79 99.44 96.44

(20.57, 4, 8.67%)

SVMG6 RBF 100 98.78 94.87
SVM3 R Linear 89.00 87.22 81.31
SVM3 Polynomial 88.89 87.44 82.03
SVM3 RBF 91.22 91.00 85.16

(35.94, 107%, 12.88%)
SVM2 Linear 80.11 83.33 )
SVM2 Polynomial 89.11 88.33
SVM2 RBF 89.11 89.11

(43.29, 1072, 16.88%)

~ MLP128 - - - - -

MLPG 6x5x%6 99.33 94.53
MLP3 3%25%6 90.22 82.97
MLP2 2x27%6 88.00 81.95

RBF128 o o -
RBF6 6x16x6 98.88 98.80 94.10
RBF3 3x31x%6 88.20 87.00 81.44
RBF2 2x18x6 8733 85.25 81.62

CANFIS128 - ) . : g
CANFIS6 6x2x7x6 98.68 96.66 94.22
CANFIS3 3x3x12x6 89.20 88.77 81.64

2x8%x15%6 86.33 86.00 81.82

CANFIS2

only two classes. For large numbers of classes, higher level mul-
ticlass methods utilize these two-class classification methods
as the basic building blocks, namely “one-against-the-rest”
procedures. However, such approaches lead to suboptimal
solutions when dealing with multiclass problems and the
well-known problem of the “false positives.” Therefore, we
have used a multiclassification scheme for all the methods.

All neural models were developed in MATLAB environ-
ment (Mathworks, Inc.). Since the computational burden
was very high. m-files were translated to MEX-files and the
programs were run on fast workstations. In the case of SVM
we used the OSU implementation, which is available from
http://www.ece.osu.edu/~maj/osu_svm/.

B. Model Comparison

Table ITI shows the average recognition rate (ARR|%]) of the
six images in training, validation, and test sets. The ARR% is
calculated as the rate of correctly classified samples over the
total number of samples averaged over the six available images.
Section III contains details on the training, validation, and test
sets.

Some conclusions can be drawn from Table I1I. SVMs per-
form better than neural networks in all scenarios. Moreover,
when a feature selection stage is not possible, and thus. 128
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bands should be used, the computational burden involved in the
training process of neural networks make these methods unfea-
sible. In contrast, SVMs are not drastically affected by input
dimension and presence of noisy bands. This has sometimes
led to the idea that a feature selection is not necessary when
working with SVMs, which is not completely true, as shown in
[20] and [50]. In noisy applications, a feature selection is not
only recommendable but mandatory, since it could remove un-
desired features and better results could thus be obtained. In our
case study, no numerical (ARR<3%) or statistical (x scores in
the range [0.6, 0.8]) differences are found between SVMs with
and without a step for dimensionality reduction prior to classi-
fication. This indicates that noisy bands have been successfully
identified and their contribution to the final decision attenuated
without decreasing the recognition rate. Therefore, two prelim-
inary conclusions can be extracted.

1) SVMs have proven to be efficient models that inherently

detect noisy features.

2) A feature selection step slightly improves results.

This induces a clear trade-off: we could obtain good results by
using an SVM without a preliminary feature selection stage or,
we could (slightly) improve results by including a dedicated
feature selection step, which is time-consuming and requires
more effort. Depending on the application requirements, the
user could choose between these two options.

In the same table, we also observe that, as the dimension of
the input space is lower, neural networks degrade more rapidly
than SVMs do. In that sense, the complexity® of all models in-
creases as the input dimension decreases. In fact, RBF kernels
and more than 15% of SVMs are strictly necessary to attain sig-
nificant results with less than six bands. Despite the fact that the
polynomial kernel has been claimed to be specially well-suited
for hyperspectral data classification [28], it has yielded results
similar to the ones for the linear kernel in our case (see the next
section for details).

Table IV shows the confusion matrix of an image provided
by the best classifier (SVM with polynomial kernel, six bands).
We also include the two methods of calculation classification
accuracy: users accuracy and producers accuracy for each class.
Users accuracy (UA[%]) calculates correctly classified samples
in a desired class over the total samples in that desired class,
and provides and indication of errors of case omission. Pro-
ducers accuracy (PA[%]) is the calculation of correctly classi-
fied samples in a predicted class over the total samples in that
predicted class. High rates of users and producers accuracies
(UA > 90%, PA > 84%) are achieved for all classes but SVMs
misclassify almost 6% of bare soils (class #6) as corn (class
#1), which is due to the fact that corn is in an early stage of
maturity.

Fig. 9 shows the original and the classified samples for one of
the collected images. Corn classification seems to be the most
troublesome. The reason for that is the presence of a whole field
of two-leaf corn in the early stage of maturity, where soil was
predominant and was not accounted for the reference labeled

3We evaluate the model’s complexity in terms of the kernel used and the
number of SVs in the SVM approach, and in terms of the number of hidden neu-
rons in the neural networks. We have based this decision on the works [45], [S1],
[20], where an intuitive relation between neural networks and SVMs sketched.

TABLE IV
CONFUSION MATRIX ALONG WITH THE USERS ACCURACY (UA%)
AND PRODUCERS ACCURACY (PA%) YIELDED BY THE BEST SVM
CLASSIFIER IN THE TEST SET (WHOLE SCENE)

Predicted class [ UA[%]
Desired || {1 12 i3 i4 15 16 |
class Corn Sugar Barley Wheat AlfalfaSoil |
beets |
I 31188 67 7 1 0 6 | 9974
i2 23 11256 43 0 0 0 99.42
i3 732 702 1208741993 18 449 | 96.88
f4 12 108 320 52956 4 0 99.17
i5 28 106 140 36 24413 3 98.73
16 4914 1003 1539 190 15 74190 90.64
PA% 84.53 85.00 9833 93.98 99.85 99.39]

Fig. 9.

(a) RGB composite of the red, green, and blue channels from the
128-band HYMAP image taken in June 1999 of Barrax. (b) Map of the whole
image classified with the labels of the classes of interest.

image. The confusion matrix supports this conclusion as most
of the errors are committed with the bare soil class.

C. Effect of Free Parameters

In order to develop a support vector classifier, the pe-
nalization parameter C' and the kernel parameters must be
tuned. It is a common practice to trying exponentially in-
crease sequences of €' in order to identify good parameters
(C = 1072,1071,...,105. In our case study, good results
were achieved in the range of C' € [1, 100]. Nevertheless, this
parameter showed relatively high variability for each scenario.
In general, as the input dimension increased, the necessary
penalization parameter decreased. This could be related to
the fact that more information was added and thus, a lower
penalization of errors was necessary. However, this must be
assessed in other applications and scenarios.

Fig. 10 shows the impact of kernel parameters in the average
recognition rate. Several conclusions can be drawn from this
analysis.

» Polynomial kernel. As shown in Section V-B, the param-

eter to be defined for this kernel is the polynomial order,
d , which was varied in the range 1-8, as suggested in the
literature (see [41]). Fig. 10(a) shows the influence of this
parameter on the overall performance in the four scenarios
considered. A nonlinear (d > 1) approach results in better
overall performance in the four scenarios. This result was
expected, since boundaries between classes are presumed
to be nonlinear. In general, better results are achieved as
d increases, especially significant for the cases of three
and two bands (optimal d = 8). This fact agrees with
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Fig. 10.  Impact of the (a) polynomial and (b) RBF kernel parameters on the overall performance.

the results provided in [24] and [52]. On the other hand,
when using more than six bands, a local maximum of the
recognition rate is observed around d = 4 , which also
agrees with the work of Cortes and Vapnik [41]. In fact, the
obtained results in this paper confirm the hypothesis pre-
sented in [24] by which high-dimensional input spaces can
be mapped into linear ones by using relatively low-order
polynomial orders.

* RBF kernel. We varied the - parameter between 1—15 ac-
cording to preliminary studies [24], [52]. Fig. 10(b) shows
the influence of this parameter on the overall performance.
In all scenarios, we obtain similar behavior: the ARR[%]
increases as -y rises in the range 1-8. A global maximum is
observed at v = 9 (three bands) and v = 10 (two bands).
Therefore, as the number of input variables is increased,
smoother solutions (lower values of ) become necessary.

D. Robustness in Noisy Conditions

Since neither numerical nor statistical differences have been
observed between neural networks and SVMs, we decided to
test the robustness of the classifiers. We tested the robustness
capabilities over the best classifiers (six bands) by intro-
ducing Gaussian noise with zero mean and standard deviation
a.N(0, o), together with the inputs. This simulates situations
such as labeling errors, sparse classification boundaries. or
sensitivity of the classifier to exact input values. The results are
shown in Fig. 11.

An exponential decay of the overall performance is observed
as the noise variance is increased. SVMs perform slightly better
than neural networks, and this difference is constant as a func-
tion of &. All kernels worked similarly, but the performance of
RBF was slightly better in the range o € [0,0.4] (results not
shown). When o > 0.2, RBF kernel deteriorates its perfor-
mance more rapidly than linear or polynomial kernels do. This
is explained by the direct influence of €' and + in the solution,
Smooth solutions allow good results without noise (o = 0)
but deteriorates the overall performance in the presence of high
noise levels due to the local mapping provided by RBF kernels.
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Fig. I1.  Evaluation of the recognition rate in the validation set when additive
Gaussian noise with zero mean and standard deviation ¢ is introduced in the
best classifier. Test was repeated 100 times, which represents a reasonable
confidence margin for the measured recognition rate.

However, high levels of additive noise (¢ > 0.3) are nonstan-
dard situations, and thus. we can claim that RBF kernels yield
accurate (noise free, o = 0) and robust (moderate noise levels,
a < 0.2) solutions.

VI. KNOWLEDGE DISCOVERY

SVMs have demonstrated to be well-suited techniques in
classification and regression tasks with an additional advantage:
their solution is a linear combination of some (nonlinearly
transformed) training vectors, and thus, its analysis can provide
added knowledge about the problem. In this paper, we perform:
1) a geometrical analysis of the input space and its relationship
to the critical samples and 2) a sensitivity analysis of the best
overall classifier.
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Fig. 12. Ranking provided by sensitivity measures of the best SVM
(polynomial kernel) using six input bands.

A. Geometry Analysis in Input Spaces

The classifier using six bands was formed by 78 support vec-
tors (SVs), namely 8.67% of the whole training dataset, which
indicates that a very reduced subset of examples is necessary
to attain significant results. However, in order to analyze the
geometry of the entire input space, it is more convenient to use
the SVM trained with all available bands (SVM128, 12.11%
SVs). By visual inspection of the distribution of support
vectors in each class, we observed that classes #1 (unmatured
corn) and #6 (soil) could be discriminated mainly with high
reflectance values in bands 1-20. This can be explained, since
plants present chlorophyll and other pigment absorptions in
these visible spectrum bands. This result matches perfectly
with the ones obtained from the CART selection (see Table II)
in which bands 6, 17, and 22 provide information on cellular
pigments and chlorophyll-a maximum absorption, respectively.
With a similar analysis, class #5 (alfalfa crops with very
homogeneous green cover) can be successfully identified
with high values in bands 20-60. This could be due to the
fact that plants present high reflectance in these near-infrared
spectrum bands. CART also selected representative bands in
this spectrum bandwidth; band 22 is related to canopy maturity,
and band 24 provides more reflectance and less absorbance due
to leaf structure.

B. Sensitivity Analysis

Sensitivity analysis is used to study the influence of input
variables on the dependent variable and consists of evaluating
the changes in training error that would result if an input were
removed from the model. This measure, commonly known as
delta error in the literature, produces a valuable ranking of the
relevance of input variables. An additional sensitivity measure,
called average absolute gradient (AAG) has been computed.
This measurement is based on perturbing an input and moni-
toring model outputs and is extensively described in [53].

In Fig. 12, we show the ranking of variables according to
these two common sensitivity measures for the best SVM with
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Fig. 13. Reflectance (percent) curves of all the crops in the scene and the
selected subset of six spectral bands extracted from atmospherically corrected
HyMAP data.

six input features.” An additional measure of the feature rele-
vance is to consider all partitions whose order comprises more
than 90% of the relative relevance. In our case study, an order
of m = 5 was found. This indicates that partitions with higher
order contribute with few information, i.e., five variables are
enough to describe the problem accurately. In addition, a sig-
nificant difference is found between m = 6 and m = 3 re-
garding the 0.9-quantile of the feature selection problem (1 and
0.75, respectively), which could explain the lower results ob-
tained when using less than six variables. These results become
more evident when one compares the information contained in
the subset of two input variables where the 0.9-quantile falls to
0.31.

From a physical viewpoint, the six selected spectral bands are
related to: cellular pigments (carotenoids) absorption; chloro-
phyll absorption; red edge (change visible/near-infrared) related
with canopy maturity; leaf structure at the beginning of near-in-
frared with more reflectance and less absorbance; and water ab-
sorption bands due to soil moisture and leaf water content. The
selection of these bands is consequent with the characteristics
of the crop fields to be classified in the spectral domain. See
Fig. 13 for proper analysis.

VII. DISCUSSION AND CONCLUSION

In this paper, we have proposed the use of kernel methods for
both hyperspectral data classification and knowledge discovery.
In the first stage of the study, we used SVMs for crop classi-
fication and analyzed their performance in terms of efficiency
and robustness, as compared to other well-known neural ap-
proaches. Several tests have provided useful information about
possible limitations of classifiers working with and without a
feature selection stage. In the second stage of this work, we an-
alyzed the distribution of SVs in the input space, and then per-
formed a sensitivity analysis of the best method.

Several conclusions can be drawn from this work.

4Models were retrained after each feature selection run, as proposed in
[54] and [55]. This methodology ensures effectiveness in the feature selection
process.
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* Accuracy. SVMs yield better outcomes than neural net-
works in terms of recognition and misrecognition rates.
Despite the fact that the differences between methods
arc neither numerical nor statistical in the training and
validation sets, better results are obtained in the test set,
which indicates that a stable model has been obtained.
We have shown both the best overall models for each
scenario and the average recognition rates per class. The
latter gives some insight into the class complexity, i.e., the
complexity of the mapping necessary to attain significant
results. An additional advantage of the use of SVMs is
that good results are obtained with less influence by the
input dimension.

Simplicity and computational cost. We used three-layer
(input, hidden, and output) neural networks architecture,
which is enough for classifying hyperspectral imageries
[56] (except for the case of the CANFIS model, which
uses five layers). Training neural models became unfea-
sible with 128 input bands. This is an important benefit
of using SVMs. On one hand, the input dimensionality
does not have a dramatic influence on the computational
cost. On the other hand, the computational cost involved
in training an SVM increases in polynomial time with the
number of training samples, since a restriction for each
sample is included in the minimizing functional. This is
not specially dramatic in our application where we have
used only 900 samples for training, which did not take
more than a few seconds using the MATLAB OSU imple-
mentation. These characteristics make the SVM approach
well-suited to this problem.

In addition, training a neural network requires tuning
several parameters such as the transfer function, the cost
function, the training algorithm, the network architecture,
learning parameters such as the learning rate and the mo-
mentum term, the number of epochs, and defining a stop-
ping criterion. For training the SVM, one only has to se-
lect a kernel function, its free parameters and the regular-
ized constraint C'. There are many reasons to select the
RBF kernel a priori: it has less numerical difficulties, and
only the Gaussian width has to be tuned. The use of the
RBF kernel, implicitly converts the SVM into a regular-
ized RBF neural network but with the additional advantage
that the centers of the Gaussians are tuned automatically.
In addition, sigmoid kernels behave like RBF for certain
parameters [57]. [58]. but unfortunately, they are nonposi-
tive definite kernels in all situations, which precludes their
practical application [20].

Robustness to input space dimension. In our thematic ap-
plication, SVMs have performed similarly in the four clas-
sification scenarios, which indicates that noisy bands have
been successfully detected. This, in turn, leads to the con-
clusion that SVMs are well-suited techniques in applica-
tions where the number of potentially useful input fea-
tures is high and a feature selection stage is not possible
or is unadvisable given the application technical specifi-
cations. The issue of feature selection in the SVM frame-
work has received attention in the recent years [50], [59].
The fact that SVMs are not drastically affected by the

input space dimensionality has sometimes led to the wrong
idea that a feature selection is not necessary at all. The
SRM principle ensures certain robustness to outliers or ab-
normal samples in the distribution inherently, but the se-
lection of the optimal subset of training features is stil]
an unsolved problem in the literature. We can state that
in most applications, the success of machine learning is
strongly affected by data quality (redundant, noisy or un-
reliable information), and thus, a feature selection is not
only recommendable but mandatory. Nevertheless, in our
specific application, where the sensor provides high-reso-
lution imageries and few features (only seven out of 128)
can be treated as effective disturbing or noisy samples, a
feature selection step is not strictly necessary and good
results can be obtained by using an SVM without a fea-
ture selection stage. We have also shown how the inclusion
of a feature selection stage (CART) has removed unde-
sired features, thereby obtaining (slightly) better results.
However, this improvement does not compensate the ef-
fort (Section V-D).

* Robustness to outliers. In general, for any real-world ap-
plication, observations are always subject to noise or out-
liers. Outliers may occur for various reasons, such as er-
roneous measurements or noisy phenomenon appearing in
the tail portion of some noise distribution functions. When
the obtained observations contain noise or outliers, the
learning process, being unaware of those situations, may
try to fit that unwanted data, and this behavior may lead
to a corrupted approximation function. This phenomenon
is often called overfitting, which can usually lead to the
loss of generalization performance in the test phase. The
issue of robustness to outliers has been dealt with the SVM
literature, which has also been assessed in this paper. Basi-
cally, a more stable solution is obtained using SVMs over
neural networks.

* Interpretability. An additional advantage found in the
SVM framework is that the solution is expressed as a
(nonlinear) function of the most representative input
space samples in the distribution and thus, the analysis
of these samples adds some knowledge gain about the
problem. From the sensitivity analysis of the classifier,
specific bands have been identified as especially relevant
and a physical interpretation has been provided for our
specific application.

In conclusion, SVMs have proven to be very efficient in dif-
ferent situations when a feature selection phase is not possible.
This method has tolerated the presence of ambiguous patterns
and features in our dataset. The fact that we have obtained
simple solutions (low rate of SVs) can induce a good method
for compression of hyperspectral images with minimal loss
of critical information. In [60], a support vector regressor has
been presented for two-dimensional image coding. Presently,
we are extending the use of SVMs as image compression tools
to the three-dimensional hypercube case in order to provide an
efficient method for level two product users. Additionally, a
very interesting possibility in the DAISEX project consists of
validating results with HyMAP imagery from other campaigns
(2000 and 2003) in order to achieve robust and automatic,
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multitemporal classification methods. Finally, inclusion of
spatial information to the automatic classifier could improve
the results, as suggested in [29].
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mensional spaces from IKONOS multispectral data. From left to right are the responses to indices defined in spaces spanned by
red—NIR (linearized NDVI), blue-red-NIR, green—red-NIR, and all four IKONOS multispectral bands. For more information, see
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