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Abstract—This letter presents a framework of composite kernel
machines for enhanced classification of hyperspectral images. This
novel method exploits the properties of Mercer’s kernels to con-
struct a family of composite kernels that easily combine spatial and
gpectral information. This framework of composite kernels demon-
sirates: 1) enhanced classification accuracy as compared to tradi-
tional approaches that take into account the spectral information
only: 2) flexibility to balance between the spatial and spectral in-
formation in the classifier; and 3) computational efficiency. In ad-
dition, the proposed family of kernel classifiers opens a wide field
for future developments in which spatial and spectral information
can be easily integrated.

Index Terms—Composite kernels, contextual, hyperspectral,
image classification, kernel, spectral, support vector machine
(SVM), texture.

[. INTRODUCTION

HE information contained in hyperspectral data allows the
characterization, identification, and classification of land-
covers with improved accuracy and robustness [ 1]. In the remote
sensing literature, many supervised and unsupervised methods
have been developed for multispectral and hyperspectral image
classification (e.g., maximum-likelihood classifiers, neural net-
works, neurofuzzy models, etc.) [2]-[4]. However, an important
problem in the context of hyperspectral data is the high number
of spectral bands and relatively low number of labeled training
samples, which poses the well-known Hughes phenomenon [5].
This problem is usually reduced by introducing a feature selec-
lion/extraction step before training the hyperspectral classifier
with the basic objective of reducing the high input dimension-
dlity. However, including such a step is time-consuming, sce-
nario-dependent, and sometimes requires a priori knowledge.
In recent years, kernel methods (6], such as support vector
machines (SVMs) or kernel Fisher discriminant analysis, have
demonstrated excellent performance in hyperspectral data clas-
sification in terms of accuracy and robustness [7]-[12]. The
Properties of kernel methods make them well-suited to tackle
the problem of hyperspectral image classification since they can
handle Jarge input spaces efficiently, work with a relatively low
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number of labeled training samples and deal with noisy samples
in a robust way [9], [12], [13].

The good classification performance demonstrated by kernel
methods using the spectral signature as input features could be
further increased by including contextual (or even textural) in-
formation in the classifier, something that has been successfully
illustrated in other classification algorithms (expectation-max-
imization, k-nearest neighbor classifiers, neural networks, etc.)
[14]-[16]. However, to the authors’ knowledge, kernel methods
have so far taken into account the spectral information to de-
velop the classifier [7], [9]-[12], and thus, the spatial variability
of the spectral signature has not been considered.

In this letter, we explicitly formulate a full family of kernel-
based classifiers that simultaneously take into account spectral,
spatial, and local cross-information in a hyperspectral image.
For this purpose, we take advantage of two especially interesting
properties of kernel methods: 1) their good performance when
working with high input dimensional spaces [9], [12] and 2) the
properties derived from Mercer’s conditions by which a scaled
summation of (positive definite) kernel matrices are valid ker-
nels, which have provided good results in other domains [17],
[18]. Among all the available kernel machines, we focus on
SVMs, which have recently demonstrated superior performance
in the context of hyperspectral image classification [12], [19].
In any case, the formulations proposed in this letter are valid for
any kernel classifier.

The letter is outlined as follows. Section II briefly reviews
the formulation of SVM classifiers. Section III discusses the
concept and properties of Mercer’s kernels. Section IV presents
the formulation of composite kernels for the versatile combina-
tion of spatial and spectral information for hyperspectral image
classification. Section V presents the experimental results. In
Section VI, we conclude this letter with further work, research
opportunities, and final remarks.

II. SUPPORT VECTOR CLASSIFIERS

Given a labeled training dataset {(x1,y1),..., (X, ¥n)}.
where x; € R and y; € {~1,+1}, and a nonlinear map-
ping ¢(:), usually to a higher (possibly infinite) dimensional
(Hilbert) space, ¢ : R™Y — H, the SVM method solves
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where w and b define a linear classifier in the feature space. The
nonlinear mapping function ¢ is performed in accordance with
Cover’s theorem [20], which guarantees that the transformed
samples are more likely to be linearly separable in the resulting
feature space. The regularization parameter C' controls the gen-
eralization capabilities of the classifier and it must be selected
by the user, and &; are positive slack variables enabling to deal
with permitted errors.

Due to the high dimensionality of vector variable w, primal
function (1) is usually solved through its Lagrangian dual
problem, which consists of solving

max Z o~ é chjajyiyj ((x:), (x;)) (4)
7 ,7

constrained to 0 < «o; < (" and Zi ;i = 0,1 =1,...,n,

where auxiliary variables a; are Lagrange multipliers corre-

sponding to constraints in (2). It is worth noting that all ¢ map-

pings used in the SVM learning occur in the form of inner prod-

ucts. This allows us to define a kernel function K

K(xi,x;) = (8(x:), ¢(x;)) (5)

and then a nonlinear SVM can be constructed using only the
kernel function, without having to consider the mapping ¢ ex-
plicitly. Then, by introducing (5) into (4), the dual problem is ob-
tained. After solving this dual problem, w = 37| y;0:9(x;),
and the decision function implemented by the classifier for any
test vector x is given by

f(x) = sgn Z yioi K (x,%x) +b (6)

=1

where b can be easily computed from the «; that are neither 0
nor ', as explained in [6].

[1I. PROPERTIES OF MERCER’S KERNELS

In the context of SVMs in particular and kernel methods in
general, one can use any kernel function K(-,-) that fullfils
Mercer’s condition, which can be stated formally in the fol-
lowing theorem.

Theorem 1: Mercer's Kernel. Let X be any input space and
K : X x X — R asymmetric function, K is a Mercer’s
kernel if and only if the kernel matrix formed by restricting K
to any finite subset of A" is positive semidefinite, i.e.. having no
negative eigenvalues.

The Mercer condition constitutes the key requirement to
obtain a unique global solution when developing kernel-based
classifiers (e.g., SVMs) since they reduce to solving a convex
optimization problem [13]. In addition, important properties
for Mercer’s kernels can be derived from the fact that they are
positive-definite (affinity) matrices, as follows.

Proposition 1: Properties of Mercer’s Kernels. Let Iy, Ko,
and /3 be valid Mercer's kernels over X' x A, with x; €
X C RY, with A being a symmetric positive semidefinite
N x N matrix, and «« > 0. Then the following functions are
valid kernels: 1) K(x;.x;) = Ki(x;.%x;) + Kao(xi,%x;): 2)
K 3) =i (Xe% ) 800 .3) KoG%5) = X;:'ij.

It 1s worth noting that the size of the training kernel ma-
trix is » x n and each position (i, 7) of matrix (K);; con-

tains the similarity among all possible pairs of training sam-
ples (x; and x;) measured with a suitable kernel function
fulfilling Mercer’s conditions. Some popular kernels are: lineay
(H(3:%0) = (X5:%5)), polynomial (A, x;) = ({x:%) +
134, d e 7). or radial basis function (RBF) (K {3%;) =
exp(—||x; — x;]|?/2¢?). & € RT). This (distance or similarity)
matrix is precomputed at the very beginning of the minimization
procedure, and thus, one usually works with the transformed
input data K rather than the original input space samples x;.
This fact allows us to easily combine positive definite kernel
matrices taking advantage of the properties in Proposition 1, as
will be shown in the next section.

IV. COMPOSITE KERNELS FOR HYPERSPECTRAL
IMAGE CLASSIFICATION

A full family of composite kernels for the combination of
spectral and contextual information is presented in this section,
For this purpose, three steps are followed.

1) Pixel definition: A pixel entity x; is redefined simultane-
ously both in the spectral domain using its spectral con-
tent x7° € RN+ and in the spatial domain by applying
some feature extraction to its surrounding area x5 € R™:
which yields N, spatial (contextual) features, e.g., the
mean or standard deviation per spectral band.

2) Kernel computation: Once the spatial and spectral feature
vectors x§ and x;” are constructed, different kernel ma-
trices can be easily computed using any suitable kernel
function that fulfills Mercer’s conditions.

3) Kernel combination. At this point, we take advantage of
the direct sum of Hilbert Spaces by which two (or more)
Hilbert spaces Hj can combined into a larger Hilbert
space. This well-known result from functional analysis
theory [21] allows us to sum spectral and textural dedi-
cated kernel matrices (K, and K, respectively), and in-
troduce the cross-information between textural and spec-
tral features (K, and K, ) in the formulation.

In the following, we present four different kernel approaches for
the joint consideration of spectral and textural information in a
unified framework for hyperspectral image classification.

A. Stacked Features Approach

The most commonly adopted approach in hyperspectral
image classification is to exploit the spectral content of a pixel
x; = x;°. However, performance can be improved by including
both spectral and textural information in the classifier. This is
usually done by means of the “stacked™ approach, in which
feature vectors are built from the concatenation of spectral
and spatial features. Note that if the chosen mapping ¢ is a

transformation of the concatenation x; = {x}.x?}. then the
corresponding “stacked” kernel matrix is
[({\_u} = [\'-(X,.Xj) = (¢(X,)¢(XJ]) (7

which does not include explicit cross relations between x? and

X_, £

B. Direct Summation Kernel

A simple composite kernel combining spectral and textural
information naturally comes from the concatenation of non-
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linear transformations of x{ and x{’. Let us assume two non-
Jinear transformations ¢ (-) and ¢(-) into Hilbert spaces H,
and Haz, respectively. Then, the following transformation can
be constructed:

d(x;) = {1 (xF) . 2 (x7)} (8)

and the corresponding dot product can be easily computed as
follows:

K(xi x;) = {$(x:), $(x ))
<{901 ()
=K; ( 15'q

Il

2 (x%) }{@1 (x5) 12 (Xj)”
)+K (x¥,x¥) . o

Note that the solution is expressed as the sum of positive definite
matrices accounting for the textural and spectral counterparts,
independently. Note that dim(xy) = N, dim(x?) = N,. and

dim(K) = dim(K,) = dim(K,) =n x n.

C. Weighted Summation Kernel

By exploiting Property 2) in Proposition [, a composite kernel
that balances the spatial and spectral content in (10) can also be
created, as follows:

Kgxy) = pl, [x xf) 4+ (1 ke (x85%3) (10

where 1 is a positive real-valued free parameter (0 < p < 1),
which is tuned in the training process and constitutes a tradeoff
between the spatial and spectral information to classify a given
pixel. This composite kernel allows us to introduce a priori
knowledge in the classifier by designing specific ;o profiles per
class, and also allows us to extract some information from the
best tuned j parameter.

D. Cross-Information Kernel

The preceding kernel classifiers can be conveniently modi-
fied to account for the cross relationship between the spatial
and spectral information. Assume a nonlinear mapping ¢(-) to
a Hilbert space H and three linear transformations Ay, from H
to Hy., fork = 1,2, 3. Let us construct the following composite
vector:

)={Aae (x7), Ao (x) , Ag (@ (x]) + ¢ (x))} (1D)
and compute the dot product
K(x; x;)= {$(xi). #(x;))
=9 (x)) Rug(x}) +(x7) Rog(x7)

+6(x;) Rag(xy)+ qb( "Rad(x)  (12)

where Ry = AJ A, + AJ A3, Ry = A§A2 + AJ As, and
Ry = AJ A, are three independent positive definite matrices.
Similarly to the direct summation kernel, it can be demonstrated
that (12) can be expressed as the sum of positive definite ma-
trices, accounting for the textural, spectral, and cross-terms be-
tween textural and spectral counterparts

xj) + K, (x5,x7)
+ Ko (x5, %5) + K.

K(x;,%;) = K, (x

s (x¢.x5). (13)

The only restriction for this formulation to be valid is that x;
and xy need to have the same dimension (N,

=N

An intuitive example of this composite kernel would be as
follows. Let the spatial features x; be the average of the re-
flectance values in a given window around pixel x; for each
band, and let the spectral features x¢ be the actual spectral sig-
nature (x; = x¢'). Then, K, (K ,) represents the distance ma-
trix among all spatial (spectral) features. and K. represents the
similarity matrix formed by the distances among the spectra and
the averaged neighborhoods.

Note that solving the minimization problem in all kinds of
composite kernels requires the same number of constraints as in
the conventional SVM algorithm, and thus no additional com-
putational efforts are induced in the presented approaches.

V. EXPERIMENTAL RESULTS
A. Model Development

Experiments were carried out using the familiar AVIRIS
image taken over northwest Indiana’s Indian Pine test site
in June 1992.! Following [7], we first used a part of the 145
% 145 scene, called the subser scene, consisting of pixels
[27-94] x [31-116] for a size of 68 x 86, which contains four
labeled classes (the background pixels were not considered
for classification purposes). Second, we used the whole scene,
consisting of the full 145 x 145 pixels, which contains 16
classes, ranging in size from 20-2468 pixels. We removed 20
noisy bands covering the region of water absorption, and finally
worked with 200 spectral bands. In both datasets, we used 20%
of the labeled samples for training and the rest for validation.
In all cases, we used the polynomial kernel (d = {1,...,10})
for the spectral features according to previous results [7], [12]
and used the RBF kernel (¢ = {1071,...,10%}) for the spatial
features according to the locality assumption in the spatial
domain. In the case of the weighted summation kernel, ;o was
varied in steps of 0.1 in the range [0,1]. For simplicity and for
illustrative purposes, ;1 was the same for all labeled classes in
our experiments. For the “stacked” (K, .y) and cross-infor-
mation (K, K 5) approaches, we used the polynomial kernel.
The penalization factor in the SVM was tuned in the range

{1071, .., 107}. A one-againsi-one multiclassification
scheme was adopted in both cases.

The most simple but powerful spatial features x? that can be
extracted from a given region are based on moment criteria. In
this letter, we take into account the first two momenta to build
the spatial kernels. Two situations were considered: 1) using
the mean of the neighborhood pixels in a window (dimn(x?) =
200) per spectral channel or 2) using the mean and standard
deviation of the neighborhood pixels in a window per spectral
channel (dim(x}) = 400). Inclusion of higher order momenta
or cumulants did not improve the results in our case study. The
window size was varied between 3 x 3 and 9 x 9 pixels in the
training set.

B. Model Comparison

Table I shows the validation results of several classifiers for
both images. We include results from six kernel classifiers: spec-

Thup://dynamo.ecn purdue edu/~biehl/MultiSpec/documentation. htm]
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TABLE 1
OVERALL ACCURACY, OA[%], AND KAPPA STATISTIC, ., ON THE VALIDATION
SETS OF THE SUBSET AND WHOLE SCENES FOR DIFFERENT SPATIAL AND
SPECTRAL CLASS S. THE BEST SCORES FOR EACH CLASS ARE
HIGHLIGHTED IN BOLDFACE FONT. THE OA[%] THAT ARE STATISTICALLY
DIFFERENT (AT 95% CONFIDENCE LEVEL, AS TESTED THROUGH PAIRED
WILCOXON RANK SUM TEST) FROM THE BEST MODEL ARE UNDERLINED

SUBSET || WHOLE
SCENE SCENE
OA[%] r | OA[%] r
Spectral classifiers’
Euclidean [15] 6743 — 48.23 —
bLOOC+DAFE+ECHO [15] 93.50 — 8291 —
Ko [T 9590 — 8730 —
K., developed in this paper 95.10 0.94 || 88.55 0.87
Spatial-spectral classifiers
Mean
K. 9344 092 || 84.55 0.82
Bponsh 96.84 097 || 9421 0.93
K+ K, 97.12  0.97 || 92.61 09I
ks + (1= p) K., 9743 097 || 95.97 0.94
Ks+ Ko+ Koo + Kus 97.44 097 || 9480 0.94
Mean and standard deviation *
Ky 94.86 0.94 || 88.00 0.86
Ko w) 98.23 097 94.21 0.93
Ks: + K, 98.26 098 || 9545 0.95
WK + (1 — ) K. 98.86 0.98 || 96.53 0.96

" One difference with the data and results reported in [13] is that they
studied the scene using 17 classes (Soybeans-notill was split into two classes)
whereas we used 16 classes. Also note that the use of the LOOC algorithm
instead of the bLOOC algorithm could improve performance, as proposed in
[23], [24]. Differences between the obtained accuracies reported in 7] and
the presented here could be due to the random sample selection, however
they are not statistically significant. * Note that by using mean and standard
deviation features, N, # N and thus no cross kerels (Ks, or Ks) can
be constructed.

tral (K,), contextual (K,), the stacked approach (K, ), and
the three presented composite kernels. In addition, two stan-
dard methods are included for baseline comparison: bLLOOC +
DAFE + ECHO, which uses contextual and spectral informa-
tion to classify homogeneous objects, and the Euclidean classi-
fier [15], which only uses the spectral information. All models
are compared numerically (overall accuracy, OA[%]) and statis-
tically (kappa test and Wilcoxon rank sum test). Table I shows
the results averaged over ten random realizations that were ob-
tained to avoid skewed conclusions.

Several conclusions can be obtained from Table I. First, all
kernel-based methods produce better (and statistically signifi-
cant) classification results than previous methods (simple Eu-
clidean and LOOC-based method), as previously illustrated in
[7]. It is also worth noting that the contextual kernel classifier
K alone produces good results in both images, mainly due to
the presence of large homogeneous classes and the high spatial
resolution of the sensor. Note that the extracted textural features
x? contain spectral information to some extent as we computed
them per spectral channel, thus they can be regarded as contex-
tual or local spectral features. However, the accuracy is inferior
to the best spectral kernel classifiers (both K, implemented here
and in [7]), which demonstrates the relevance of the spectral in-
formation for hyperspectral image classification. Furthermore,
it is worth mentioning that all composite kernel classifiers im-
proved the results obtained by the usual spectral kernel, which
confirms the validity of the presented framework. This improve-
ment was higher in the most difficult case of the whole scene

(a)

Fig. 1. Classification results in the subser image. (a) Labeled scene and
classification maps using (b) the contextual kernel Iv'; (window size: 7 x 7).
(c) spectral kernel Ay, and (d) weighted summation kernel (pe V(1 —p) IV .
= 0.2, window size: 7 X 7).

Classification results in the whole image. (a) Labeled scene and
classification maps using (b) the contextual kernel I\, (window size: 5 x 5).
(c) spectral kernel /A, and (d) weighted summation kernel (0 v, (1 — )\ .
po= 0.4, window size: 5 x 3).

Fig. 2.

(11% increase versus 4% in the subset image) since the spatial
variability of the spectral signature was reduced. and classifiers
take advantage of the spatial correlation to enhance their accu-
racy by correctly identifying neighboring classes.
Additionally, as can be observed, there is superior perfor-
mance of cross-information and weighted summation kernels
with respect to the usual stacked approach. This behavior is
more noticeable in the case of the whole scene and high input
space dimension (using the first two momenta). The latter is a
clear shortcoming of the stacked kernel approach since the risk
of overfitting arises as the number of extracted features (input
dimension) increases. Finally, it is also worth noting that, as
the textural extraction method is refined (extracting the first two
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momenta), the classification accuracy increases, which, in turn,
demonstrates the robustness of kernel classifiers to high input
gpace dimension. This property of kernel machines could be ex-
ploited to develop stacked-based classifiers that are constrained
to a moderate number of extracted spatial features.

The good numerical and statistical results obtained can be as-
sessed by showing the best classified images in Figs. 1 and 2. It
is worth noting that narrow interclass boundaries are smoothed
and better discerned with the inclusion of composite kernels.
Finally, two relevant issues should be highlighted from the ob-
tained results: 1) optimal ;2 and window size seem to act as effi-
cient alternative tradeoff parameters to account for the textural
information (;z = 0.2 and 7 x 7 for the subset image, ;4 = 0.4
and 5 x 5 for the whole image), and 2) results have been signif-
jcantly improved without considering any feature selection step
previous to model development. These findings should be fur-
ther explored in more applications and scenarios. In conclusion,
composite kernels offer excellent performance for the classifica-
tion of hyperspectral images by simultaneously exploiting both
the spatial and spectral information.

VI. CONCLUSION

We have presented a full framework of composite kernels for
hyperspectral image classification, which efficiently combines
contextual and spectral information. This approach opens a wide
range of further developments in the context of Mercer’s kernels
for hyperspectral image classification. For instance, tuning the st
parameter as a function of prior knowledge on class distribution
could be considered.

Our immediate future work is tied to the use of other kernel
distances, such as the Spectral Angle Mapper [24], and more
sophisticated texture techniques for describing the spatial struc-
ture of the classes, such as Gabor filters, Markov random fields,
and cooccurrence matrices [25].
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