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~ Abstract—This paper presents a methodology for cloud screen-

iy of multispectral images acquired with the Medium Resolution

{inging Spectrometer (MERIS) instrument on-board the Envi-

§  wnmental Satellite (ENVISAT). The method yields both a discrete

. © tloud mask and a cloud-abundance product from MERIS level-1b

& diln on a per-pixel basis. The cloud-screening method relies on

& il extraction of meaningful physical features (e.g., brightness

1 il whiteness), which are combined with atmospheric-absorption

~ Witures at specific MERIS-band locations (oxygen and water—

- Jpor absorptions) to increase the cloud-detection accuracy. All

Hliese features are inputs to an unsupervised classification algo-

tlthm; the cloud-probability output is then combined with a spec-

{14l unmixing procedure to provide a cloud-abundance product

Wmtead of binary flags. The method is conceived to be robust

Wl applicable to a broad range of actual situations with high

©  tarlability of cloud types, presence of ground covers with bright

*  ui white spectra, and changing illumination conditions or obser-

. yitlon geometry. The presented method has been shown to out-

% erform the MERIS level-2 cloud flag in critical cloud-screening

1 dlluntions, such as over ice/snow covers and around cloud bor-

iirs, The proposed modular methodology constitutes a general

{ % fsumework that can be applied to multispectral images acquired

& 1y spaceborne sensors working in the visible and near-infrared

? }rclral range with proper spectral information to characterize
B iospheric-oxygen and water-vapor absorptions.

- Index Terms—Cloud screening, Medium Resolution Imaging
- Apectrometer (MERIS), multispectral images, spectral unmixing,
~ Hisupervised classification.

I. INTRODUCTION

i % A CCURATE identification of clouds in remote-sensing im-

& ["\ ages is a key issue for a wide range of remote-sensing
| ¢+ Wpplications, particularly in the case of sensors working in the
{ § Viible and near-infrared (VNIR) range of the electromagnetic

© jpectrum due to the severe absorption of cloud constituents.
1hie amount of images acquired over the globe every day by the
Jistruments on-board Earth Observation (EO) satellites makes
ljpvitable that many of these images present cloud covers,
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whose extent depends on the season and the geographic position
of the study region. According to the observational estimates
from the International Satellite Cloud Climatology Project
ISCCP-FD data set [1], the global annual-mean cloud cover is
around 66%. Other studies report higher rates of cloud covers
over the globe, analyzing data from a worldwide meteorological
network with a large number of stations at different latitudes
and seasons [2].

The presence of clouds drastically affects the measured elec-
tromagnetic signal and, thus, the retrieved information about the
observed target. The corresponding cloud influence depends on
the cloud type, cloud cover, cloud height, and cloud distribution
in the sky, e.g., thick opaque clouds impede the incoming
radiation reaching the surface, while thin transparent clouds
contaminate the data by photons scattered in the observation
direction, or attenuate the signal by the removal of photons
in their travel to the sensor. Depending on the remote-sensing
application, clouds can be either viewed as a source of con-
tamination that makes the image partly useless for assessing
landscape properties or a source of information for measuring
important climatological parameters [3]. As a result, any set
of remote-sensing images needs a previous cloud-screening
task in the initial processing steps to ensure accuracy in the
results.

Cloud-screening approaches, also referred to as cloud mask-
ing or detection, are generally based on the assumption that
clouds present some useful features for its identification [4]:
Clouds are usually brighter and colder than the underlying sur-
face; clouds increase the spatial variability of detected radiance;
and the spectral response is different from that of the surface
covers. But, individually, each of these features in a given
image is strongly conditioned by the sun elevation, variable
path length, atmospheric water vapor, aerosol concentrations,
variable reflectance, and subpixel clouds produced on the same
pixel by cloud structures over land or sea [5]. Some of these
problems can be mitigated in the cloud-screening algorithm
by including specific corrections (e.g., sun elevation or path
length), avoiding bands with severe atmospheric effects, and
providing to the user information about subpixel coverage.
The atmospheric features, although viewed as a problem by
most of the cloud-screening approaches, can provide useful
information about cloud height that can be included in the
screening approach.

After stating the cloud-screening problem, it is clear that the
selection of an approach heavily depends on the characteristics
of the instrument. The spectral range, along with the spectral
and spatial resolutions, is a critical factor in the selection of
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the best approach. For example, the presence of channels in
the thermal-infrared range enables detection based on thermal
contrasts [6], [7]. Sensors with narrow spectral channels beyond
I pm have demonstrated good capabilities to detect high clouds
because of the strength of the water-vapor absorption [8], [9]. In
the spectral range of 1.38-1.50 pm, both the thin cirrus clouds
and the lower level cumulus clouds can be seen; however, the
surface features are eliminated due to additional absorption of
solar radiation by atmospheric water vapor between clouds and
the surface cover (even in the presence of ice or snow). In
fact, new generation EQ satellites, such as GMES/Sentinel-2,
include dedicated bands specifically designed to perform an
accurate cloud screening. However, these features cannot be
exploited by recently developed multispectral sensors that work
in the spectral range between 400-1000 nm but, even in these
cases, one can take advantage of their high spectral and radio-
metric resolution and the specific band locations to increase
the cloud-detection accuracy and to properly describe detected
clouds.

In this paper, we focus on the Medium Resolution Imaging
Spectrometer (MERIS) instrument on-board the Environmental
Satellite (ENVISAT) [10]. Two of the key features of MERIS
are its temporal resolution (revisit time of three days) and
its spatial coverage (swath width of 1150 km). In addition,
MERIS also provides data at unprecedented spectral and spatial
resolutions: 15 narrow bands and 300-m pixel size in full-
resolution (FR) mode. Therefore, MERIS has a great potential
for multitemporal studies, both at regional and global scales.
The operational use of MERIS images is, however, hampered
by the presence of clouds, because this instrument works in the
VNIR part of the electromagnetic spectrum. On this matter, an
automatic and accurate cloud-screening method is essential in
order to use partially cloudy images facilitating the elaboration
of MERIS products and also improving the usability of MERIS
temporal images. :

Two major points motivate the selection of MERIS data and
cloud screening to be put together in this paper. On the one
hand, MERIS offers a unique spectral configuration for the
retrieval of both atmosphere and surface parameters: Two fine
bands at the oxygen (O2—A) and water-vapor atmospheric ab-
sorptions are combined with 13 other spectral bands providing
high-accuracy measurements from the blue to the NIR spectral
regions (see [10] for further technical information). In addition,
the accurate characterization of the O;—A absorption at MERIS
channel 11 enables the estimation of cloud-top pressure (which
is related to cloud height) from MERIS data [11]. On the other
hand, there is a well-known lack of accurate methods for the
cloud screening of MERIS data, as well as clearly identified
problems in the corresponding European Space Agency (ESA)
official level-2 (L2) cloud-mask products [12], [13].

The simplest approach to mask clouds in a particular scene
is the use of a set of static thresholds (e.g., over features such
as albedo or temperature) applied to every pixel in the image
and ultimately providing a binary flag [14]. These methods
can fail for several reasons, such as subpixel clouds, high-
reflectance surfaces, illumination and observation geometry,
sensor calibration, variation of the spectral response of clouds
with cloud type and height, etc. [15]. Spatial-coherence meth-
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ods have an advantage over static-threshold methods, because

they use the local spatial structure to determine cloud-free ani
cloud-covered pixels. Usually, these algorithms are based ojf

extracted textural features [16], [17], contextual approaches [7}, §
or simple thresholds applied to the spatial variability of spectral

bands [18], which is mainly applicable over the ocean, where

the surface background is sufficiently homogeneous. However,
spatial-coherence methods can fail when the cloud system i

multilayered (which is often the case), the clouds over the scen¢
are smaller than the instrument spatial resolution, or the sceng
presents cirrus clouds (which are not opaque). As a conse-
quence, researchers have turned to developing adaptive thresh:
old cloud-masking algorithms [15], [19], [20]. Some other
algorithms take advantage of the multiangular [20], [21] or the

multitemporal [22] information, depending on the instrumen :

characteristics and the application constraints. In this contexi,
few works using more sophisticated machine-learning tools

have been presented so far, such as Bayesian methods [23],

fuzzy logic [24], artificial neural networks [5], [8], [16], [25],
or, recently, kernel methods [21], [26], [27]. Given the extreme
complexity of cloud screening, most of the operational cloud-
masking applications of current satellite multispectral systems,
such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) [28], Along-Track Scanning Radiometer (ATSR)
[15], Polarization and Directionality of the Earth’s Reflectancey
(POLDER) [29], or MERIS [30], consist in a series of cloud-
detection threshold tests, which vary depending on surface type
and solar illumination.

The main objective of this paper is to develop a cloud:
screening algorithm using the full spectral information
provided by MERIS. The proposed cloud-screening algorithm §
takes advantage of the high spectral and radiometric resolutiony
of MERIS and the specific location of some channels (e.g,

oxygen and water-vapor absorption bands) to increase the
cloud-detection accuracy. The method is capable of the
following: 1) detecting clouds accurately and 2) providing
probability or cloud abundance rather than merely cloud
flags. The cloud-abundance product provided is not directly
related to the retrieval of cloud optical properties [31],
such as the cloud optical thickness, which usually relies on
radiative-transfer models. This added-value product allows
the user to apply an adjustable cloud mask depending on

the further processing stages and application of the MERIS |
image. For example, undetected cloudy pixels tremendously _

affect biophysical parameter-retrieval methods [18], [32]

Slight overmasking of potential cloudy pixels—conservative
cloud masking—would be preferred in those cases in order

to guarantee the quality of the final product [33], while other
applications, such as land-use classification, are less sensitive
to thin clouds, and thus, these areas should not be necessarily
discarded [34].

The method consists of different steps. First, a feature extracs
tion based on meaningful physical facts is carried out: clouds
are bright, white, and are at a high altitude (light reflected by
clouds crosses less atmosphere than the one that reaches the
surface). Then, an unsupervised classification is applied to these

features, and the resulting clusters are subsequently labeled

as cloud or cloud-free. Finally, a spectral unmixing is applied
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Mg, 1. Scheme of the cloud-screening algorithm constituted by the pre-

processing (TOA reflectance derivation) and four main processing steps (gray
Boxes).

{o the classified image. As a result, the proposed algorithm
provides a per-pixel probabilistic map of cloud abundance
tather than a binary cloud-presence flag.

This paper extends previous works [35], [36] as follows:
|) paying special attention to the MERIS data preprocessing;
1) analyzing the computation of atmospheric features in greater
detail; 3) thoroughly testing critical situations in cloud detection
(e.g., ice/snow covers); and 4) comparing results with the offi-
¢lal L2 cloud-mask products. The rest of this paper is organized
us follows. Section IT describes in detail the proposed cloud-
sreening algorithm. In Section III, a short description of the
employed MERIS images is given, and the experimental results
are presented. Finally, concluding remarks and further research
ilirections are given in Section IV.

II. CLOUD-DETECTION ALGORITHM

In this section, we present a cloud-detection procedure,
which is constituted by the following steps (Fig. 1).

1) Image preprocessing: A preprocessing stage of MERIS
data to correct illumination effects is necessary for their
proper analysis.

2) Feature extraction: Physically inspired features are ex-
tracted to increase separability of clouds and surface.

3) Image clustering: An unsupervised clustering is per-
formed on the extracted features in order to separate
clouds from the ground-cover.

4) Cluster labeling: Resulting clusters are subsequently la-
beled into geophysical classes according to their extracted
features and spectral signatures.

5) Spectral unmixing: A spectral unmixing is applied to the
segmented image in order to obtain an abundance map of
the cloud content in the cloudy pixels.

In the following, we analyze these components in detail.

A. Image Preprocessing

A multispectral image acquired by a push-broom system
consists of two spatial dimensions (along-track and across-
frack) and one spectral dimension (wavelength). The image is
registered by the instrument in a data-cube where the along-
frack dimension y corresponds to the image lines; the across-
track dimension z is associated to the pixel line; and the spectral
dimension A represents the image bands. The size of the multi-
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Fig. 2. (Boxes) MERIS channel locations superimposed to a reflectance
spectra of (dashed) healthy vegetation, (dash-dotted) bare soil, and (solid) the
atmospheric transmittance.

spectral data-cube can be written in the form [ x p x b, where [
is the number of image lines, p is the number of pixels per line,
and b is the number of spectral channels. MERIS level-1b (L1b)
products are provided in top-of-the-atmosphere (TOA) radiance
(radiometrically calibrated data), and each pixel k is defined
by {Lk(A\)}?_,, where the number of pixels is 7 = [ x p and
L, € R? is the spectral signature sampled at b = 15 narrow
bands (about 10 nm) of the VNIR spectral region {A\i}i_; =
{412.5, 442.5, 490, 510, 560, 620, 665, 681.25, 708.75,
753.75, 760.625, 778.75, 865, 885, 900} nm (see Fig. 2).

This raw information must be preprocessed in order to esti-
mate TOA reflectance. This allows us to remove in practice the
dependence on particular illumination conditions (day of the
year and angular configuration) and illumination effects due to
rough terrain (cosine correction), since the method is intended
to work under many situations. TOA apparent reflectance is
estimated according to

nL(z,y, )

05 (0(x,9)) Fo () i

p(z,y,A) =

where L(z,y,)\) is the provided at-sensor upward radiance
at the image location (z,y), Fo(XA) is the extraterrestrial in-
stantaneous solar irradiance, and 6(z, y) is the angle between
the illumination direction and the vector perpendicular to the
surface. In this papet, 8(x,y) is computed for each pixel using
the sun-azimuth and sun-zenith angles (available in the tie-
point location and auxiliary data of the MERIS product) and
the vector perpendicular to the surface, which can be computed
from a digital elevation model (DEM). In this step, however,
we assume flat surface because, by using a DEM, illumination
effects in the surface are corrected but the characteristics of
clouds over rough terrain may change. Finally, the sun irradi-
ance Fy()) is taken from Thuillier et al. [37], corrected for
the acquisition day, and convolved with the MERIS spectral
channels.

B. Feature Extraction

The measured spectral signature depends on the illumination,
the atmosphere, and the surface. Fig. 2 shows MERIS channel
locations compared with the spectral curve of healthy
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Fig. 3. (Left) Cloud brightness and (right) whiteness features extracted from
the TOA reflectance of the BR-2003-07-14 image.

vegetation, bare soil, and the atmospheric transmittance. The
spectral bands free from atmospheric absorptions contain
information about the surface reflectance, while others are
mainly affected by the atmosphere.

At this step, rather than working with the spectral re-
flectance only, physically inspired features are extracted in
order to increase the separability of clouds and surface covers.
These features are extracted independently from the channels
that are free from strong gaseous absorptions (\; C Bg,i =
{1-10,12-14}) and from the channels substantially affected by
the atmosphere (\; C Ba,i = {11,15}). A detailed analysis
of the extracted features follows. For illustration purposes,
only the extracted features from a single given MERIS image
(BR-2003-07-14, cf. Section ITI-A) are provided.

1) Surface Features: Regarding the reflectance of the sur-
face, one of the main characteristics of clouds is that they
present bright and white spectra (Fig. 3). We can exploit MERIS
channels {1-10,12-14} for extracting information about the
target reflectance, i.e., cloud brightness and cloud whiteness for
cloudy pixels

1) A bright spectrum means that the intensity of the spectral

curve (related to the albedo) should present relatively
high values. Therefore, cloud brightness is calculated for
each pixel as the integral of spectrum, fz, = [ p(\)d),
which is approximated through trapezoidal numerical
integration

& _ 1 p(Ait1) + p(As)

fBr — D)

Amax — Ami
max min A;iCBg

(Aix1—A) (@

which has the same units as p(\) and differs from the
average of the spectral channels since it takes into account
the distribution of the energy along the spectrum.

2) A white spectrum means that the spectral signature must
be flat along the spectrum. The first derivative of the
spectral curve should present low values, but noise and
calibration errors may reduce the accuracy in the es-
timation of the spectrum flatness when computing the
spectral derivative in channels with similar wavelengths.
Therefore, we compute for each pixel the deviation from

the flatness as the (trapezoidal approximate) integral of

e(A) = |p(A) — fo:l

1 e(Aig1) + el
( 'H"])z ( 3) ()\1_+1 _ )\7’)

()

fWh";A

max — Amin A\CBs
1

Further surface features can be obtained by considering

independently the visible (Avig € [400-700] nm) and NIR
(Anir € [700-1000] nm) spectral ranges, where surface coys
ers present different reflectance properties. Therefore, instead
of working with fp, and fywn, we can obtain 2 + 2 features
from (2) and (3), respectively: fg; vis and fiwn, vis. computed

USiI‘lg A C (BS {5l VIS); and fBr,NIR and fWh,NIRv computed
using A; C (Bg N NIR). For example, clouds over land should

be better recognized in [y, vig than in fg, nir, since land

covers have less reflectance in the VIS range, while the opposite
is true for clouds over sea.

2) Atmospheric Features: Regarding the atmospheric ab-
sorptions, another meaningful feature is the fact that clouds

are at a higher altitude than the surface. It is worth noting
that atmospheric absorption depends on the atmospheric con- :

stituents and the optical path. Since light reflected on high
clouds crosses a shorter section of the atmosphere, the conse-

quence would be an abnormally short optical path, thus weaker

atmospheric absorption features. Atmospheric-oxygen absorp-
tion and even water-vapor absorption (at 760 and 940 nm,
respectively) are candidate bands to be used in the optical-path
estimation.

The use of atmospheric absorption in the oxygen-A band
to infer cloud pressure, which is related to cloud-top height,
has been suggested by several authors [38]. In fact, cloud-top-
height retrieval from the oxygen-A band using instruments con-
ceived to yield global distributions of atmospheric constituents,
such as Global Ozone Monitoring Experiment (GOME) and
Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY), is an active field of research
[31]. In the case of medium-resolution imaging spectrometers,
several studies have shown that the oxygen-A band is poten-
tially efficient for determining the cloud-top pressure [12], [29].
All these studies assume that the two spectral channels located
at the oxygen-A band (one outside and another inside the
absorption) allow the derivation of an apparent pressure, which
roughly represents the cloud pressure. In particular, apparent
pressure is calculated using an empirical polynomial function
of the oxygen transmission derived from the reflectance ratio
p(Ain)/p(Aout ). However, to obtain reliable estimations of the
cloud-top height is still a challenging problem affected by the

instrument radiometric and spectral resolution, the influence

of ground reflectance, and the need of a reliable surface-
pressure reference, e.g., from the European Center for Medium-
range Weather Forecasting. These difficulties explain the little
attention paid to this helpful feature in cloud screening. In the
case of MERIS, the accurate characterization of the Q,—A ab-
sorption at MERIS channel 11 (bandwidth of 3.75 nm nominal)
makes the inclusion of this atmospheric feature in the cloud-
screening scheme mandatory, as pointed in [12] and [39]. In
the following paragraphs, we show the formulation proposed
to extract an atmospheric feature directly related with the
optical path.

The light transmitted through a nondispersive medium can be
expressed using thé Bouguer—Lambert-Beer law

L()) = Lo(\) exp (—%*-)) @)
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where Lo()) is the light entering into the medium, the term
pxp(—7()\)/p) is the transmittance factor, 1/ is the optical
mass obtained from the illumination and observation zenith
ungles, and 7(\) is the atmospheric optical depth. Since most
of the radiation measured by the sensor has been reflected
by the surface, (4) cannot be used to model the at-sensor
tndiance. However, it provides a physical basis for the definition
of a nondimensional parameter that accounts for atmospheric
nbsorptions in typical remote-sensing scenarios. In our case,
the reference radiance Lo(A\) will be the radiance outside
the absorption feature, calculated by interpolating the nearby
channels that are unaffected by absorptions, and L(\) will be
{he radiance affected by gaseous absorptions after crossing the
TOA-surface-sensor path. The inversion of (4) provides 7(A),
which is a measure of the strength of the gaseous absorptions
in a certain spectral range. The assumption is that variations
in 7()\) are driven by sharp changes in elevation as those
due to transitions between cloud-free and cloud-covered areas.
Horizontal variations in the atmospheric state are considered a
second-order effect as compared to cloud-to-surface elevation
changes. An equivalent atmospheric-transmittance parameter
could be calculated as the ratio L(\)/Lo(A), but the contri-
bution of illumination and observation geometries would not
be normalized. An additional contribution to take into account
is atmospheric-path radiance, which is the radiation reflected
by the atmosphere into the sensor’s line-of-sight. Further re-
finement of (4) is achieved by removing the atmospheric-path
radiance, Ly, (A), from L()) and Lo(}), as L, is mainly asso-
ciated to scattering processes rather than to absorption ones. In
particular, L,, is calculated at each pixel using the exact pixel
geometry (solar-zenith angle, viewing geometry, and surface
height) from a lookup table generated with the MODTRAN4
radiative-transfer code [40]. A default visibility value of 23 km
is assumed for the aerosol loading, but changes in illumination
und observation angles are properly considered.

Sensor spectral calibration is a major uncertainty source
when dealing with gaseous absorptions. Even though MERIS
has two specific spectral bands in the oxygen-A absorption
region (channels 10 and 11), the oxygen absorption is extremely
narrow, and small variations of the spectral wavelength of each
pixel along the charged-coupled device lines (smile effect) have
o large impact on any variable derived from the oxygen-A.
Fortunately, this spectral shift on the MERIS response has been
well characterized, and the spectral-shift values A);(x) have
been provided to the user community [41]. This allows us an
casy introduction of the spectral shift in our formulation.

The atmospheric optical depth is decoupled into two
contributions

iy R S (5)

where T,¢m is an optical thickness reference spectrum at sea
level for nadir illumination and observation, and § is a factor
accounting for elevated surfaces such as clouds. The reference
Tatm (A) values are estimated for the channels of the instrument
from a high-spectral-resolution curve. The approach followed
in this paper for the so-called oxygen-A band can be devised
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from Fig. 4, and the' extracted feature is derived from (4) and
(5) as

B w(z,y) L (z,y, A11(x))
for(@9) =~ 5 @) (Lo @, An(:c))) o

where the interpolated radiance at the absorption band is
estimated from nearby channels, Lo(A11) = L(A10) + (A1 —
)\m)(L(Alg) o L(/\m))/()\lz = )\10), and Tatm(/\) has been
corrected for smile effect, A;(z) = A; + AXi(z).

An additional estimation of the optical path can be obtained
from the water-vapor absorption in the NIR close to the end
of the valid range of the sensor (900 nm). In this case, the
maximum water-vapor absorption (940 nm) is located outside
the MERIS range, and the water-vapor distribution is extremely
variable, thus it is not straightforward to relate this feature to the
real altitude. However, it is still valid for relative measurements
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Fig. 5. (Left) Estimation of the optical path from the oxygen-absorption and
(right) water-vapor bands for the BR-2003-07-14 image.

inside the same image since much of the atmospheric water
vapor is distributed in the first 2-3 km of the atmosphere
below most of the cloud types. Moreover, snow presents higher
absorption than clouds at 900 nm, and this behavior can be
appreciated in the extracted feature. The same approach as in
the Oy case has been followed to obtain this feature but using
channels 14 and 15 (Fig. 5)

_ ,u(m, y) e L(ﬁ,y,/\15($))
fWV(x,’y) B Tatm ()\15(3")) ! (L (¥, )\14(3’"))) W

where we assume that Ly(A15) = L(A14) since no interpolation
is possible.

It is worth noting that the extracted atmospherical features
are not intended to estimate altitude of clouds. They are an
estimation of the optical path by taking into account important
issues such as the viewing geometry, atmospheric transmission,
and sensor calibration. However, this estimation is affected by
the background reflectance of the surface and the atmospheric
conditions, which change from one image to another. These
problems preclude the use of these features in simple ap-
proaches based on static thresholds.

As it happened with the surface features, we found differ-
ences for the retrieved-atmospheric-absorption features over
land and ocean, which are mainly due to the coupling be-
tween scattering and absorption. Over dark surfaces with low
reflectance, such as oceanic water, an important part of the
light coming into the instrument has been scattered in the
atmosphere. Therefore, the extracted features do not measure
the direct oxygen or water-vapor transmittance anymore, thus
resulting in a biased optical path [12], [42]. Despite of these
differences over land and over ocean, the extracted features are
still capable of discriminating cloud pixels in both cases for a
given image. These differences on feature values over land and
ocean suggest that these two different cases should be better
managed separately, i.e., clustering pixels of each surface type
separately.

C. Image Clustering

As previously discussed, static thresholds applied to every
pixel in the image can fail due to subpixel clouds, sensor cali-
bration, variation of the spectral response of clouds with cloud
type and height, etc. In this context, the following step in our
methodology considers. the use of unsupervised-classification
methods to find groups of similar pixels in the image. Clus-

tering methods assume that the input data are organized into
a number of groups or clusters according to a given distance
measure in some representation space. We use the expectations

maximization (EM) algorithm to estimate the parameters of a
Gaussian mixture model [43].

As pointed in the previous section, differences of reflectance
over land and over ocean produce significant differences on
the extracted features. In consequence, splitting image pixels
into two different clustering problems simplifies the types of
found clusters and speeds up the clustering process itself. The
so-called “land/ocean” and “coastline” flags attached to the
MERIS L1b product could be used to separate land and water
pixels present in the image. However, this geographical product
cannot be directly used for this purpose due to inaccuracies
in the image geo-referentiation [44]. Therefore, a refinement
process of the “land/ocean” flag is carried out on a per-pixel
basis using the TOA reflectance in order to classify the inland
waters and coast intertidal areas accurately. After image pixels
are separated according to the surface type (“land” or “water”),
the clustering is carried out. The clustering process is further
described in the following sections.

1) Regions of Interest (ROIs): Before applying a clustering
algorithm, we should stress the fact that, if clouds were not
statistically representative in a given image, clustering methods
could not find small clouds or cloud pixels could be mixed with
other similar covers. Therefore, in addition to using representa-
tive features along with the spectral bands, clustering improves
when applied over the regions of the image where clouds are
statistically representative.

In order to find regions that could potentially contain clouds;
we apply hard nonrestrictive thresholds to provide a first map
of cloudlike pixels.! These absolute thresholds were obtained
empirically and were applied to well-defined features: the
brightness in the VIS and the NIR region, the estimated water-
vapor absorption, and the normalized difference vegetation
index (in order to exclude areas with vegetation). Then, a
region-growing algorithm is carried out, along with a morpho-
logical process that dilates cloudy areas. This way, we ensure
that all possible clouds and their contiguous areas will be
considered in the clustering. The result of this process is far
from providing a classification map but just a mask or ROI, in
which the presence of clouds is significant for the purpose of
clustering.

2) Clustering the ROIs: The clustering algorithm is ap-
plied to all the pixels in the ROI &' = {x;.}}_,, where x}, €
R is the vector of extracted features for each pixel: xp =
{fBr,vis, fBr,NIR, fwh, fO,, fwv}. Basically, the aim of the
clustering is to associate each input x;, to one of the clusters
wj, J=1,...,¢c, in order to separate different classes (or at
least clouds and ground-cover) present in the scene. We impose
the following requirements to the clustering method: 1) tak-
ing advantage of all available features (including atmospheric
absorptions); 2) considering the full relationship among vari-
ables (without applying independent tests to each feature); and
3) providing for each input soft association with the clusters

!Note that the MERIS L1b “bright” flag could be directly used to determine
these regions to speed up the process.
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(membership or probability) value between zero and one hy;
with the requirement that the memberships sum to one.

3) EM Algorithm: In multispectral-image processing, the
ussumption that the distribution of images can be approximated
is a mixture of normally distributed samples is commonly
nccepted, and we make the same assumption for the extracted
features. Therefore, we consider the input as a mixture of
fiormal distributions and use the EM algorithm to obtain the
maximum-likelihood estimation of the probability density func-
tion (pdf) of the Gaussian mixture [43]. The EM algorithm is an
iterative procedure that involves two consecutive iterative steps.
In the E-step, we compute the posteriors (or membership) Ay;
of the pixel k associated to the jth Gaussian component of the
mixture. In the M-step, we use the obtained hy; to update the
mixture coefficient c;, the mean y;, and the covariance matrix
¥;, for each component of the mixture

s o2 2 kX
! >k
51, S Py (0 — ) (6 = 1) ™
: >k Tk
1
o == > hij. (8)
k

The final pdf describes both the class of interest and the ground-
cover class and is worth noting that both heterogeneous classes
can be made up of more than one Gaussian component, each
representing a different subclass.

4) EM Initialization: The EM algorithm has to be started
with initial values for the parameters of the pdf. In this pa-
per, the k-means algorithm is used to obtain a first approach
{0 the structure of the data in clusters. This algorithm only
needs the number of clusters ¢ to be fixed and minimizes
the Euclidean distance of the samples in one cluster to its
mean. In k-means, input is associated only with the cluster
having the nearest center (crisp labels). The cluster center is
the mean of all inputs associated with that cluster. Once the
cluster centers are updated, samples may change to a different
cluster so an iterative procedure is followed until centers do not
change.

5) Maximum A Posteriori (MAP) Probability Classification:
Once we know the Gaussian components of the pdf of the data,
we perform a Gaussian maximum-likelihood classification on
the whole image. The algorithm assigns the pixel to the clus-
ter with the MAP generating a map with the clusters in the
image. The final estimates of the cluster membership for each
pixel in the image hy; represent the estimates of the posterior
probabilities, which are used to compute the optimal cluster
label as

wx = argmax{fy;}: )]
i

6) Remarks on the Number of Clusters: The proposed
image-clustering process relies on the key step of selecting
the number of clusters c. Several statistical criteria have been
iniroduced in the literature to assess partitions produced by the
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EM clustering algorithm [45]. Two different indexes are used
in this paper. The first one is the crisp Davies-Bouldin (DB)
index [46), which consists in maximizing the between-cluster
separation while minimizing the within-cluster scatter using a
Euclidean metric. The second one is the minimum-description-
length (MDL) criterion [47], which is an information-based
probabilistic index aimed in determining the model (number of
Gaussian components) that best describe the data (maximum-
likelihood estimate) while reducing model complexity (number
of independently adjusted parameters within the model) to
account for the overfitting of high-order models.

Another possibility for the user (not explored in this paper) is
to initialize the mean of the clusters with the spectral signature
of the class of interest using a spectral library. Obviously, the
problem of selecting ¢ disappears if a training labeled set is
available.

D. Cluster Labeling

Once clusters are determined in the previous step, the spec-
tral signature of each cluster s;(\) is estimated as the average
of the spectra of the cluster pixels. This step excludes those
pixels with abnormally low membership values or posterior
probability hy;. It is important to emphasize that these spectral
signatures of each cluster could differ a lot from the spectra
obtained when applying the EM algorithm over the image
using the spectral bands rather than the extracted features. The
extracted features used to find the clusters are optimized to in-
crease separability between clouds C' and any other surface type
C, while in the spectral domain, these clusters could present a
high degree of overlapping. Therefore, the obtained clusters can
be labeled (or identified) as “cloud” or “cloud-free” (or into
more detailed geophysical classes), taking into account four
complementary sources of information: 1) the cluster centers
p; of the extracted features; 2) the spectral signatures of cluster,
s;; 3) the thematic map with the distribution of the clusters in
the scene; and 4) the location in the image of the pixels with
the spectral signature closer to s;. At this point of the process,
two different labeling strategies can be followed depending on
whether the method is applied to a large number of scenes in an
operational mode.or it is used by an operator to improve cloud
screening on regional and case studies. In the first case, found
clusters are labeled by using a set of threshold tests (similar
to the ones used by the MERIS standard algorithm [30]) over
u; and s; values. This cluster-based approach provides a more
accurate cloud screening than the standard approach (applied
on a per-pixel basis) since classifying the centers of the clusters
should be easier than classifying single pixels (e.g., pixels close
to the decision boundaries). It is worth noting that, in this case,
different classification criteria can be used for clusters found
over “land” and over “water.” For regional and case studies,
the cluster information can be analyzed directly by the user for
the given image. It can help significantly to identify clusters
corresponding to extremely thin clouds or ice/snow covers mis-
classified by the automatic labeling. In the following processing
steps of the method, both “land” and “water” clusters are
used together to obtain the final probability and abundance
fraction of clouds for all image pixels and, thus, obtaining a
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Unmixing Cloud Abundances

the cloud clusters. (Right) Cloud-abundance computed from the unmixing coefficients of the cloud clusters.

cloud-product map without discontinuities between land and
water.

Once all clusters have been related to a class with a geo-
physical meaning [Fig. 6 (left)], it is straightforward to merge
all the clusters belonging to a cloud type. Since the EM
algorithm provides posterior probabilities (hi; € [0,1] and
E;=1 hi; = 1), a probabilistic cloud index, based on the
clustering of the extracted features, can be computed as the sum
of the posteriors of the cloud-clusters C'

hike = hyj.

w;CC

(10)

However, if the clusters are well separated in the feature space,
the posteriors decrease drastically from one to zero in the
boundaries between clusters [Fig. 6 (center)]. Therefore, this
cloud-probability index indicates the probability that one pixel
belongs more to a cloud cluster C' than to one of the other
clusters C' found in the image, but it does not give informa-
tion about the cloud content at subpixel level, which is very
important when dealing with thin clouds or partially covered
pixels.

E. Spectral Unmixing

In order to obtain a cloud-abundance map for every pixel in
the image, rather than flags or a binary classification, a spectral-
unmixing algorithm is applied to the MERIS image. The linear
spectral-unmixing algorithm (LSU) [48] allows decomposing
each pixel of the image py()) into a collection of constituent
spectra or endmembers and a set of corresponding abun-
dances that indicate the proportion of each endmember in the
pixel.

1) LSU Algorithm: The algorithm used to perform the spec-
tral unmixing is the fully constrained LSU (FCLSU) [48],
which guarantees a physical interpretation of the results and can
be formalized as follows:

Q
Pr(As) = qu()\i)akq + &

q=1

(11)

subject to

0<ag <1 (12)

Zaqul

q

where pj;(A;) is the value of the pixel k for the band 4, Q repre-
sents the number of endmembers that are being unmixed, bein g
the coefficients a, of this combination the unmixing coeffi-
cients, which can be interpreted as the abundance fractions of
materials in a pixel. Finally, the term ¢; represents the residual
error per band. Equation (11) can be expressed in a matrix form
as pr = M - ay, + ¢, where the spectral signatures of materials
my, are expressed in the columns of matrix M. The FCLSU
algorithm solves a constrained linear least squares problem
minimizing the norm of (M - a;, — Pr), Where the vector ay, of
independent variables is restricted to being nonnegative (since
it represents the contribution of reflectance signatures m,) and
sum to one (since it is supposed that M represents all the
constituents in the image with at least one pure independent
spectrum).

2) Remarks on Endmember Extraction for Cloud Screening:
In the literature, there are different approaches to determine
the spectra of the different pure constituents in the image
[49]. However, in a cloud-screening framework, two specific
considerations have to be taken into account. First, only one
endmember must be selected to represent clouds. This con-
straint contrasts with the selection of the number of clusters, in
which more clusters should model better such a heterogeneous
class as clouds. In the classification, most of the cloud clusters
consists of mixed pixels of thin clouds and ground or borders
and subpixel clouds. In the LSU method, we assume that clouds
represent pure constituents and, consequently, only one end-
member must represent them. Some examples of the negative
effects of including mixed thin cloud spectra as endmembers
were reported in [35]. In this paper, the cloud endmember m;
is selected from all the cloud pixels p, C C looking for the
brightest and whitest one. The second issue is related to the
total number of endmembers. If the value of @ is selected to
be too low, then not all constituents will be extracted. On the
other hand, if the value of @ is selected to be too high, some
extracted endmembers may be unwanted nonpure signatures,
However, this does not constitute a critical problem since we

-probability index computed from the posteriors of
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fare not interested in obtaining accurate abundances for all the
constituents present in the image but, basically, in the cloud
ibundance. For this reason, obtaining some unpure ground
gndmembers, i.e., those mixture of two or more ground con-
stituents, is not a problem, as this will only affect the abun-
tlances related to ground endmembers.

3) Endmember-Initialization Algorithm: Taking into ac-
count the previous considerations, we use the automated
larget-generation process (ATGP) [50] to select the rest of
endmembers {mq}qQ:2 from the ground pixels p, C C. The
ATGP finds the endmembers in accordance with an orthogonal
subspace-projection criteria, and it normally outperforms the
other common endmember-initialization algorithms [49]. In
particular, the ATGP is well suited to our problem since it starts
with an initial endmember signature m;, then finds the next
endmember signature ms looking for the ground pixel with the
maximum absolute projection in the space orthogonal to M =
|1111], adds the new endmember to M = {m;, mz], and repeats
the procedure until a set of ) endmembers {m;, mg,...,mg}
is extracted.

4) Cloud Abundance: After the endmember selection, we
apply the FCLSU to the image using all the available spec-
fral bands except MERIS bands particularly affected by
atmospheric absorptions (\; C Ba,t = {11,15}), since the
linear mixing assumption is not appropriate at those bands. The
FCLSU provides the vector a;, of abundances for each sample
pixel k. As it happens with the probabilities of the clusters,
the abundance ax, € [0,1] and EqQ=1 arq = 1. Therefore, the
cloud abundance is the sum of the abundances of the cloud
clusters which, in our case, represents the abundance of the
cloud endmember [Fig. 6 (right)]

apc = Zakq = Qk1- (13)
qcC

As in the case of the probabilities, a threshold of arc would
pive a good cloud mask but some false detections could ap-
pear since the unmixing has been performed on the basis of
spectral signatures that could be nonpure pixels or, at least, not
completely independent, thus providing relatively high cloud
abundances in ground covers with similar spectral signatures.
5) Cloud Product: An improved cloud-product map can
be obtained when combining the cloud abundance arc and
the cloud probability hrc by means of a pixel-by-pixel
multiplication
Pk = archrc- (14)
That is, combining two complementary sources of informa-
tion processed by independent methods: the degree of cloud
abundance or mixing (obtained from the spectra) and the cloud
probability that is close to one in the cloud-like pixels and
close to zero in remaining areas (obtained from the extracted
features). Note that, performing a pixel-by-pixel multiplication,
errors in the subpixel cloud abundance would lead to similar
errors in the cloud-abundance product. For example, if an
endmember is selected from a ground cover with similar re-
flectance signature to the cloud endmember, it could introduce
significant errors in the estimated cloud abundance. However,

4113

the endmember selection performed by the ATGP algorithm
reduce to some extent the risk of selecting such spectra. In
addition, besides abundance fractions, the unmixing algorithm
provides the unmixing residual error &, which informs us about
the accuracy of the unmixing on a per-pixel basis.

III. EXPERIMENTAL RESULTS

In this section, we present results of the proposed scheme. It
is worth noting that validation of cloud-screening algorithms is
not an easy task because there is no simultaneous independent
measurement with the same spatial resolution. In this paper, we
analyze the performance of the proposed method by comparing
the final clustering classification and cloud-abundance product
with the RGB composite of the MERIS images. In addition, a
further validation step is followed by comparing results with the
official MERIS L2 cloud flag.

A. Data Description

A data set consisting of four acquisitions over three sites
has been selected. Both L1b and L2 products were available
for all MERIS FR images (300 m). In particular, the site
of Barrax (BR, Spain) was selected as the main test site. It
has been the core site of previous EO campaigns, and the
analyzed cloudy images are part of the data acquired in the
framework of the Spectra Barrax Campaign (SPARC) 2003
and 2004 ESA campaigns (ESA-SPARC Project, Contract
ESTEC-18307/04/NL/FF). These two images were acquired
July 14th of two consecutive years (BR-2003-07-14 and
BR-2004-07-14). Additionally, MERIS acquisitions over
France (FR-2005-03-19) and Finland (FI-2005-02-26) have
been included in this paper in order to take into account their
different characteristics: geographic location, date and season,
type of cloud, and surface types. The selected images represent
different scenarios extremely useful to validate the performance
of the method, including different landscapes; soils covered
by vegetation or bare; and two critical cases given the special
characteristics of the induced problems: ice and snow.

The proposed method is only applied to the MERIS L1b
products (TOA radiance) because the top of aerosols reflectance
of L2 products does not provide information at the oxygen and
water-vapor absorptions. Besides, L2 products are processed
from L1b using a cloud-pixel classification that could be in-
accurate. Therefore, L2 products are only used for validation
purposes by comparing the official L2 cloud flag with the cloud
mask produced by our method.

The following results were obtained for all images and
scenarios with the presented methodology as follows. The
number of clusters found by the EM clustering was automat-
ically determined as the maximum of suggested numbers by
the DB and MDL indexes. However, we did not observe a
critical behavior in this sense; note that even if a low number
of clusters is selected, some of them should correspond to
different cloud types, since the (overgrown) ROI is typically
well-identified. Clusters were labeled into geo-physical classes
by an operator considering the extracted features. The number
of endmembers was equal to the number of clusters, and the
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Fig. 7. MERIS images over the test sites of BR-2003-07-14, BR-2004-07-04, FI-2005-02-26, an'd‘ﬁR-2005-03-19 displayed in columns from left to right. First
row: RGB composite with a histogram stretching, such that 10% of data are saturated at both low and high reflectance (10%-90%) in order to increase the contrast
of the cloudy images. Second row: Classification of the relevant regions (clouds in gray, ground in brown, ice/snow in yellow, and background in blue). Third row:
Cloud-abundance product. Fourth row: Comparison of MERIS L2 Cloud Flag with the obtained cloud mask (discrepancies are shown in red when our algorithm

detects cloud and in yellow when pixels are classified as cloud free).

hard classification between clouds and ground was obtained
by applying a threshold of 0.05 to the cloud-abundance final
product.

B. Visual Validation

1) Easy Cloud-Screening Situations: The two images over
Barrax (Spain) are a good example of an easy cloud-detection
problem, where opaque clouds are well contrasted with bare
soil and vegetation [Fig. 7 (first and second columns)]. At
the BR-2003-07-14 image, dry-soil pixels belong to a cluster
labeled as cloud due to their high reflectance and whiteness, but
they present low probabilities and abundances. The BR-2004-

07-14 image presents thin and small clouds over land and over
sea, which are well detected since a specific cluster describes
them. The ROI selection can be easily seen in the classification
images [Fig. 7 (second row)], being more significant in the
BR-2004-07-14 image where small clouds could be mixed
in a cluster with other ground covers if the whole image is
considered. The use of thresholds to select the ROI could be
interpreted as one of the weak points of the algorithm, since
some thin or small clouds could be eventually excluded from
the ROIL. However, the ROI selection is an optional improve-
ment. The obvious solution is to relax the thresholds or even
consider the whole image. In this case, results are accurate if
clouds cover a sufficient percentage of the image or the found
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number of clusters is high enough (as in the image over Finland,
111-2005-02-26).

2) Challenging Cloud-Screening Situations: The images
over Finland and France have been included in this paper to
lest one of the critical issues in cloud screening for which the
proposed algorithm was intended for. In particular, the pre-
sented approach is designed to overcome the presence of bright
pixels, such as ice and snow in the surface. Bright land covers
und clouds have a similar reflectance behavior, thus thresh-
olds on reflectance values or unmixed fractions do not solve
the problem. However, the atmospheric absorption suffered
by cloud pixels is lower than for the surface pixels due to their
height. For this reason, when using together all the features in
the clustering algorithm, different clusters are found for.these
Iwo classes in the image. Owing to the extracted atmospheric
features, ice/snow pixels present low cloud-probability val-
ues, although the cloud abundance provided by the spec-
tral unmixing could be relatively high due to the spectral
similarities.

Consequently, both information types are combined improv-
ing the final cloud-abundance product provided to the users
(Fig. 7 (third row)]. Fig. 7 (fourth column) shows a case
example result for an image over France (FR-2005-03-19) that
presents opaque clouds at south and north France and snowy
mountains at various altitudes (Pyrenees, Massif Central, and
the Alps), which are well-distinguished from clouds. The cloud
product in these regions presents low values because the low
cloud probability, hzc ~ 0, obtained for these pixels.

In the case of Finland [FI-2005-02-26, Fig. 7 (third column)],
we have a different scenario where a cirrus cloud, often found in
advance of a warm front, is moving from sea to the icy coast of
Finland. In this image, we have a difficult cloud-identification
problem, even for an expert analyst. Reflectance of transparent
cirrus clouds is mostly affected by surface contribution, and it
ranges from very low to extremely high values depending on
whether cirrus cloud is over water or ice, respectively. However,
the highest altitude clouds in the atmosphere are cirrus clouds
located at altitudes between 5 and 14 km. Despite the variability
of the spectral behavior, the atmospheric features allow us to
cluster transparent cirrus clouds correctly. Summarizing, the
use of the oxygen-A absorption allows thick and high/middle-
level clouds to be detected unambiguously. Very low-level
clouds, very thin cirrus clouds, and broken clouds could be un-
detected when using only the oxygen feature, but its combined
use with surface-reflectance features solves these problems to
a great extent. Finally, although the water-vapor-absorption
feature is less accurate than the oxygen feature for cloud-height
estimations, it provides an alternative independent estimation.
Besides, it is extremely useful to discriminate clouds from
ice/snow covers due to the incipient absorption of these types

of covers in the NIR region above 900 nm [9].

C. Validation Against MERIS L2 Cloud Flag

One of the motivations to propose the presented cloud-
screening algorithm is to solve some critical problems where
the operational MERIS L2 algorithm shows clear deficiencies,
as reported by the user community and by the MERIS Quality

4115

TABLE I
CONFUSION MATRICES BETWEEN THE PROPOSED METHOD IN THE
WHOLE SCENE USING THE MERIS L2 CLOUD FLAG AS REFERENCE
(GIVEN IN PERCENT OF PIXELS). IN THE BOTTOM, THE OVERALL
AGREEMENT (OA%) AND ESTIMATED KAPPA STATISTICS
(k) ARE GIVEN FOR ALL IMAGES

Proposed Method
MERIS L2 || Spamn’03 | Spain’04 | Finland France
ClowdFlag [C C |Cc C |¢ T |c ©
Cloud (C) [[38 00 ] 1.3 00276 302] 7.4 44
Ground (C) || 54 90.8| 62 925/ 98 324| 1.8 86.4
0A% 94.58 93.84 59.98 93.78
& 0.56 0.29 0.23 0.66

Working Group [12], [13]. For this reason, we illustrate the
proposed methodology in different scenarios presenting critical
cloud-screening problems and compare it to the MERIS L2 flag
solution. '

Images in the last row of Fig. 7 show a comparison of MERIS
L2 Cloud Flag with the results obtained by our algorithm.
Pixels where both algorithms agree are depicted in white for
the cloudy pixels and in blue for the cloud-free pixels. The
agreement between both methods is shown in Table I on the
basis of the confusion matrices—which are expressed in terms
of percentage of pixels in each image—and the overall accuracy
and estimated kappa statistics? derived from them. Although
overall agreement between both classifications is good enough
for most of the images, the low values of kappa indicate that
significant differences between methods exist. These differ-
ences can be better analyzed looking at the confusion matrices
and comparison maps in Fig. 7. From these results, two main
discrepancies can be found. On the one hand, pixels classified
as cloudy pixels (C') by our method but not by the MERIS flag
(C) are plotted in red, showing a good agreement with cloud
borders. Therefore, one can assume that the proposed method
provides better recognition in cloud borders and in small and
thin clouds, which is the situation in the images acquired over
Spain. On the other hand, discrepancy pixels classified by our
algorithm as cloud-free (C) are shown in yellow. These areas
correspond to ice covers (Finland image) and snow over high
mountains (Pyrenees, Massif Central, and Alps in the France
image). These results explain all discrepancies found in the
confusion matrices and indicate the goodness of our approach.

For the sake of a fair comparison between both algorithms,
we want to remark that the proposed algorithm is less efficient
than the MERIS standard cloud-masking scheme in terms of
computational burden (mainly due to the clustering and un-
mixing processes). However, when considering critical cloud-
screening problems, our algorithm can provide better results.
The algorithm has not been specifically designed to process a
large number of images like the operational MERIS L2 algo-
rithm or recent pragmatic solutions proposed for MERIS [39],
[42]. Rather, our proposal is more concerned with obtaining
abundance and accurate cloud masks when the thresholds used
in the MERIS L2 algorithm are not representative.

2Estimated kappa statistics r is more appropriate than the overall accuracy
for testing whether agreement for both binary cloud classifiers exceeds chance
levels [51]. A value of k = 1 means complete agreement and & < 0 reflects no
agreement,
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Fig. 8. Histogram of the posterior probability k¢ (dark) and cloud product
¢y (white) values for the images of BR-2003-07-14 (top left), BR-2004-07-
14 (top right), FI-2005-02-26 (bottom left), and FR-2005-03-19 (bottom right).
Extreme low and high values have been excluded for a proper visualization.

D. Cloud-Abundance Product

Finally, one of the requirements imposed to the proposed
cloud-screening methodology was to provide information to
the users about the contribution of clouds to the spectra of
image pixels (for both transparent clouds or subpixel coverage
situations). This type of information may be very useful for the
users to decide what is a cloud depending on the application
requirements or image conditions. In this paper, we classified
as cloud all pixels presenting values higher than 0.05 in the
obtained cloud-abundance product. It should be noted that
this threshold was the same for all images analyzed in this
paper. The obtained value is so low because the classification
probability makes almost zero the cloud-abundance product for
all the cloud-free pixels. However, if the user is not interested
in excluding pixels slightly affected by clouds in a given
application, threshold value can be increased.

In order to show the potential of the cloud-abundance prod-
uct, Fig. 8 shows the histograms of the obtained values of
posterior probability hyc (dark) and cloud product ¢, (white)
for all images. The smooth distribution of ¢;, values differs to a
great extent from the output of the probabilistic classifier, which
has no physical meaning and is usually unevenly distributed
around zero and one.

IV. DISCUSSION AND CONCLUSION

This paper presents a novel methodology that faces the
challenging problem of cloud screening in ENVISAT/MERIS
L1b multispectral images. The algorithm identifies the location
of clouds in the image and produces a cloud-abundance map in
order to quantify how cloud presence affects the measured spec-
tra. The cloud-screening algorithm is based on well-founded
physical features, which are intended to increase separability
between clouds and ground covers and are extracted from the
converted TOA reflectance in order to reduce dependence on
illumination and geometric-acquisition conditions. Afterwards,

the main modules of the cloud-screening algorithm have been
formulated. An operative unsupervised classification is per-
formed based on the extracted features in order to adapt the
cloud screening to the given image conditions, mainly the
atmospheric conditions, the background, and the present cloud
types. This step allows the user to easily discriminate between
cloud-free and cloudy regions, where the method provides a
cloud-abundance product, which is based on spectral-unmixing
algorithm. Method performance was validated by comparing
results with the official MERIS L2 Cloud Flag and by thor-
oughly testing the algorithm with images representing critical
situations in cloud screening.

Several remarks and conclusions can be drawn. First, the
cloud-screening method has been proposed as an arrangement
of different purpose-designed modules, which have been
formulated in terms of simple and operational algorithms
that cover the essential requirements for the cloud-screening
process. These modules can be changed to more advanced
algorithms or modified to adapt to the characteristics of other
sensors. Consequently, this procedure can serve to develop
a cloud-screening algorithm for other imaging spectrometers
working in the VNIR spectral range with proper spectral
characterization of the atmospheric absorptions, such as
compact high resolution imaging spectrometer (CHRIS) on-
board Project for On Board Autonomy (PROBA) or the future
GMES/Sentinel-3 and EnMAP EO missions. The presented
method was tested in a previous work [35] on PROBA/CHRIS
mode-1 hyperspectral images in order to propose and validate
cloud-detection methodologies. The use of CHRIS data
allowed us to assess algorithm’s performance in favorable
spatial resolution (34 m) and number of bands (62 channels).

A second important remark is that the method has been
implemented to use self-contained information provided with
MERIS L1b products. It allows us to take advantage of the
illumination and observation geometry and (optionally) of an
overlapped DEM.

We should note that one critical feature introduced in this
paper was the use of the atmospheric-oxygen and water-vapor
absorption bands to improve cloud-screening results.

1Y

1) Theaise of atmospheric absorption in the oxygen-A band
to infer cloud pressure, which is related to cloud-top
height, is well-known in atmospheric studies. Here, we
proposed a formulation to extract an atmospheric feature
directly related with the optical path by using the exact
pixel geometry.

2) Despite the high spectral and radiometric resolution of
MERIS, the oxygen absorption is extremely narrow, and
small variations of the spectral wavelength of each pixel
have a large impact on any variable derived from the
oxygen-A. In this paper, this spectral shift has been
accounted for in order to correct the smile effect.

3) The maximum water-vapor absorption (940 nm) is lo-
cated outside the MERIS range but absorption at 900 nm
is still valid for relative measurements inside the same
image. Moreover, snow presents higher absorption than
clouds at 900 nm, and this behavior can be appreciated in
the extracted feature.
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4) Results obtained by using these absorption features sug-
gest that it would be advantageous to see those bands
included in future sensors.

An important aspect of the proposed method is that it provides
i cloud-abundance product to the user that estimates the contri-
bution of clouds to the spectra of image pixels. This information
can be used to better describe detected clouds (subpixel cover-
nge, transparency, and cloud type) and to generate cloud masks
with different restrictive levels depending on the application.

Finally, results have demonstrated that the proposed algo-
rithm accurately classifies difficult cloud pixels. In particular,
¢lear deficiencies have been observed in the MERIS L2 Cloud
Flag over bright covers, such as bare soils, ice, and snow, which
ure classified as clouds, and more accurate results have been
obtained by the presented method in thin transparent clouds
nnd cloud borders, which are misclassified by the official ESA
product.

The presented methodology for cloud screening opens many
future directions of research due to its natural modularity.
Our next steps are tied to the inclusion of some refinements
addressed to enhance its robustness. For instance, the inclusion
of dynamic thresholds could be useful to find the regions to ana-
lyze, while the inclusion of contextual and textural information
could enhance the clustering module. Some other directions
will consider the inclusion of sun position to relate cloud and
shadow positions.
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